Advances in the Development of Gradient Scaffolds Made of Nano-Micromaterials for Musculoskeletal Tissue Regeneration
Corresponding Author: Jiajia Xue
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 75
Abstract
The intricate hierarchical structure of musculoskeletal tissues, including bone and interface tissues, necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes. This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes. Building on the anatomical characteristics of bone and interfacial tissues, this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues, specifically focusing on methods used to construct compositional and structural gradients within the scaffolds. The latest applications of gradient scaffolds for the regeneration of bone, osteochondral, and tendon-to-bone interfaces are presented. Furthermore, the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed, as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries.
Highlights:
1 This review highlights the gradient variations in the structural composition of musculoskeletal tissues and comprehensively examines recent progress in the fabrication and application of biomimetic gradient scaffolds for musculoskeletal repair.
2 The challenges and prospects of gradient scaffolds for clinical application are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhang, Q. Li, L. Li, J. Ouyang, T. Wang et al., Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano 17, 6466–6479 (2023). https://doi.org/10.1021/acsnano.2c11486
- H. Wei, J. Cui, K. Lin, J. Xie, X. Wang, Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 10, 17 (2022). https://doi.org/10.1038/s41413-021-00180-y
- J. Fu, X. Wang, M. Yang, Y. Chen, J. Zhang et al., Scaffold-based tissue engineering strategies for osteochondral repair. Front. Bioeng. Biotechnol. 9, 812383 (2022). https://doi.org/10.3389/fbioe.2021.812383
- A. Ho-Shui-Ling, J. Bolander, L.E. Rustom, A.W. Johnson, F.P. Luyten et al., Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.017
- T.M. Koushik, C.M. Miller, E. Antunes, Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv. Healthcare Mater. 12, 2202766 (2023). https://doi.org/10.1002/adhm.202202766
- G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
- A. Baawad, D. Jacho, T. Hamil, E. Yildirim-Ayan, D.-S. Kim, Polysaccharide-based composite scaffolds for osteochondral and enthesis regeneration. Tissue Eng. Part B Rev. 29, 123–140 (2023). https://doi.org/10.1089/ten.teb.2022.0114
- P. Chen, L. Li, L. Dong, S. Wang, Z. Huang et al., Gradient biomineralized silk fibroin nanofibrous scaffold with osteochondral inductivity for integration of tendon to bone. ACS Biomater. Sci. Eng. 7, 841–851 (2021). https://doi.org/10.1021/acsbiomaterials.9b01683
- S. Chen, A. McCarthy, J.V. John, Y. Su, J. Xie, Converting 2D nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients regulates cell behavior. Adv. Mater. 32, e2003754 (2020). https://doi.org/10.1002/adma.202003754
- R. Yang, Y. Zheng, Y. Zhang, G. Li, Y. Xu et al., Bipolar metal flexible electrospun fibrous membrane based on metal-organic framework for gradient healing of tendon-to-bone interface regeneration. Adv. Healthc. Mater. 11, e2200072 (2022). https://doi.org/10.1002/adhm.202200072
- S. Ansari, S. Khorshidi, A. Karkhaneh, Engineering of gradient osteochondral tissue: from nature to lab. Acta Biomater. 87, 41–54 (2019). https://doi.org/10.1016/j.actbio.2019.01.071
- B. Zhang, J. Huang, R.J. Narayan, Gradient scaffolds for osteochondral tissue engineering and regeneration. J. Mater. Chem. B 8, 8149–8170 (2020). https://doi.org/10.1039/d0tb00688b
- G. Xu, Y. Zhao, Y. Geng, S. Cao, P. Pan et al., Nano-hybrid gradient scaffold for articular repair. Colloids Surf. B Biointerfaces 208, 112116 (2021). https://doi.org/10.1016/j.colsurfb.2021.112116
- N. Yildirim, A. Amanzhanova, G. Kulzhanova, F. Mukasheva, C. Erisken, Osteochondral interface: regenerative engineering and challenges. ACS Biomater. Sci. Eng. 9, 1205–1223 (2023). https://doi.org/10.1021/acsbiomaterials.2c01321
- J. Lipner, H. Shen, L. Cavinatto, W. Liu, N. Havlioglu et al., In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng. Part A 21, 2766–2774 (2015). https://doi.org/10.1089/ten.TEA.2015.0101
- C. Li, L. Ouyang, J.P.K. Armstrong, M.M. Stevens, Advances in the fabrication of biomaterials for gradient tissue engineering. Trends Biotechnol. 39, 150–164 (2021). https://doi.org/10.1016/j.tibtech.2020.06.005
- R. Chen, J.S. Pye, J. Li, C.B. Little, J.J. Li, Multiphasic scaffolds for the repair of osteochondral defects: outcomes of preclinical studies. Bioact. Mater. 27, 505–545 (2023). https://doi.org/10.1016/j.bioactmat.2023.04.016
- L. Zhang, L. Fu, X. Zhang, L. Chen, Q. Cai et al., Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater. Sci. 9, 1547–1573 (2021). https://doi.org/10.1039/d0bm01595d
- M. Altunbek, F. Afghah, O.S. Caliskan, J.J. Yoo, B. Koc, Design and bioprinting for tissue interfaces. Biofabrication 15, 022002 (2023). https://doi.org/10.1088/1758-5090/acb73d
- C. Gögele, J. Hahn, G. Schulze-Tanzil, Anatomical tissue engineering of the anterior cruciate ligament entheses. Int. J. Mol. Sci. 24, 9745 (2023). https://doi.org/10.3390/ijms24119745
- U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). https://doi.org/10.1038/nmat4089
- J.-M. Kim, C. Lin, Z. Stavre, M.B. Greenblatt, J.-H. Shim, Osteoblast-osteoclast communication and bone homeostasis. Cells 9, 2073 (2020). https://doi.org/10.3390/cells9092073
- W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007
- X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu et al., Bioactive hydrogels for bone regeneration. Bioact. Mater. 3, 401–417 (2018). https://doi.org/10.1016/j.bioactmat.2018.05.006
- G. Dang, W. Qin, Q. Wan, J. Gu, K. Wang et al., Regulation and reconstruction of cell phenotype gradients along the tendon-bone interface. Adv. Funct. Mater. 33, 2210275 (2023). https://doi.org/10.1002/adfm.202210275
- I. Sahafnejad-Mohammadi, S. Rahmati, N. Najmoddin, M. Bodaghi, Biomimetic polycaprolactone-graphene oxide composites for 3D printing bone scaffolds. Macromol. Mater. Eng. 308, 2200558 (2023). https://doi.org/10.1002/mame.202200558
- J. Scheinpflug, M. Pfeiffenberger, A. Damerau, F. Schwarz, M. Textor et al., Journey into bone models: a review. Genes 9, 247 (2018). https://doi.org/10.3390/genes9050247
- H. Qu, Z. Han, Z. Chen, L. Tang, C. Gao et al., Fractal design boosts extrusion-based 3D printing of bone-mimicking radial-gradient scaffolds. Research 2021, 9892689 (2021). https://doi.org/10.34133/2021/9892689
- H. Zhao, Y. Han, C. Pan, D. Yang, H. Wang et al., Design and mechanical properties verification of gradient voronoi scaffold for bone tissue engineering. Micromachines 12, 664 (2021). https://doi.org/10.3390/mi12060664
- M. Eryildiz, Fabrication of drug-loaded 3D-printed bone scaffolds with radial gradient porosity. J. Mater. Eng. Perform. 32, 4249–4257 (2023). https://doi.org/10.1007/s11665-022-07490-0
- H. Zhang, R. Wang, Y. Song, Y. Wang, Q. Hu, Research on dual-phase composite forming process and platform construction of radial gradient long bone scaffold. Bioengineering (Basel) 11, 869 (2024). https://doi.org/10.3390/bioengineering11090869
- L. Li, P. Wang, H. Liang, J. Jin, Y. Zhang et al., Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J. Adv. Res. 54, 89–104 (2023). https://doi.org/10.1016/j.jare.2023.01.004
- S. Khorshidi, A. Karkhaneh, A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration. J. Tissue Eng. Regen. Med. 12, e1974–e1990 (2018). https://doi.org/10.1002/term.2628
- P. Morouço, C. Fernandes, W. Lattanzi, Challenges and innovations in osteochondral regeneration: insights from biology and inputs from bioengineering toward the optimization of tissue engineering strategies. J. Funct. Biomater. 12, 17 (2021). https://doi.org/10.3390/jfb12010017
- M. Cucchiarini, H. Madry, Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat. Rev. Rheumatol. 15, 18–29 (2019). https://doi.org/10.1038/s41584-018-0125-2
- W. Hu, Y. Chen, C. Dou, S. Dong, Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann. Rheum. Dis. 80, 413–422 (2021). https://doi.org/10.1136/annrheumdis-2020-218089
