Precision-Engineered Construction of Proton-Conducting Metal–Organic Frameworks
Corresponding Author: Chuanling Si
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 87
Abstract
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices. Among them, metal–organic frameworks (MOFs) present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity, designability, and porosity. In particular, several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors, such as charged network construction, ligand functionalization, metal-center manipulation, defective engineering, guest molecule incorporation, and pore-space manipulation. With the implementation of these strategies, proton-conducting MOFs have developed significantly and profoundly within the last decade. Therefore, in this review, we critically discuss and analyze the fundamental principles, design strategies, and implementation methods targeted at improving the proton conductivity of MOFs through representative examples. Besides, the structural features, the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously. Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research. We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials.
Highlights:
1 The effects of the size structure and stability of metal–organic frameworks (MOFs) on proton conduction are comprehensively summarized.
2 Advanced strategies for constructing proton conduction MOFs are critically discussed.
3 Challenges and opportunities for the development of novel proton-conducting MOFs are further outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Yang, G. Xu, Y.B. Dou, B. Wang, H. Zhang et al., A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2, 877–883 (2017). https://doi.org/10.1038/s41560-017-0018-7
- T. Xu, H.S. Du, H.Y. Liu, W. Liu, X.Y. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33, 2101368 (2021). https://doi.org/10.1002/adma.202101368
- H. Zhou, L. Yan, D.X. Tang, T. Xu, L. Dai et al., Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Adv. Mater. 36, 2403876 (2024). https://doi.org/10.1002/adma.202403876
- Q.D. Liang, K. Liu, T. Xu, Y.X. Wang, M. Zhang et al., Interfacial modulation of Ti3C2Tx mxene by cellulose nanofibrils to construct hybrid fibers with high volumetric specific capacitance. Small 20, 2307344 (2024). https://doi.org/10.1002/smll.202307344
- Y. Wang, T. Xu, K. Liu, M. Zhang, X.M. Cai et al., Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate 5, e428 (2023). https://doi.org/10.1002/agt2.428
- W. Liu, K. Liu, H.S. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/Nmat2317
- Y. Zheng, H. Liu, L. Yan, H.Y. Yang, L. Dai et al., Lignin-based encapsulation of liquid metal ps for flexible and high-efficiently recyclable electronics. Adv. Funct. Mater. 34, 2310653 (2024). https://doi.org/10.1002/adfm.202310653
- W. Li, W.H. Zhang, Y. Xu, G.H. Wang, T. Xu et al., Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality. Nano Energy 128, 109912 (2024). https://doi.org/10.1016/j.nanoen.2024.109912
- K. Jiao, J. Xuan, Q. Du, Z.M. Bao, B.A. Xie et al., Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021). https://doi.org/10.1038/s41586-021-03482-7
- C.H.Y. Lee, W.J.M. Kort-Kamp, H.R. Yu, D.A. Cullen, B.M. Patterson et al., Grooved electrodes for high-power-density fuel cells. Nat. Energy 8, 685–694 (2023). https://doi.org/10.1038/s41560-023-01263-2
- H.Y. Tang, K. Geng, L. Wu, J.J. Liu, Z.Q. Chen et al., Fuel cells with an operational range of − 20 to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy 7, 153–162 (2022). https://doi.org/10.1038/s41560-021-00956-w
- L.Y. Zhu, Y.C. Li, P. Ye, J.Y. Zhao, J. Liu et al., Ultra-stable, highly proton conductive, and self-healing proton exchange membranes based on molecule intercalation technique and noncovalent assembly nanostructure. Adv. Funct. Mater. 33, 2210453 (2023). https://doi.org/10.1002/adfm.202210453
- L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang et al., Recent developments in high-performance nafion membranes for hydrogen fuel cells applications. Petrol. Sci. 19, 1371–1381 (2022). https://doi.org/10.1016/j.petsci.2021.11.004