- S.R. Goldring, M.B. Goldring, Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016). https://doi.org/10.1038/nrrheum.2016.148
- M. Zhu, W. Zhong, W. Cao, Q. Zhang, G. Wu et al., Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact. Mater. 9, 221–238 (2021). https://doi.org/10.1016/j.bioactmat.2021.07.004
- S. Muthu, J.V. Korpershoek, E.J. Novais, G.F. Tawy, A.P. Hollander et al., Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat. Rev. Rheumatol. 19, 403–416 (2023). https://doi.org/10.1038/s41584-023-00979-5
- M. Li, P. Song, W. Wang, Y. Xu, J. Li et al., Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. J. Mater. Chem. B 10, 4172–4188 (2022). https://doi.org/10.1039/d2tb00576j
- A. Di Luca, C. Van Blitterswijk, L. Moroni, The osteochondral interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res. Part C Embryo Today Rev. 105, 34–52 (2015). https://doi.org/10.1002/bdrc.21092
- D. McGonagle, T.G. Baboolal, E. Jones, Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat. Rev. Rheumatol. 13, 719–730 (2017). https://doi.org/10.1038/nrrheum.2017.182
- Z. Naghizadeh, A. Karkhaneh, A. Khojasteh, Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: injectable in situ forming scaffolds. Mater. Sci. Eng. C 89, 256–264 (2018). https://doi.org/10.1016/j.msec.2018.04.018
- X. Wang, Z. Zhu, H. Xiao, C. Luo, X. Luo et al., Three-dimensional, multiscale, and interconnected trabecular bone mimic porous tantalum scaffold for bone tissue engineering. ACS Omega 5, 22520–22528 (2020). https://doi.org/10.1021/acsomega.0c03127
- Y. Cao, P. Cheng, S. Sang, C. Xiang, Y. An et al., Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering. Regen. Biomater. 8, rbab019 (2021). https://doi.org/10.1093/rb/rbab019
- S. Zadegan, B. Vahidi, J. Nourmohammadi, A. Shojaee, N. Haghighipour, Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair. J. Biomed. Mater. Res. Part B Appl. Biomater. 112, e35396 (2024). https://doi.org/10.1002/jbm.b.35396
- D. Clearfield, A. Nguyen, M. Wei, Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach. J. Biomed. Mater. Res. A 106, 948–958 (2018). https://doi.org/10.1002/jbm.a.36288
- A. Golebiowska, S.P. Nukavarapu, Bio-inspired zonal-structured matrices for bone-cartilage interface engineering. Biofabrication Biofabrication 14, 025016 (2022). https://doi.org/10.1088/1758-5090/ac52e1
- A. Vinhas, A.F. Almeida, M.T. Rodrigues, M.E. Gomes, Prospects of magnetically based approaches addressing inflammation in tendon tissues. Adv. Drug Deliv. Rev. 196, 114815 (2023). https://doi.org/10.1016/j.addr.2023.114815
- C. Zhu, J. Qiu, S. Thomopoulos, Y. Xia, Augmenting, tendon-to-bone repair with functionally graded scaffolds. Adv. Healthc. Mater. 10, e2002269 (2021). https://doi.org/10.1002/adhm.202002269
- S. Zhang, W. Ju, X. Chen, Y. Zhao, L. Feng et al., Hierarchical ultrastructure: an overview of what is known about tendons and future perspective for tendon engineering. Bioact. Mater. 8, 124–139 (2021). https://doi.org/10.1016/j.bioactmat.2021.06.007
- C. Chen, Y. Chen, M. Li, H. Xiao, Q. Shi et al., Functional decellularized fibrocartilaginous matrix graft for rotator cuff enthesis regeneration: a novel technique to avoid in-vitro loading of cells. Biomaterials 250, 119996 (2020). https://doi.org/10.1016/j.biomaterials.2020.119996
- H. Li, T. Wu, J. Xue, Q. Ke, Y. Xia, Transforming nanofiber mats into hierarchical scaffolds with graded changes in porosity and/or nanofiber alignment. Macromol. Rapid Commun. 41, e1900579 (2020). https://doi.org/10.1002/marc.201900579
- N. Friese, M.B. Gierschner, P. Schadzek, Y. Roger, A. Hoffmann, Regeneration of damaged tendon-bone junctions (entheses)-TAK1 as a potential node factor. Int. J. Mol. Sci. 21, 5177 (2020). https://doi.org/10.3390/ijms21155177
- L. Davenport Huyer, B. Zhang, A. Korolj, M. Montgomery, S. Drecun et al., Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications. ACS Biomater. Sci. Eng. 2, 780–788 (2016). https://doi.org/10.1021/acsbiomaterials.5b00525
- P. Shang, Y. Xiang, J. Du, S. Chen, B. Cheng et al., Gradient bipolar nanofiber scaffolds with a structure of biomimetic tendon-bone interface as rotator cuff patches. ACS Appl. Polym. Mater. 5, 6107–6116 (2023). https://doi.org/10.1021/acsapm.3c00791
- X. Xie, J. Cai, Y. Yao, Y. Chen, A.U.R. Khan et al., A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Compos. Part B Eng. 212, 108679 (2021). https://doi.org/10.1016/j.compositesb.2021.108679
- W. Ji, F. Han, X. Feng, L. Shi, H. Ma et al., Cocktail-like gradient gelatin/hyaluronic acid bioimplant for enhancing tendon-bone healing in fatty-infiltrated rotator cuff injury models. Int. J. Biol. Macromol. 244, 125421 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125421
- C. Yu, R. Chen, J. Chen, T. Wang, Y. Wang et al., Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes. Mater. Today Bio 26, 101099 (2024). https://doi.org/10.1016/j.mtbio.2024.101099
- W. Wei, H. Dai, Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact. Mater. 6, 4830–4855 (2021). https://doi.org/10.1016/j.bioactmat.2021.05.011
- M. Qasim, D.S. Chae, N.Y. Lee, Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J. Biomed. Mater. Res. A 108, 394–411 (2020). https://doi.org/10.1002/jbm.a.36817
- S. Camarero-Espinosa, I. Beeren, H. Liu, D.B. Gomes, J. Zonderland et al., 3D niche-inspired scaffolds as a stem cell delivery system for the regeneration of the osteochondral interface. Adv. Mater. 36, e2310258 (2024). https://doi.org/10.1002/adma.202310258
- A.J. Boys, H. Zhou, J.B. Harrod, M.C. McCorry, L.A. Estroff et al., Top-down fabrication of spatially controlled mineral-gradient scaffolds for interfacial tissue engineering. ACS Biomater. Sci. Eng. 5, 2988–2997 (2019). https://doi.org/10.1021/acsbiomaterials.9b00176
- S.M. Bittner, B.T. Smith, L. Diaz-Gomez, C.D. Hudgins, A.J. Melchiorri et al., Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 90, 37–48 (2019). https://doi.org/10.1016/j.actbio.2019.03.041
- C. Wang, W. Huang, Y. Zhou, L. He, Z. He et al., 3D printing of bone tissue engineering scaffolds. Bioact. Mater. 5, 82–91 (2020). https://doi.org/10.1016/j.bioactmat.2020.01.004
- T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012
- B. Liao, R.F. Xia, W. Li, D. Lu, Z.M. Jin, 3D-printed Ti6Al4V scaffolds with graded triply periodic minimal surface structure for bone tissue engineering. J. Mater. Eng. Perform. 30, 4993–5004 (2021). https://doi.org/10.1007/s11665-021-05580-z
- A. Bagheri, J. Jin, Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1, 593–611 (2019). https://doi.org/10.1021/acsapm.8b00165
- L. Li, R. Hao, J. Qin, J. Song, X. Chen et al., Electrospun fibers control drug delivery for tissue regeneration and cancer therapy. Adv. Fiber Mater. 4, 1375–1413 (2022). https://doi.org/10.1007/s42765-022-00198-9
- L. Wang, T. Zhu, Y. Kang, J. Zhang, J. Du et al., Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact. Mater. 16, 149–161 (2022). https://doi.org/10.1016/j.bioactmat.2022.01.031
- Z. Chen, H. Xiao, H. Zhang, Q. Xin, H. Zhang et al., Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J. Mater. Chem. B 9, 8646–8658 (2021). https://doi.org/10.1039/D1TB00518A
- H. Zhang, S. Wu, W. Chen, Y. Hu, Z. Geng et al., Bone/cartilage targeted hydrogel: strategies and applications. Bioact. Mater. 23, 156–169 (2022). https://doi.org/10.1016/j.bioactmat.2022.10.028
- L. Chen, L. Wei, X. Su, L. Qin, Z. Xu et al., Preparation and characterization of biomimetic functional scaffold with gradient structure for osteochondral defect repair. Bioengineering 10, 213 (2023). https://doi.org/10.3390/bioengineering10020213
- Z. Zhao, R. Li, H. Ruan, Z. Cai, Y. Zhuang et al., Biological signal integrated microfluidic hydrogel microspheres for promoting bone regeneration. Chem. Eng. J. 436, 135176 (2022). https://doi.org/10.1016/j.cej.2022.135176
- M.K. Kim, K. Paek, S.M. Woo, J.A. Kim, Bone-on-a-chip: biomimetic models based on microfluidic technologies for biomedical applications. ACS Biomater. Sci. Eng. 9, 3058–3073 (2023). https://doi.org/10.1021/acsbiomaterials.3c00066
- P. Pan, X. Chen, K. Metavarayuth, J. Su, Q. Wang, Self-assembled supramolecular systems for bone engineering applications. Curr. Opin. Colloid Interface Sci. 35, 104–111 (2018). https://doi.org/10.1016/j.cocis.2018.01.015
- X. Lin, Q. Wang, C. Gu, M. Li, K. Chen et al., Smart nanosacrificial layer on the bone surface prevents osteoporosis through acid-base neutralization regulated biocascade effects. J. Am. Chem. Soc. 142, 17543–17556 (2020). https://doi.org/10.1021/jacs.0c07309
- K. Maji, K. Pramanik, Electrospun scaffold for bone regeneration. Int. J. Polym. Mater. Polym. Biomater. 71, 842–857 (2022). https://doi.org/10.1080/00914037.2021.1915784
- Z. Wang, Y. Wang, J. Yan, K. Zhang, F. Lin et al., Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv. Drug Deliv. Rev. 174, 504–534 (2021). https://doi.org/10.1016/j.addr.2021.05.007
- J. Xue, T. Wu, Y. Xia, Perspective: Aligned arrays of electrospun nanofibers for directing cell migration. APL Mater. 6, 120902 (2018). https://doi.org/10.1063/1.5058083
- Z. Fan, H. Liu, Z. Ding, L. Xiao, Q. Lu et al., Simulation of cortical and cancellous bone to accelerate tissue regeneration. Adv. Funct. Mater. 33, 2301839 (2023). https://doi.org/10.1002/adfm.202301839
- W. Liu, J. Lipner, J. Xie, C.N. Manning, S. Thomopoulos et al., Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl. Mater. Interfaces 6, 2842–2849 (2014). https://doi.org/10.1021/am405418g
- W. Liu, Q. Sun, Z.-L. Zheng, Y.-T. Gao, G.-Y. Zhu et al., Topographic cues guiding cell polarization via distinct cellular mechanosensing pathways. Small 18, e2104328 (2022). https://doi.org/10.1002/smll.202104328
- S.K. Perikamana, J. Lee, T. Ahmad, Y. Jeong, D.G. Kim et al., Effects of immobilized BMP-2 and nanofiber morphology on in vitro osteogenic differentiation of hMSCs and in vivo collagen assembly of regenerated bone. ACS Appl. Mater. Interfaces 7, 8798–8808 (2015). https://doi.org/10.1021/acsami.5b01340
- Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
- R.K. Tindell, L.P. Busselle, J.L. Holloway, Magnetic fields enable precise spatial control over electrospun fiber alignment for fabricating complex gradient materials. J. Biomed. Mater. Res. A 111, 778–789 (2023). https://doi.org/10.1002/jbm.a.37492
- M.L. Tanes, J. Xue, Y. Xia, A general strategy for generating gradients of bioactive proteins on electrospun nanofiber mats by masking with bovine serum albumin. J. Mater. Chem. B 5, 5580–5587 (2017). https://doi.org/10.1039/C7TB00974G
- T. Wu, J. Xue, H. Li, C. Zhu, X. Mo et al., General method for generating circular gradients of active proteins on nanofiber scaffolds sought for wound closure and related applications. ACS Appl. Mater. Interfaces 10, 8536–8545 (2018). https://doi.org/10.1021/acsami.8b00129
- Z. Qiao, M. Lian, Y. Han, B. Sun, X. Zhang et al., Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 266, 120385 (2021). https://doi.org/10.1016/j.biomaterials.2020.120385
- I. Calejo, R. Costa-Almeida, R.L. Reis, M.E. Gomes, A textile platform using continuous aligned and textured composite microfibers to engineer tendon-to-bone interface gradient scaffolds. Adv. Healthc. Mater. 8, e1900200 (2019). https://doi.org/10.1002/adhm.201900200
- G. Narayanan, L.S. Nair, C.T. Laurencin, Regenerative engineering of the rotator cuff of the shoulder. ACS Biomater. Sci. Eng. 4, 751–786 (2018). https://doi.org/10.1021/acsbiomaterials.7b00631
- J. Cai, J. Wang, K. Ye, D. Li, C. Ai et al., Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. Int. J. Nanomedicine 13, 3481–3492 (2018). https://doi.org/10.2147/IJN.S165633
- X. Wang, K. Xu, L. Mu, X. Zhang, G. Huang et al., Mussel-derived bioadaptive artificial tendon facilitates the cell proliferation and tenogenesis to promote tendon functional reconstruction. Adv. Healthc. Mater. 12, e2203400 (2023). https://doi.org/10.1002/adhm.202203400
- C. Yu, T. Wang, H. Diao, N. Liu, Y. Zhang et al., Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon–bone healing. Adv. Fiber Mater. 4, 908–922 (2022). https://doi.org/10.1007/s42765-022-00154-7
- I. Roppolo, M. Caprioli, C.F. Pirri, S. Magdassi, 3D printing of self-healing materials. Adv. Mater. 36, 2305537 (2024). https://doi.org/10.1002/adma.202305537
- M.K. Joshi, H.R. Pant, A.P. Tiwari, H.J. Kim, C.H. Park et al., Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique. Chem. Eng. J. 275, 79–88 (2015). https://doi.org/10.1016/j.cej.2015.03.121
- L. Wang, Y. Qiu, Y. Guo, Y. Si, L. Liu et al., Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett. 19, 9112–9120 (2019). https://doi.org/10.1021/acs.nanolett.9b04313
- G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3, 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001
- L. Wu, X. Pei, B. Zhang, Z. Su, X. Gui et al., 3D-printed HAp bone regeneration scaffolds enable nano-scale manipulation of cellular mechanotransduction signals. Chem. Eng. J. 455, 140699 (2023). https://doi.org/10.1016/j.cej.2022.140699
- K. Garg, N.A. Pullen, C.A. Oskeritzian, J.J. Ryan, G.L. Bowlin, Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34, 4439–4451 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.065
- S. Jiang, C. Lyu, P. Zhao, W. Li, W. Kong et al., Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nat. Commun. 10, 3491 (2019). https://doi.org/10.1038/s41467-019-11397-1
- M. Lafuente-Merchan, S. Ruiz-Alonso, F. García-Villén, I. Gallego, P. Gálvez-Martín et al., Progress in 3D bioprinting technology for osteochondral regeneration. Pharmaceutics 14, 1578 (2022). https://doi.org/10.3390/pharmaceutics14081578
- J. Zhang, D. Tong, H. Song, R. Ruan, Y. Sun et al., Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration. Adv. Mater. 34, e2202044 (2022). https://doi.org/10.1002/adma.202202044
- J. Zhang, W. Hu, C. Ding, G. Yao, H. Zhao et al., Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling. Toxicol. Lett. 313, 50–59 (2019). https://doi.org/10.1016/j.toxlet.2019.06.007
- C. Li, W. Zhang, Y. Nie, D. Jiang, J. Jia et al., Integrated and bifunctional bilayer 3D printing scaffold for osteochondral defect repair. Adv. Funct. Mater. 33, 2214158 (2023). https://doi.org/10.1002/adfm.202214158
- Y. Liu, L. Peng, L. Li, C. Huang, K. Shi et al., 3D-bioprinted BMSC-laden biomimetic Multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 279, 121216 (2021). https://doi.org/10.1016/j.biomaterials.2021.121216
- X. Zhang, W. Song, K. Han, Z. Fang, E. Cho et al., Three-dimensional bioprinting of a structure-, composition-, and mechanics-graded biomimetic scaffold coated with specific decellularized extracellular matrix to improve the tendon-to-bone healing. ACS Appl. Mater. Interfaces 15, 28964–28980 (2023). https://doi.org/10.1021/acsami.3c03793
- R. Sinha, M. Cámara-Torres, P. Scopece, E. Verga Falzacappa, A. Patelli et al., A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat. Commun. 12, 500 (2021). https://doi.org/10.1038/s41467-020-20865-y
- I.A.O. Beeren, P.J. Dijkstra, A.F.H. Lourenço, R. Sinha, D.B. Gomes et al., Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface. Biofabrication (2022). https://doi.org/10.1088/1758-5090/aca3d4
- Y. Cai, S.Y. Chang, S.W. Gan, S. Ma, W.F. Lu et al., Nanocomposite bioinks for 3D bioprinting. Acta Biomater. 151, 45–69 (2022). https://doi.org/10.1016/j.actbio.2022.08.014
- S. Pouraghaei Sevari, J.K. Kim, C. Chen, A. Nasajpour, C.Y. Wang et al., Whitlockite-enabled hydrogel for craniofacial bone regeneration. ACS Appl. Mater. Interfaces 13, 35342–35355 (2021). https://doi.org/10.1021/acsami.1c07453
- A. Mokhtarzade, R. Imani, P. Shokrollahi, A gradient four-layered gelatin methacrylate/agarose construct as an injectable scaffold for mimicking osteochondral tissue. J. Mater. Sci. 58, 5735–5755 (2023). https://doi.org/10.1007/s10853-023-08374-x
- X. Hao, S. Miao, Z. Li, T. Wang, B. Xue et al., 3D printed structured porous hydrogel promotes osteogenic differentiation of BMSCs. Mater. Des. 227, 111729 (2023). https://doi.org/10.1016/j.matdes.2023.111729
- W. Wei, W. Liu, H. Kang, X. Zhang, R. Yu et al., A one-stone-two-birds strategy for osteochondral regeneration based on a 3D printable biomimetic scaffold with kartogenin biochemical stimuli gradient. Adv. Healthc. Mater. 12, 2300108 (2023). https://doi.org/10.1002/adhm.202300108
- D. Gan, Z. Wang, C. Xie, X. Wang, W. Xing et al., Mussel-inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv. Healthc. Mater. 8, e1901103 (2019). https://doi.org/10.1002/adhm.201901103