- H.B. Yang, L.Y. Zhu, Y.J. Zhou, T. Xu, C.Y. Zheng et al., Engineering modulation of cellulose-induced metal–organic frameworks assembly behavior for advanced adsorption and separation. Chem. Eng. J. 498, 155333 (2024). https://doi.org/10.1016/j.cej.2024.155333
- W. Li, Y. Xu, G. Wang, T. Xu, C. Si, Design and functionalization of lignocellulose-derived silicon-carbon composites for rechargeable batteries. Adv. Energy Mater. 2403593 (2024). https://doi.org/10.1002/aenm.202403593
- X.T. Qian, L. Chen, L.C. Yin, Z.B. Liu, S.F. Pei et al., CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 370, 596–600 (2020). https://doi.org/10.1126/science.abb9704
- L.Y. Zhu, L.M. Zhang, Y.T. Ren, J.D. Lei, L.Y. Wang et al., Subnanometer nanowire-reinforced construction of COF-based membranes with engineering biomimetic texture for efficient and stable proton conduction. Adv. Funct. Mater. 34, 2313844 (2024). https://doi.org/10.1002/adfm.202313844
- Z.P. Li, K.S. Oh, J.M. Seo, W.L. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16, 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
- J.B. Zhang, Y.B. Tian, Z.G. Gu, J. Zhang, Metal-organic framework-based photodetectors. Nano-Micro Lett. 16, 253 (2024). https://doi.org/10.1007/s40820-024-01465-7
- X.M. Liu, D. Zhao, J.H. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16, 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
- Y.Y. Dong, J. Zhang, H.Y. Zhang, W. Wang, B.Y. Hu et al., Multifunctional MOF@COF nanops mediated perovskite films management toward sustainable perovskite solar cells. Nano-Micro Lett. 16, 171 (2024). https://doi.org/10.1007/s40820-024-01390-9
- X.Y. Xu, J. Zhang, Z.H. Zhang, G.D. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
- Q.S. Zhao, T. Xu, K. Liu, H.S. Du, M. Zhang et al., Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater 71, 103605 (2024). https://doi.org/10.1016/j.ensm.2024.103605
- T. Xu, K. Liu, N. Sheng, M.H. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
- T. Xu, Q. Song, K. Liu, H.Y. Liu, J.J. Pan et al., Nanocellulose-assisted construction of multifunctional mxene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- Y.B. Mu, S.X. Yu, Y.Z. Chen, Y.Q. Chu, B.K. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
- L.Y. Zhu, H.T. Zhu, L.Y. Wang, J.D. Lei, J. Liu, Efficient proton conduction in porous and crystalline covalent-organic frameworks (COFs). J. Energy Chem. 82, 198–218 (2023). https://doi.org/10.1016/j.jechem.2023.04.002
- H.Y. Liu, T. Xu, C.Y. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2113082 (2022). https://doi.org/10.1002/adfm.202113082
- K. Liu, W. Liu, W. Li, Y.X. Duan, K.Y. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
- Q. Zhang, S. Jiang, T.T. Lv, Y. Peng, H. Pang, Application of conductive MOF in zinc-based batteries. Adv. Mater. 35, 2305532 (2023). https://doi.org/10.1002/adma.202305532
- H.L. Wang, Q.L. Zhu, R.Q. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
- H.B. Wu, X.W. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3, eaap9252 (2017). https://doi.org/10.1126/sciadv.aap9252
- H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
- Z.Y. Zhuang, D.X. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12, 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
- H. Molavi, K. Mirzaei, M. Barjasteh, S.Y. Rahnamaee, S. Saeedi et al., 3D-printed MOF monoliths: fabrication strategies and environmental applications. Nano-Micro Lett. 16, 272 (2024). https://doi.org/10.1007/s40820-024-01487-1
- L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, H.L. Jiang, Metal-organic frameworks: structures and functional applications. Mater. Today 27, 43–68 (2019). https://doi.org/10.1016/j.mattod.2018.10.038
- Y.R. Liu, Y.Y. Chen, Q. Zhuang, G. Li, Recent advances in MOFs-based proton exchange membranes. Coordin. Chem. Rev. 471, 214740 (2022). https://doi.org/10.1016/j.ccr.2022.214740
- L.L. Kang, M. Xue, Y.Y. Liu, Y.H. Yu, Y.R. Liu et al., Proton conductive metal-organic frameworks based on main-group metals. Coordin. Chem. Rev. 452, 214301 (2022). https://doi.org/10.1016/j.ccr.2021.214301
- A. Karmakar, A.V. Desai, S.K. Ghosh, Ionic metal-organic frameworks (iMOFs): design principles and applications. Coordin. Chem. Rev. 307, 313–341 (2016). https://doi.org/10.1016/j.ccr.2015.08.007