- C. Parisi, L. Salvatore, L. Veschini, M.P. Serra, C. Hobbs et al., Biomimetic gradient scaffold of collagen-hydroxyapatite for osteochondral regeneration. J. Tissue Eng. 11, 2041731419896068 (2020). https://doi.org/10.1177/2041731419896068
- P. Mou, H. Peng, L. Zhou, L. Li, H. Li et al., A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Int. J. Nanomedicine 14, 3331–3343 (2019). https://doi.org/10.2147/IJN.S195316
- S. Stein, L. Kruck, D. Warnecke, A. Seitz et al., Osseointegration of titanium implants with a novel silver coating under dynamic loading. Eur. Cells Mater. 39, 249–259 (2020). https://doi.org/10.22203/ecm.v039a16
- C. Gao, W. Dai, X. Wang, L. Zhang, Y. Wang et al., Magnesium gradient-based hierarchical scaffold for dual-lineage regeneration of osteochondral defect. Adv. Funct. Mater. 33, 2304829 (2023). https://doi.org/10.1002/adfm.202304829
- R. Yang, G. Li, C. Zhuang, P. Yu, T. Ye et al., Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 7, eabg3816 (2021). https://doi.org/10.1126/sciadv.abg3816
- C. Li, L. Ouyang, I.J. Pence, A.C. Moore, Y. Lin et al., Buoyancy-driven gradients for biomaterial fabrication and tissue engineering. Adv. Mater. 31, e1900291 (2019). https://doi.org/10.1002/adma.201900291
- C. Li, J.P. Armstrong, I.J. Pence, W. Kit-Anan, J.L. Puetzer et al., Glycosylated superparamagnetic nanop gradients for osteochondral tissue engineering. Biomaterials 176, 24–33 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.029
- L. Xiao, M. Wu, F. Yan, Y. Xie, Z. Liu et al., A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. Int. J. Biol. Macromol. 172, 19–29 (2021). https://doi.org/10.1016/j.ijbiomac.2021.01.036
- S. Chen, H. Wang, V.L. Mainardi, G. Talò, A. McCarthy et al., Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. Sci. Adv. 7, eabg3089 (2021). https://doi.org/10.1126/sciadv.abg3089
- P. Kazimierczak, A. Benko, K. Palka, C. Canal, D. Kolodynska et al., Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J. Mater. Sci. Technol. 43, 52–63 (2020). https://doi.org/10.1016/j.jmst.2020.01.006
- Z. Zhao, G. Li, H. Ruan, K. Chen, Z. Cai et al., Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano 15, 13041–13054 (2021). https://doi.org/10.1021/acsnano.1c02147
- J.J. Paredes, N. Andarawis-Puri, Therapeutics for tendon regeneration: a multidisciplinary review of tendon research for improved healing. Ann. N. Y. Acad. Sci. 1383, 125–138 (2016). https://doi.org/10.1111/nyas.13228
- C. Zhu, S. Pongkitwitoon, J. Qiu, S. Thomopoulos, Y. Xia, Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Adv. Mater. 30, e1707306 (2018). https://doi.org/10.1002/adma.201707306
- W. Su, J. Guo, J. Xu, K. Huang, J. Chen et al., Gradient composite film with calcium phosphate silicate for improved tendon-to-Bone intergration. Chem. Eng. J. 404, 126473 (2021). https://doi.org/10.1016/j.cej.2020.126473
- H. Zhang, H. Huang, G. Hao, Y. Zhang, H. Ding et al., 3D printing hydrogel scaffolds with nanohydroxyapatite gradient to effectively repair osteochondral defects in rats. Adv. Funct. Mater. 31, 2006697 (2021). https://doi.org/10.1002/adfm.202006697
- Q. Wang, Y. Feng, M. He, W. Zhao, L. Qiu et al., A hierarchical Janus nanofibrous membrane combining direct osteogenesis and osteoimmunomodulatory functions for advanced bone regeneration. Adv. Funct. Mater. 31, 2008906 (2021). https://doi.org/10.1002/adfm.202008906
- C. Deng, J. Yang, H. He, Z. Ma, W. Wang et al., 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater. Sci. 9, 4891–4903 (2021). https://doi.org/10.1039/d1bm00535a
- D. Shi, J. Shen, Z. Zhang, C. Shi, M. Chen et al., Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. A 107, 1615–1627 (2019). https://doi.org/10.1002/jbm.a.36678
- Y. Wang, C. Ling, J. Chen, H. Liu, Q. Mo et al., 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. Biomater. Adv. 140, 213067 (2022). https://doi.org/10.1016/j.bioadv.2022.213067
- N. Zhang, Y. Wang, J. Zhang, J. Guo, J. He, Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Acta Biomater. 135, 304–317 (2021). https://doi.org/10.1016/j.actbio.2021.08.029
- A.-M. Wu, C. Bisignano, S. James, G.G. Abady, A. Abedi et al., Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the global burden of disease study 2019. Lancet Healthy Longev. 2, e580–e592 (2021). https://doi.org/10.1016/S2666-7568(21)00172-0
- Y. Li, X. Wei, J. Zhou, L. Wei, The age-related changes in cartilage and osteoarthritis. Biomed. Res. Int. 2013, 916530 (2013). https://doi.org/10.1155/2013/916530
- H. Minagawa, N. Yamamoto, H. Abe, M. Fukuda, N. Seki et al., Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: from mass-screening in one village. J. Orthop. 10, 8–12 (2013). https://doi.org/10.1016/j.jor.2013.01.008
- L. Mancinelli, G. Intini, Age-associated declining of the regeneration potential of skeletal stem/progenitor cells. Front. Physiol. 14, 1087254 (2023). https://doi.org/10.3389/fphys.2023.1087254
- S. Ghouse, N. Reznikov, O.R. Boughton, S. Babu, K.C.G. Ng et al., The design and in vivo testing of a locally stiffness-matched porous scaffold. Appl. Mater. Today 15, 377–388 (2019). https://doi.org/10.1016/j.apmt.2019.02.017
- P. Diloksumpan, R.V. Bolaños, S. Cokelaere, B. Pouran, J. de Grauw et al., Orthotopic bone regeneration within 3D printed bioceramic scaffolds with region-dependent porosity gradients in an equine model. Adv. Healthc. Mater. 9, e1901807 (2020). https://doi.org/10.1002/adhm.201901807
- G. Li, L. Wang, W. Pan, F. Yang, W. Jiang et al., In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci. Rep. 6, 34072 (2016). https://doi.org/10.1038/srep34072
- S. Jia, J. Wang, T. Zhang, W. Pan, Z. Li et al., Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl. Mater. Interfaces 10, 20296–20305 (2018). https://doi.org/10.1021/acsami.8b03445
- Y. Zhang, D. Li, Y. Liu, L. Peng, D. Lu et al., 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation 5, 100542 (2023). https://doi.org/10.1016/j.xinn.2023.100542
- Y.S. Zhang, G. Haghiashtiani, T. Hübscher, D.J. Kelly, J.M. Lee et al., 3D extrusion bioprinting. Nat. Rev. Methods Primers 1, 75 (2021). https://doi.org/10.1038/s43586-021-00073-8
- L. Wang, Z. Wang, Immune responses to silk proteins in vitro and in vivo: lessons learnt. Silk-based biomaterials for tissue engineering, regenerative and precision medicine (Elsevier, Amsterdam, 2024), pp.385–413. https://doi.org/10.1016/b978-0-323-96017-5.00006-6
- S. Tajvar, A. Hadjizadeh, S.S. Samandari, Scaffold degradation in bone tissue engineering: an overview. Int. Biodeterior. Biodegrad. 180, 105599 (2023). https://doi.org/10.1016/j.ibiod.2023.105599
- Q. Zhang, Y. Jiang, Y. Zhang, Z. Ye, W. Tan et al., Effect of porosity on long-term degradation of poly (ε-caprolactone) scaffolds and their cellular response. Polym. Degrad. Stab. 98, 209–218 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.10.008
- J. Ye, N. Liu, Z. Li, L. Liu, M. Zheng et al., Injectable, hierarchically degraded bioactive scaffold for bone regeneration. ACS Appl. Mater. Interfaces 15, 11458–11473 (2023). https://doi.org/10.1021/acsami.2c18824
- J. Xue, T. Wu, J. Qiu, S. Rutledge, M.L. Tanes et al., Promoting cell migration and neurite extension along uniaxially aligned nanofibers with biomacromolecular ps in a density gradient. Adv. Funct. Mater. 30, 2002031 (2020). https://doi.org/10.1002/adfm.202002031
- X. Zhang, L. Li, J. Ouyang, L. Zhang, J. Xue et al., Electroactive electrospun nanofibers for tissue engineering. Nano Today 39, 101196 (2021). https://doi.org/10.1016/j.nantod.2021.101196
- C. Xie, J. Ye, R. Liang, X. Yao, X. Wu et al., Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv. Healthc. Mater. 10, e2100408 (2021). https://doi.org/10.1002/adhm.202100408
- P. Zhang, Z. Teng, M. Zhou, X. Yu, H. Wen et al., Upconversion 3D bioprinting for noninvasive in vivo molding. Adv. Mater. 36, e2310617 (2024). https://doi.org/10.1002/adma.202310617
- P. Pei, H. Hu, Y. Chen, S. Wang, J. Chen et al., NIR-II ratiometric lanthanide-dye hybrid nanoprobes doped bioscaffolds for in situ bone repair monitoring. Nano Lett. 22, 783–791 (2022). https://doi.org/10.1021/acs.nanolett.1c04356
- L.B. Jiang, S.L. Ding, W. Ding, D.H. Su, F.X. Zhang et al., Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chem. Eng. J. 418, 129323 (2021). https://doi.org/10.1016/j.cej.2021.129323
- B. Li, M. Zhao, L. Feng, C. Dou, S. Ding et al., Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat. Commun. 11, 3102 (2020). https://doi.org/10.1038/s41467-020-16924-z
- P. Pei, Y. Chen, C. Sun, Y. Fan, Y. Yang et al., X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021). https://doi.org/10.1038/s41565-021-00922-3
- L. Zelaya-Lainez, H. Kariem, W. Nischkauer, A. Limbeck, C. Hellmich, “Variances” and “in-variances” in hierarchical porosity and composition, across femoral tissues from cow, horse, ostrich, emu, pig, rabbit, and frog. Mater. Sci. Eng. C 117, 111234 (2020). https://doi.org/10.1016/j.msec.2020.111234
- H. Zhang, L. Yang, X.G. Yang, F. Wang, J.T. Feng et al., Demineralized bone matrix carriers and their clinical applications: an overview. Orthop. Surg. 11, 725–737 (2019). https://doi.org/10.1111/os.12509
References
X. Zhang, Q. Li, L. Li, J. Ouyang, T. Wang et al., Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano 17, 6466–6479 (2023). https://doi.org/10.1021/acsnano.2c11486
H. Wei, J. Cui, K. Lin, J. Xie, X. Wang, Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 10, 17 (2022). https://doi.org/10.1038/s41413-021-00180-y
J. Fu, X. Wang, M. Yang, Y. Chen, J. Zhang et al., Scaffold-based tissue engineering strategies for osteochondral repair. Front. Bioeng. Biotechnol. 9, 812383 (2022). https://doi.org/10.3389/fbioe.2021.812383
A. Ho-Shui-Ling, J. Bolander, L.E. Rustom, A.W. Johnson, F.P. Luyten et al., Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.017
T.M. Koushik, C.M. Miller, E. Antunes, Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv. Healthcare Mater. 12, 2202766 (2023). https://doi.org/10.1002/adhm.202202766
G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
A. Baawad, D. Jacho, T. Hamil, E. Yildirim-Ayan, D.-S. Kim, Polysaccharide-based composite scaffolds for osteochondral and enthesis regeneration. Tissue Eng. Part B Rev. 29, 123–140 (2023). https://doi.org/10.1089/ten.teb.2022.0114
P. Chen, L. Li, L. Dong, S. Wang, Z. Huang et al., Gradient biomineralized silk fibroin nanofibrous scaffold with osteochondral inductivity for integration of tendon to bone. ACS Biomater. Sci. Eng. 7, 841–851 (2021). https://doi.org/10.1021/acsbiomaterials.9b01683
S. Chen, A. McCarthy, J.V. John, Y. Su, J. Xie, Converting 2D nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients regulates cell behavior. Adv. Mater. 32, e2003754 (2020). https://doi.org/10.1002/adma.202003754
R. Yang, Y. Zheng, Y. Zhang, G. Li, Y. Xu et al., Bipolar metal flexible electrospun fibrous membrane based on metal-organic framework for gradient healing of tendon-to-bone interface regeneration. Adv. Healthc. Mater. 11, e2200072 (2022). https://doi.org/10.1002/adhm.202200072
S. Ansari, S. Khorshidi, A. Karkhaneh, Engineering of gradient osteochondral tissue: from nature to lab. Acta Biomater. 87, 41–54 (2019). https://doi.org/10.1016/j.actbio.2019.01.071
B. Zhang, J. Huang, R.J. Narayan, Gradient scaffolds for osteochondral tissue engineering and regeneration. J. Mater. Chem. B 8, 8149–8170 (2020). https://doi.org/10.1039/d0tb00688b
G. Xu, Y. Zhao, Y. Geng, S. Cao, P. Pan et al., Nano-hybrid gradient scaffold for articular repair. Colloids Surf. B Biointerfaces 208, 112116 (2021). https://doi.org/10.1016/j.colsurfb.2021.112116
N. Yildirim, A. Amanzhanova, G. Kulzhanova, F. Mukasheva, C. Erisken, Osteochondral interface: regenerative engineering and challenges. ACS Biomater. Sci. Eng. 9, 1205–1223 (2023). https://doi.org/10.1021/acsbiomaterials.2c01321
J. Lipner, H. Shen, L. Cavinatto, W. Liu, N. Havlioglu et al., In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng. Part A 21, 2766–2774 (2015). https://doi.org/10.1089/ten.TEA.2015.0101
C. Li, L. Ouyang, J.P.K. Armstrong, M.M. Stevens, Advances in the fabrication of biomaterials for gradient tissue engineering. Trends Biotechnol. 39, 150–164 (2021). https://doi.org/10.1016/j.tibtech.2020.06.005
R. Chen, J.S. Pye, J. Li, C.B. Little, J.J. Li, Multiphasic scaffolds for the repair of osteochondral defects: outcomes of preclinical studies. Bioact. Mater. 27, 505–545 (2023). https://doi.org/10.1016/j.bioactmat.2023.04.016
L. Zhang, L. Fu, X. Zhang, L. Chen, Q. Cai et al., Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater. Sci. 9, 1547–1573 (2021). https://doi.org/10.1039/d0bm01595d
M. Altunbek, F. Afghah, O.S. Caliskan, J.J. Yoo, B. Koc, Design and bioprinting for tissue interfaces. Biofabrication 15, 022002 (2023). https://doi.org/10.1088/1758-5090/acb73d
C. Gögele, J. Hahn, G. Schulze-Tanzil, Anatomical tissue engineering of the anterior cruciate ligament entheses. Int. J. Mol. Sci. 24, 9745 (2023). https://doi.org/10.3390/ijms24119745
U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). https://doi.org/10.1038/nmat4089
J.-M. Kim, C. Lin, Z. Stavre, M.B. Greenblatt, J.-H. Shim, Osteoblast-osteoclast communication and bone homeostasis. Cells 9, 2073 (2020). https://doi.org/10.3390/cells9092073
W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007
X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu et al., Bioactive hydrogels for bone regeneration. Bioact. Mater. 3, 401–417 (2018). https://doi.org/10.1016/j.bioactmat.2018.05.006
G. Dang, W. Qin, Q. Wan, J. Gu, K. Wang et al., Regulation and reconstruction of cell phenotype gradients along the tendon-bone interface. Adv. Funct. Mater. 33, 2210275 (2023). https://doi.org/10.1002/adfm.202210275
I. Sahafnejad-Mohammadi, S. Rahmati, N. Najmoddin, M. Bodaghi, Biomimetic polycaprolactone-graphene oxide composites for 3D printing bone scaffolds. Macromol. Mater. Eng. 308, 2200558 (2023). https://doi.org/10.1002/mame.202200558
J. Scheinpflug, M. Pfeiffenberger, A. Damerau, F. Schwarz, M. Textor et al., Journey into bone models: a review. Genes 9, 247 (2018). https://doi.org/10.3390/genes9050247
H. Qu, Z. Han, Z. Chen, L. Tang, C. Gao et al., Fractal design boosts extrusion-based 3D printing of bone-mimicking radial-gradient scaffolds. Research 2021, 9892689 (2021). https://doi.org/10.34133/2021/9892689
H. Zhao, Y. Han, C. Pan, D. Yang, H. Wang et al., Design and mechanical properties verification of gradient voronoi scaffold for bone tissue engineering. Micromachines 12, 664 (2021). https://doi.org/10.3390/mi12060664
M. Eryildiz, Fabrication of drug-loaded 3D-printed bone scaffolds with radial gradient porosity. J. Mater. Eng. Perform. 32, 4249–4257 (2023). https://doi.org/10.1007/s11665-022-07490-0
H. Zhang, R. Wang, Y. Song, Y. Wang, Q. Hu, Research on dual-phase composite forming process and platform construction of radial gradient long bone scaffold. Bioengineering (Basel) 11, 869 (2024). https://doi.org/10.3390/bioengineering11090869
L. Li, P. Wang, H. Liang, J. Jin, Y. Zhang et al., Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J. Adv. Res. 54, 89–104 (2023). https://doi.org/10.1016/j.jare.2023.01.004
S. Khorshidi, A. Karkhaneh, A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration. J. Tissue Eng. Regen. Med. 12, e1974–e1990 (2018). https://doi.org/10.1002/term.2628
P. Morouço, C. Fernandes, W. Lattanzi, Challenges and innovations in osteochondral regeneration: insights from biology and inputs from bioengineering toward the optimization of tissue engineering strategies. J. Funct. Biomater. 12, 17 (2021). https://doi.org/10.3390/jfb12010017
M. Cucchiarini, H. Madry, Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat. Rev. Rheumatol. 15, 18–29 (2019). https://doi.org/10.1038/s41584-018-0125-2
W. Hu, Y. Chen, C. Dou, S. Dong, Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann. Rheum. Dis. 80, 413–422 (2021). https://doi.org/10.1136/annrheumdis-2020-218089
S.R. Goldring, M.B. Goldring, Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016). https://doi.org/10.1038/nrrheum.2016.148
M. Zhu, W. Zhong, W. Cao, Q. Zhang, G. Wu et al., Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact. Mater. 9, 221–238 (2021). https://doi.org/10.1016/j.bioactmat.2021.07.004
S. Muthu, J.V. Korpershoek, E.J. Novais, G.F. Tawy, A.P. Hollander et al., Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat. Rev. Rheumatol. 19, 403–416 (2023). https://doi.org/10.1038/s41584-023-00979-5
M. Li, P. Song, W. Wang, Y. Xu, J. Li et al., Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. J. Mater. Chem. B 10, 4172–4188 (2022). https://doi.org/10.1039/d2tb00576j