- S.M. Moosavi, A. Nandy, K.M. Jablonka, D. Ongari, J.P. Janet et al., Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068 (2020). https://doi.org/10.1038/s41467-020-17755-8
- X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- G.K.H. Shimizu, J.M. Taylor, S. Kim, Proton conduction with metal-organic frameworks. Science 341, 354–355 (2013). https://doi.org/10.1126/science.1239872
- S. Kanda, K. Yamashita, K. Ohkawa, A proton conductive coordination polymer I [n, n′-bis(2-hydroxyethyl)dithiooxamido]copper(II). Bull. Chem. Soc. Jpn. 52, 3296–3301 (1979). https://doi.org/10.1246/bcsj.52.3296
- T. Yamada, M. Sadakiyo, H. Kitagawa, High proton conductivity of one-dimensional ferrous oxalate dihydrate. J. Am. Chem. Soc. 131, 3144–3145 (2009). https://doi.org/10.1021/ja808681m
- Y.X. Ye, L.S. Gong, S.C. Xiang, Z.J. Zhang, B.L. Chen, Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mater. 32, 1907090 (2020). https://doi.org/10.1002/adma.201907090
- D.W. Lim, H. Kitagawa, Proton transport in metal-organic frameworks. Chem. Rev. 120, 8416–8467 (2020). https://doi.org/10.1021/acs.chemrev.9b00842
- P. Ramaswamy, N.E. Wong, G.K.H. Shimizu, MOFs as proton conductors—challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014). https://doi.org/10.1039/c4cs00093e
- D.W. Lim, H. Kitagawa, Rational strategies for proton-conductive metal-organic frameworks. Chem. Soc. Rev. 50, 6349–6368 (2021). https://doi.org/10.1039/d1cs00004g
- M. Yoon, K. Suh, S. Natarajan, K. Kim, Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013). https://doi.org/10.1002/anie.201206410
- S.N. Zhao, Y. Zhang, S.Y. Song, H.J. Zhang, Design strategies and applications of charged metal organic frameworks. Coordin. Chem. Rev. 398, 113007 (2019). https://doi.org/10.1016/j.ccr.2019.07.004
- A.E. Baumann, D.A. Burns, B.Q. Liu, V.S. Thoi, Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2, 86 (2019). https://doi.org/10.1038/s42004-019-0184-6
- F.D. Wang, B.C. Wang, B.B. Hao, C.X. Zhang, Q.L. Wang, Designable guest-molecule encapsulation in metal-organic frameworks for proton conductivity. Chem. Eur. J. 28, e202103732 (2022). https://doi.org/10.1002/chem.202103732
- M. Szufla, J.A.R. Navarro, K. Góra-Marek, D. Matoga, Effect of missing-linker defects and ion exchange on stability and proton conduction of a sulfonated layered Zr-MOF. ACS Appl. Mater. Inter. 15, 28184–28192 (2023). https://doi.org/10.1021/acsami.3c03873
- M. Sadakiyo, H. Okawa, A. Shigematsu, M. Ohba, T. Yamada et al., Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks. J. Am. Chem. Soc. 134, 5472–5475 (2012). https://doi.org/10.1021/ja300122r
- H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi et al., Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010). https://doi.org/10.1126/science.1192160
- M.J. Kalmutzki, N. Hanikel, O.M. Yaghi, Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018). https://doi.org/10.1126/sciadv.aat9180
- S.S. Park, C.H. Hendon, A.J. Fielding, A. Walsh, M. O’Keeffe et al., The organic secondary building unit: strong intermolecular π interactions define topology in MIT-25, a mesoporous MOF with proton-replete channels. J. Am. Chem. Soc. 139, 3619–3622 (2017). https://doi.org/10.1021/jacs.6b13176
- V. Unnikrishnan, O. Zabihi, M. Ahmadi, Q.X. Li, P. Blanchard et al., Metal-organic framework structure-property relationships for high-performance multifunctional polymer nanocomposite applications. J. Mater. Chem. A 9, 4348–4378 (2021). https://doi.org/10.1039/d0ta11255k
- H.B. Yang, L.Y. Zhu, Y.J.M. Zhou, T. Xu, C.Y. Zheng et al., Engineering modulation of cellulose-induced metal-organic frameworks assembly behavior for advanced adsorption and separation. Chem. Eng. J. 498, 155333 (2024). https://doi.org/10.1016/j.cej.2024.155333
- G. Chakraborty, I.H. Park, R. Medishetty, J.J. Vittal, Two-dimensional metal-organic framework materials: synthesis, structures, properties and applications. Chem. Rev. 121, 3751–3891 (2021). https://doi.org/10.1021/acs.chemrev.0c01049
- D.B. Yu, Q. Shao, Q.J. Song, J.W. Cui, Y.L. Zhang et al., A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat. Commun. 11, 927 (2020). https://doi.org/10.1038/s41467-020-14671-9