A. Di Luca, C. Van Blitterswijk, L. Moroni, The osteochondral interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res. Part C Embryo Today Rev. 105, 34–52 (2015). https://doi.org/10.1002/bdrc.21092
D. McGonagle, T.G. Baboolal, E. Jones, Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat. Rev. Rheumatol. 13, 719–730 (2017). https://doi.org/10.1038/nrrheum.2017.182
Z. Naghizadeh, A. Karkhaneh, A. Khojasteh, Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: injectable in situ forming scaffolds. Mater. Sci. Eng. C 89, 256–264 (2018). https://doi.org/10.1016/j.msec.2018.04.018
X. Wang, Z. Zhu, H. Xiao, C. Luo, X. Luo et al., Three-dimensional, multiscale, and interconnected trabecular bone mimic porous tantalum scaffold for bone tissue engineering. ACS Omega 5, 22520–22528 (2020). https://doi.org/10.1021/acsomega.0c03127
Y. Cao, P. Cheng, S. Sang, C. Xiang, Y. An et al., Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering. Regen. Biomater. 8, rbab019 (2021). https://doi.org/10.1093/rb/rbab019
S. Zadegan, B. Vahidi, J. Nourmohammadi, A. Shojaee, N. Haghighipour, Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair. J. Biomed. Mater. Res. Part B Appl. Biomater. 112, e35396 (2024). https://doi.org/10.1002/jbm.b.35396
D. Clearfield, A. Nguyen, M. Wei, Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach. J. Biomed. Mater. Res. A 106, 948–958 (2018). https://doi.org/10.1002/jbm.a.36288
A. Golebiowska, S.P. Nukavarapu, Bio-inspired zonal-structured matrices for bone-cartilage interface engineering. Biofabrication Biofabrication 14, 025016 (2022). https://doi.org/10.1088/1758-5090/ac52e1
A. Vinhas, A.F. Almeida, M.T. Rodrigues, M.E. Gomes, Prospects of magnetically based approaches addressing inflammation in tendon tissues. Adv. Drug Deliv. Rev. 196, 114815 (2023). https://doi.org/10.1016/j.addr.2023.114815
C. Zhu, J. Qiu, S. Thomopoulos, Y. Xia, Augmenting, tendon-to-bone repair with functionally graded scaffolds. Adv. Healthc. Mater. 10, e2002269 (2021). https://doi.org/10.1002/adhm.202002269
S. Zhang, W. Ju, X. Chen, Y. Zhao, L. Feng et al., Hierarchical ultrastructure: an overview of what is known about tendons and future perspective for tendon engineering. Bioact. Mater. 8, 124–139 (2021). https://doi.org/10.1016/j.bioactmat.2021.06.007
C. Chen, Y. Chen, M. Li, H. Xiao, Q. Shi et al., Functional decellularized fibrocartilaginous matrix graft for rotator cuff enthesis regeneration: a novel technique to avoid in-vitro loading of cells. Biomaterials 250, 119996 (2020). https://doi.org/10.1016/j.biomaterials.2020.119996
H. Li, T. Wu, J. Xue, Q. Ke, Y. Xia, Transforming nanofiber mats into hierarchical scaffolds with graded changes in porosity and/or nanofiber alignment. Macromol. Rapid Commun. 41, e1900579 (2020). https://doi.org/10.1002/marc.201900579
N. Friese, M.B. Gierschner, P. Schadzek, Y. Roger, A. Hoffmann, Regeneration of damaged tendon-bone junctions (entheses)-TAK1 as a potential node factor. Int. J. Mol. Sci. 21, 5177 (2020). https://doi.org/10.3390/ijms21155177
L. Davenport Huyer, B. Zhang, A. Korolj, M. Montgomery, S. Drecun et al., Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications. ACS Biomater. Sci. Eng. 2, 780–788 (2016). https://doi.org/10.1021/acsbiomaterials.5b00525
P. Shang, Y. Xiang, J. Du, S. Chen, B. Cheng et al., Gradient bipolar nanofiber scaffolds with a structure of biomimetic tendon-bone interface as rotator cuff patches. ACS Appl. Polym. Mater. 5, 6107–6116 (2023). https://doi.org/10.1021/acsapm.3c00791
X. Xie, J. Cai, Y. Yao, Y. Chen, A.U.R. Khan et al., A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Compos. Part B Eng. 212, 108679 (2021). https://doi.org/10.1016/j.compositesb.2021.108679
W. Ji, F. Han, X. Feng, L. Shi, H. Ma et al., Cocktail-like gradient gelatin/hyaluronic acid bioimplant for enhancing tendon-bone healing in fatty-infiltrated rotator cuff injury models. Int. J. Biol. Macromol. 244, 125421 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125421
C. Yu, R. Chen, J. Chen, T. Wang, Y. Wang et al., Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes. Mater. Today Bio 26, 101099 (2024). https://doi.org/10.1016/j.mtbio.2024.101099
W. Wei, H. Dai, Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact. Mater. 6, 4830–4855 (2021). https://doi.org/10.1016/j.bioactmat.2021.05.011
M. Qasim, D.S. Chae, N.Y. Lee, Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J. Biomed. Mater. Res. A 108, 394–411 (2020). https://doi.org/10.1002/jbm.a.36817
S. Camarero-Espinosa, I. Beeren, H. Liu, D.B. Gomes, J. Zonderland et al., 3D niche-inspired scaffolds as a stem cell delivery system for the regeneration of the osteochondral interface. Adv. Mater. 36, e2310258 (2024). https://doi.org/10.1002/adma.202310258
A.J. Boys, H. Zhou, J.B. Harrod, M.C. McCorry, L.A. Estroff et al., Top-down fabrication of spatially controlled mineral-gradient scaffolds for interfacial tissue engineering. ACS Biomater. Sci. Eng. 5, 2988–2997 (2019). https://doi.org/10.1021/acsbiomaterials.9b00176
S.M. Bittner, B.T. Smith, L. Diaz-Gomez, C.D. Hudgins, A.J. Melchiorri et al., Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 90, 37–48 (2019). https://doi.org/10.1016/j.actbio.2019.03.041
C. Wang, W. Huang, Y. Zhou, L. He, Z. He et al., 3D printing of bone tissue engineering scaffolds. Bioact. Mater. 5, 82–91 (2020). https://doi.org/10.1016/j.bioactmat.2020.01.004
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012
B. Liao, R.F. Xia, W. Li, D. Lu, Z.M. Jin, 3D-printed Ti6Al4V scaffolds with graded triply periodic minimal surface structure for bone tissue engineering. J. Mater. Eng. Perform. 30, 4993–5004 (2021). https://doi.org/10.1007/s11665-021-05580-z
A. Bagheri, J. Jin, Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1, 593–611 (2019). https://doi.org/10.1021/acsapm.8b00165
L. Li, R. Hao, J. Qin, J. Song, X. Chen et al., Electrospun fibers control drug delivery for tissue regeneration and cancer therapy. Adv. Fiber Mater. 4, 1375–1413 (2022). https://doi.org/10.1007/s42765-022-00198-9
L. Wang, T. Zhu, Y. Kang, J. Zhang, J. Du et al., Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact. Mater. 16, 149–161 (2022). https://doi.org/10.1016/j.bioactmat.2022.01.031
Z. Chen, H. Xiao, H. Zhang, Q. Xin, H. Zhang et al., Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J. Mater. Chem. B 9, 8646–8658 (2021). https://doi.org/10.1039/D1TB00518A
H. Zhang, S. Wu, W. Chen, Y. Hu, Z. Geng et al., Bone/cartilage targeted hydrogel: strategies and applications. Bioact. Mater. 23, 156–169 (2022). https://doi.org/10.1016/j.bioactmat.2022.10.028
L. Chen, L. Wei, X. Su, L. Qin, Z. Xu et al., Preparation and characterization of biomimetic functional scaffold with gradient structure for osteochondral defect repair. Bioengineering 10, 213 (2023). https://doi.org/10.3390/bioengineering10020213
Z. Zhao, R. Li, H. Ruan, Z. Cai, Y. Zhuang et al., Biological signal integrated microfluidic hydrogel microspheres for promoting bone regeneration. Chem. Eng. J. 436, 135176 (2022). https://doi.org/10.1016/j.cej.2022.135176
M.K. Kim, K. Paek, S.M. Woo, J.A. Kim, Bone-on-a-chip: biomimetic models based on microfluidic technologies for biomedical applications. ACS Biomater. Sci. Eng. 9, 3058–3073 (2023). https://doi.org/10.1021/acsbiomaterials.3c00066
P. Pan, X. Chen, K. Metavarayuth, J. Su, Q. Wang, Self-assembled supramolecular systems for bone engineering applications. Curr. Opin. Colloid Interface Sci. 35, 104–111 (2018). https://doi.org/10.1016/j.cocis.2018.01.015
X. Lin, Q. Wang, C. Gu, M. Li, K. Chen et al., Smart nanosacrificial layer on the bone surface prevents osteoporosis through acid-base neutralization regulated biocascade effects. J. Am. Chem. Soc. 142, 17543–17556 (2020). https://doi.org/10.1021/jacs.0c07309
K. Maji, K. Pramanik, Electrospun scaffold for bone regeneration. Int. J. Polym. Mater. Polym. Biomater. 71, 842–857 (2022). https://doi.org/10.1080/00914037.2021.1915784
Z. Wang, Y. Wang, J. Yan, K. Zhang, F. Lin et al., Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv. Drug Deliv. Rev. 174, 504–534 (2021). https://doi.org/10.1016/j.addr.2021.05.007
J. Xue, T. Wu, Y. Xia, Perspective: Aligned arrays of electrospun nanofibers for directing cell migration. APL Mater. 6, 120902 (2018). https://doi.org/10.1063/1.5058083
Z. Fan, H. Liu, Z. Ding, L. Xiao, Q. Lu et al., Simulation of cortical and cancellous bone to accelerate tissue regeneration. Adv. Funct. Mater. 33, 2301839 (2023). https://doi.org/10.1002/adfm.202301839
W. Liu, J. Lipner, J. Xie, C.N. Manning, S. Thomopoulos et al., Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl. Mater. Interfaces 6, 2842–2849 (2014). https://doi.org/10.1021/am405418g
W. Liu, Q. Sun, Z.-L. Zheng, Y.-T. Gao, G.-Y. Zhu et al., Topographic cues guiding cell polarization via distinct cellular mechanosensing pathways. Small 18, e2104328 (2022). https://doi.org/10.1002/smll.202104328
S.K. Perikamana, J. Lee, T. Ahmad, Y. Jeong, D.G. Kim et al., Effects of immobilized BMP-2 and nanofiber morphology on in vitro osteogenic differentiation of hMSCs and in vivo collagen assembly of regenerated bone. ACS Appl. Mater. Interfaces 7, 8798–8808 (2015). https://doi.org/10.1021/acsami.5b01340
Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
R.K. Tindell, L.P. Busselle, J.L. Holloway, Magnetic fields enable precise spatial control over electrospun fiber alignment for fabricating complex gradient materials. J. Biomed. Mater. Res. A 111, 778–789 (2023). https://doi.org/10.1002/jbm.a.37492
M.L. Tanes, J. Xue, Y. Xia, A general strategy for generating gradients of bioactive proteins on electrospun nanofiber mats by masking with bovine serum albumin. J. Mater. Chem. B 5, 5580–5587 (2017). https://doi.org/10.1039/C7TB00974G
T. Wu, J. Xue, H. Li, C. Zhu, X. Mo et al., General method for generating circular gradients of active proteins on nanofiber scaffolds sought for wound closure and related applications. ACS Appl. Mater. Interfaces 10, 8536–8545 (2018). https://doi.org/10.1021/acsami.8b00129
Z. Qiao, M. Lian, Y. Han, B. Sun, X. Zhang et al., Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 266, 120385 (2021). https://doi.org/10.1016/j.biomaterials.2020.120385
I. Calejo, R. Costa-Almeida, R.L. Reis, M.E. Gomes, A textile platform using continuous aligned and textured composite microfibers to engineer tendon-to-bone interface gradient scaffolds. Adv. Healthc. Mater. 8, e1900200 (2019). https://doi.org/10.1002/adhm.201900200
G. Narayanan, L.S. Nair, C.T. Laurencin, Regenerative engineering of the rotator cuff of the shoulder. ACS Biomater. Sci. Eng. 4, 751–786 (2018). https://doi.org/10.1021/acsbiomaterials.7b00631
J. Cai, J. Wang, K. Ye, D. Li, C. Ai et al., Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. Int. J. Nanomedicine 13, 3481–3492 (2018). https://doi.org/10.2147/IJN.S165633
X. Wang, K. Xu, L. Mu, X. Zhang, G. Huang et al., Mussel-derived bioadaptive artificial tendon facilitates the cell proliferation and tenogenesis to promote tendon functional reconstruction. Adv. Healthc. Mater. 12, e2203400 (2023). https://doi.org/10.1002/adhm.202203400
C. Yu, T. Wang, H. Diao, N. Liu, Y. Zhang et al., Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon–bone healing. Adv. Fiber Mater. 4, 908–922 (2022). https://doi.org/10.1007/s42765-022-00154-7
I. Roppolo, M. Caprioli, C.F. Pirri, S. Magdassi, 3D printing of self-healing materials. Adv. Mater. 36, 2305537 (2024). https://doi.org/10.1002/adma.202305537
M.K. Joshi, H.R. Pant, A.P. Tiwari, H.J. Kim, C.H. Park et al., Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique. Chem. Eng. J. 275, 79–88 (2015). https://doi.org/10.1016/j.cej.2015.03.121
L. Wang, Y. Qiu, Y. Guo, Y. Si, L. Liu et al., Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett. 19, 9112–9120 (2019). https://doi.org/10.1021/acs.nanolett.9b04313
G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3, 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001
L. Wu, X. Pei, B. Zhang, Z. Su, X. Gui et al., 3D-printed HAp bone regeneration scaffolds enable nano-scale manipulation of cellular mechanotransduction signals. Chem. Eng. J. 455, 140699 (2023). https://doi.org/10.1016/j.cej.2022.140699
K. Garg, N.A. Pullen, C.A. Oskeritzian, J.J. Ryan, G.L. Bowlin, Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34, 4439–4451 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.065
S. Jiang, C. Lyu, P. Zhao, W. Li, W. Kong et al., Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nat. Commun. 10, 3491 (2019). https://doi.org/10.1038/s41467-019-11397-1
M. Lafuente-Merchan, S. Ruiz-Alonso, F. García-Villén, I. Gallego, P. Gálvez-Martín et al., Progress in 3D bioprinting technology for osteochondral regeneration. Pharmaceutics 14, 1578 (2022). https://doi.org/10.3390/pharmaceutics14081578
J. Zhang, D. Tong, H. Song, R. Ruan, Y. Sun et al., Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration. Adv. Mater. 34, e2202044 (2022). https://doi.org/10.1002/adma.202202044
J. Zhang, W. Hu, C. Ding, G. Yao, H. Zhao et al., Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling. Toxicol. Lett. 313, 50–59 (2019). https://doi.org/10.1016/j.toxlet.2019.06.007
C. Li, W. Zhang, Y. Nie, D. Jiang, J. Jia et al., Integrated and bifunctional bilayer 3D printing scaffold for osteochondral defect repair. Adv. Funct. Mater. 33, 2214158 (2023). https://doi.org/10.1002/adfm.202214158
Y. Liu, L. Peng, L. Li, C. Huang, K. Shi et al., 3D-bioprinted BMSC-laden biomimetic Multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 279, 121216 (2021). https://doi.org/10.1016/j.biomaterials.2021.121216
X. Zhang, W. Song, K. Han, Z. Fang, E. Cho et al., Three-dimensional bioprinting of a structure-, composition-, and mechanics-graded biomimetic scaffold coated with specific decellularized extracellular matrix to improve the tendon-to-bone healing. ACS Appl. Mater. Interfaces 15, 28964–28980 (2023). https://doi.org/10.1021/acsami.3c03793
R. Sinha, M. Cámara-Torres, P. Scopece, E. Verga Falzacappa, A. Patelli et al., A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat. Commun. 12, 500 (2021). https://doi.org/10.1038/s41467-020-20865-y
I.A.O. Beeren, P.J. Dijkstra, A.F.H. Lourenço, R. Sinha, D.B. Gomes et al., Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface. Biofabrication (2022). https://doi.org/10.1088/1758-5090/aca3d4
Y. Cai, S.Y. Chang, S.W. Gan, S. Ma, W.F. Lu et al., Nanocomposite bioinks for 3D bioprinting. Acta Biomater. 151, 45–69 (2022). https://doi.org/10.1016/j.actbio.2022.08.014
S. Pouraghaei Sevari, J.K. Kim, C. Chen, A. Nasajpour, C.Y. Wang et al., Whitlockite-enabled hydrogel for craniofacial bone regeneration. ACS Appl. Mater. Interfaces 13, 35342–35355 (2021). https://doi.org/10.1021/acsami.1c07453
A. Mokhtarzade, R. Imani, P. Shokrollahi, A gradient four-layered gelatin methacrylate/agarose construct as an injectable scaffold for mimicking osteochondral tissue. J. Mater. Sci. 58, 5735–5755 (2023). https://doi.org/10.1007/s10853-023-08374-x
X. Hao, S. Miao, Z. Li, T. Wang, B. Xue et al., 3D printed structured porous hydrogel promotes osteogenic differentiation of BMSCs. Mater. Des. 227, 111729 (2023). https://doi.org/10.1016/j.matdes.2023.111729
W. Wei, W. Liu, H. Kang, X. Zhang, R. Yu et al., A one-stone-two-birds strategy for osteochondral regeneration based on a 3D printable biomimetic scaffold with kartogenin biochemical stimuli gradient. Adv. Healthc. Mater. 12, 2300108 (2023). https://doi.org/10.1002/adhm.202300108
D. Gan, Z. Wang, C. Xie, X. Wang, W. Xing et al., Mussel-inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv. Healthc. Mater. 8, e1901103 (2019). https://doi.org/10.1002/adhm.201901103
C. Parisi, L. Salvatore, L. Veschini, M.P. Serra, C. Hobbs et al., Biomimetic gradient scaffold of collagen-hydroxyapatite for osteochondral regeneration. J. Tissue Eng. 11, 2041731419896068 (2020). https://doi.org/10.1177/2041731419896068
P. Mou, H. Peng, L. Zhou, L. Li, H. Li et al., A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Int. J. Nanomedicine 14, 3331–3343 (2019). https://doi.org/10.2147/IJN.S195316
S. Stein, L. Kruck, D. Warnecke, A. Seitz et al., Osseointegration of titanium implants with a novel silver coating under dynamic loading. Eur. Cells Mater. 39, 249–259 (2020). https://doi.org/10.22203/ecm.v039a16
C. Gao, W. Dai, X. Wang, L. Zhang, Y. Wang et al., Magnesium gradient-based hierarchical scaffold for dual-lineage regeneration of osteochondral defect. Adv. Funct. Mater. 33, 2304829 (2023). https://doi.org/10.1002/adfm.202304829
R. Yang, G. Li, C. Zhuang, P. Yu, T. Ye et al., Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 7, eabg3816 (2021). https://doi.org/10.1126/sciadv.abg3816
C. Li, L. Ouyang, I.J. Pence, A.C. Moore, Y. Lin et al., Buoyancy-driven gradients for biomaterial fabrication and tissue engineering. Adv. Mater. 31, e1900291 (2019). https://doi.org/10.1002/adma.201900291
C. Li, J.P. Armstrong, I.J. Pence, W. Kit-Anan, J.L. Puetzer et al., Glycosylated superparamagnetic nanop gradients for osteochondral tissue engineering. Biomaterials 176, 24–33 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.029
L. Xiao, M. Wu, F. Yan, Y. Xie, Z. Liu et al., A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. Int. J. Biol. Macromol. 172, 19–29 (2021). https://doi.org/10.1016/j.ijbiomac.2021.01.036
S. Chen, H. Wang, V.L. Mainardi, G. Talò, A. McCarthy et al., Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. Sci. Adv. 7, eabg3089 (2021). https://doi.org/10.1126/sciadv.abg3089
P. Kazimierczak, A. Benko, K. Palka, C. Canal, D. Kolodynska et al., Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J. Mater. Sci. Technol. 43, 52–63 (2020). https://doi.org/10.1016/j.jmst.2020.01.006
Z. Zhao, G. Li, H. Ruan, K. Chen, Z. Cai et al., Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano 15, 13041–13054 (2021). https://doi.org/10.1021/acsnano.1c02147
J.J. Paredes, N. Andarawis-Puri, Therapeutics for tendon regeneration: a multidisciplinary review of tendon research for improved healing. Ann. N. Y. Acad. Sci. 1383, 125–138 (2016). https://doi.org/10.1111/nyas.13228
C. Zhu, S. Pongkitwitoon, J. Qiu, S. Thomopoulos, Y. Xia, Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Adv. Mater. 30, e1707306 (2018). https://doi.org/10.1002/adma.201707306
W. Su, J. Guo, J. Xu, K. Huang, J. Chen et al., Gradient composite film with calcium phosphate silicate for improved tendon-to-Bone intergration. Chem. Eng. J. 404, 126473 (2021). https://doi.org/10.1016/j.cej.2020.126473
H. Zhang, H. Huang, G. Hao, Y. Zhang, H. Ding et al., 3D printing hydrogel scaffolds with nanohydroxyapatite gradient to effectively repair osteochondral defects in rats. Adv. Funct. Mater. 31, 2006697 (2021). https://doi.org/10.1002/adfm.202006697
Q. Wang, Y. Feng, M. He, W. Zhao, L. Qiu et al., A hierarchical Janus nanofibrous membrane combining direct osteogenesis and osteoimmunomodulatory functions for advanced bone regeneration. Adv. Funct. Mater. 31, 2008906 (2021). https://doi.org/10.1002/adfm.202008906
C. Deng, J. Yang, H. He, Z. Ma, W. Wang et al., 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater. Sci. 9, 4891–4903 (2021). https://doi.org/10.1039/d1bm00535a
D. Shi, J. Shen, Z. Zhang, C. Shi, M. Chen et al., Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. A 107, 1615–1627 (2019). https://doi.org/10.1002/jbm.a.36678
Y. Wang, C. Ling, J. Chen, H. Liu, Q. Mo et al., 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. Biomater. Adv. 140, 213067 (2022). https://doi.org/10.1016/j.bioadv.2022.213067
N. Zhang, Y. Wang, J. Zhang, J. Guo, J. He, Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Acta Biomater. 135, 304–317 (2021). https://doi.org/10.1016/j.actbio.2021.08.029
A.-M. Wu, C. Bisignano, S. James, G.G. Abady, A. Abedi et al., Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the global burden of disease study 2019. Lancet Healthy Longev. 2, e580–e592 (2021). https://doi.org/10.1016/S2666-7568(21)00172-0
Y. Li, X. Wei, J. Zhou, L. Wei, The age-related changes in cartilage and osteoarthritis. Biomed. Res. Int. 2013, 916530 (2013). https://doi.org/10.1155/2013/916530
H. Minagawa, N. Yamamoto, H. Abe, M. Fukuda, N. Seki et al., Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: from mass-screening in one village. J. Orthop. 10, 8–12 (2013). https://doi.org/10.1016/j.jor.2013.01.008
L. Mancinelli, G. Intini, Age-associated declining of the regeneration potential of skeletal stem/progenitor cells. Front. Physiol. 14, 1087254 (2023). https://doi.org/10.3389/fphys.2023.1087254
S. Ghouse, N. Reznikov, O.R. Boughton, S. Babu, K.C.G. Ng et al., The design and in vivo testing of a locally stiffness-matched porous scaffold. Appl. Mater. Today 15, 377–388 (2019). https://doi.org/10.1016/j.apmt.2019.02.017
P. Diloksumpan, R.V. Bolaños, S. Cokelaere, B. Pouran, J. de Grauw et al., Orthotopic bone regeneration within 3D printed bioceramic scaffolds with region-dependent porosity gradients in an equine model. Adv. Healthc. Mater. 9, e1901807 (2020). https://doi.org/10.1002/adhm.201901807
G. Li, L. Wang, W. Pan, F. Yang, W. Jiang et al., In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci. Rep. 6, 34072 (2016). https://doi.org/10.1038/srep34072
S. Jia, J. Wang, T. Zhang, W. Pan, Z. Li et al., Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl. Mater. Interfaces 10, 20296–20305 (2018). https://doi.org/10.1021/acsami.8b03445
Y. Zhang, D. Li, Y. Liu, L. Peng, D. Lu et al., 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation 5, 100542 (2023). https://doi.org/10.1016/j.xinn.2023.100542
Y.S. Zhang, G. Haghiashtiani, T. Hübscher, D.J. Kelly, J.M. Lee et al., 3D extrusion bioprinting. Nat. Rev. Methods Primers 1, 75 (2021). https://doi.org/10.1038/s43586-021-00073-8
L. Wang, Z. Wang, Immune responses to silk proteins in vitro and in vivo: lessons learnt. Silk-based biomaterials for tissue engineering, regenerative and precision medicine (Elsevier, Amsterdam, 2024), pp.385–413. https://doi.org/10.1016/b978-0-323-96017-5.00006-6
S. Tajvar, A. Hadjizadeh, S.S. Samandari, Scaffold degradation in bone tissue engineering: an overview. Int. Biodeterior. Biodegrad. 180, 105599 (2023). https://doi.org/10.1016/j.ibiod.2023.105599
Q. Zhang, Y. Jiang, Y. Zhang, Z. Ye, W. Tan et al., Effect of porosity on long-term degradation of poly (ε-caprolactone) scaffolds and their cellular response. Polym. Degrad. Stab. 98, 209–218 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.10.008
J. Ye, N. Liu, Z. Li, L. Liu, M. Zheng et al., Injectable, hierarchically degraded bioactive scaffold for bone regeneration. ACS Appl. Mater. Interfaces 15, 11458–11473 (2023). https://doi.org/10.1021/acsami.2c18824
J. Xue, T. Wu, J. Qiu, S. Rutledge, M.L. Tanes et al., Promoting cell migration and neurite extension along uniaxially aligned nanofibers with biomacromolecular ps in a density gradient. Adv. Funct. Mater. 30, 2002031 (2020). https://doi.org/10.1002/adfm.202002031
X. Zhang, L. Li, J. Ouyang, L. Zhang, J. Xue et al., Electroactive electrospun nanofibers for tissue engineering. Nano Today 39, 101196 (2021). https://doi.org/10.1016/j.nantod.2021.101196
C. Xie, J. Ye, R. Liang, X. Yao, X. Wu et al., Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv. Healthc. Mater. 10, e2100408 (2021). https://doi.org/10.1002/adhm.202100408
P. Zhang, Z. Teng, M. Zhou, X. Yu, H. Wen et al., Upconversion 3D bioprinting for noninvasive in vivo molding. Adv. Mater. 36, e2310617 (2024). https://doi.org/10.1002/adma.202310617
P. Pei, H. Hu, Y. Chen, S. Wang, J. Chen et al., NIR-II ratiometric lanthanide-dye hybrid nanoprobes doped bioscaffolds for in situ bone repair monitoring. Nano Lett. 22, 783–791 (2022). https://doi.org/10.1021/acs.nanolett.1c04356
L.B. Jiang, S.L. Ding, W. Ding, D.H. Su, F.X. Zhang et al., Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chem. Eng. J. 418, 129323 (2021). https://doi.org/10.1016/j.cej.2021.129323
B. Li, M. Zhao, L. Feng, C. Dou, S. Ding et al., Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat. Commun. 11, 3102 (2020). https://doi.org/10.1038/s41467-020-16924-z
P. Pei, Y. Chen, C. Sun, Y. Fan, Y. Yang et al., X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021). https://doi.org/10.1038/s41565-021-00922-3
L. Zelaya-Lainez, H. Kariem, W. Nischkauer, A. Limbeck, C. Hellmich, “Variances” and “in-variances” in hierarchical porosity and composition, across femoral tissues from cow, horse, ostrich, emu, pig, rabbit, and frog. Mater. Sci. Eng. C 117, 111234 (2020). https://doi.org/10.1016/j.msec.2020.111234
H. Zhang, L. Yang, X.G. Yang, F. Wang, J.T. Feng et al., Demineralized bone matrix carriers and their clinical applications: an overview. Orthop. Surg. 11, 725–737 (2019). https://doi.org/10.1111/os.12509