- A. Saad, S. Biswas, E. Gkaniatsou, C. Sicard, E. Dumas et al., Metal-organic framework based 1D nanostructures and their superstructures: synthesis, microstructure, and properties. Chem. Mater. 33, 5825–5849 (2021). https://doi.org/10.1021/acs.chemmater.1c01034
- J. Maier, Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005). https://doi.org/10.1038/nmat1513
- S. Morikawa, T. Yamada, H. Kitagawa, Crystal structure and proton conductivity of a one dimensional coordination polymer, {Mn(DHBQ)(H2O)2}. Chem. Lett. 38, 654–655 (2009). https://doi.org/10.1246/cl.2009.654
- Y.R. Gao, A.M. Nolan, P. Du, Y.F. Wu, C. Yang et al., Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020). https://doi.org/10.1021/acs.chemrev.9b00747
- S. Horike, D. Umeyama, M. Inukai, T. Itakura, S. Kitagawa, Coordination-network-based ionic plastic crystal for anhydrous proton conductivity. J. Am. Chem. Soc. 134, 7612–7615 (2012). https://doi.org/10.1021/ja301875x
- K.I. Otake, K. Otsubo, K. Sugimoto, A. Fujiwara, H. Kitagawa, Ultrafine metal-organic right square prism shaped nanowires. Angew. Chem. Int. Ed. 55, 6448–6451 (2016). https://doi.org/10.1002/anie.201601678
- L.J. Wang, S.E. Saji, L.J. Wu, Z.X. Wang, Z.J. Chen et al., Emerging synthesis strategies of 2D MOFs for electrical devices and integrated circuits. Small 18, 2201642 (2022). https://doi.org/10.1002/smll.202201642
- L.Y. Xiao, Z.L. Wang, J.Q. Guan, 2D MOFs and their derivatives for electrocatalytic applications: recent advances and new challenges. Coordin. Chem. Rev. 472, 214777 (2022). https://doi.org/10.1016/j.ccr.2022.214777
- M.C. Wang, R.H. Dong, X.L. Feng, Two-dimensional conjugated metal-organic frameworks (2D-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021). https://doi.org/10.1039/d0cs01160f
- M. Sadakiyo, T. Yamada, H. Kitagawa, Rational designs for highly proton-conductive metal-organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009). https://doi.org/10.1021/ja9040016
- I. Huskic, N. Novendra, D.W. Lim, F. Topic, H.M. Titi et al., Functionality in metal-organic framework minerals: proton conductivity, stability and potential for polymorphism. Chem. Sci. 10, 4923–4929 (2019). https://doi.org/10.1039/c8sc05088k
- W.D. Xue, C.D. Sewell, Q.X. Zhou, Z.Q. Lin, Metal-organic frameworks for ion conduction. Angew. Chem. Int. Ed. 61, e202206512 (2022). https://doi.org/10.1002/anie.202206512
- D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa, Inherent proton conduction in a 2D coordination framework. J. Am. Chem. Soc. 134, 12780–12785 (2012). https://doi.org/10.1021/ja304693r
- G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 135, 7438–7441 (2013). https://doi.org/10.1021/ja402727d
- J. Annamalai, P. Murugan, D. Ganapathy, D. Nallaswamy, R. Atchudan et al., Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications-a review. Chemosphere 298, 134184 (2022). https://doi.org/10.1016/j.chemosphere.2022.134184
- A.G. Zavyalova, D.V. Kladko, I.Y. Chernyshov, V.V. Vinogradov, Large MOFs: synthesis strategies and applications where size matters. J. Mater. Chem. A 9, 25258–25271 (2021). https://doi.org/10.1039/d1ta05283g
- S.S. Nagarkar, S.M. Unni, A. Sharma, S. Kurungot, S.K. Ghosh, Two-in-one: Inherent anhydrous and water-assisted high proton conduction in a 3d metal-organic framework. Angew. Chem. Int. Ed. 53, 2638–2642 (2014). https://doi.org/10.1002/anie.201309077
- Y.N. Zhou, L.L. Liu, Q.W. Liu, X.X. Liu, M.Z. Feng et al., Dual-functional metal-organic framework for luminescent detection of carcinoid biomarkers and high proton conduction. Inorg. Chem. 60, 17303–17314 (2021). https://doi.org/10.1021/acs.inorgchem.1c02655
- R.L. Liu, D.Y. Wang, J.R. Shi, G. Li, Proton conductive metal sulfonate frameworks. Coordin. Chem. Rev. 431, 213747 (2021). https://doi.org/10.1016/j.ccr.2020.213747
- Y. Li, J.Y. Feng, L.Y. Wang, G. Li, High proton conduction in two highly stable phenyl imidazole dicarboxylate-based Cd(II)-MOFs. J. Solid State Chem. 319, 123828 (2023). https://doi.org/10.1016/j.jssc.2022.123828
- D.K. Yoo, G. Lee, M.M.H. Mondol, H.J. Lee, C.M. Kim et al., Preparation and applications of metal-organic frameworks composed of sulfonic acid. Coordin. Chem. Rev. 474, 214868 (2023). https://doi.org/10.1016/j.ccr.2022.214868
- T. Deng, X.J. Zeng, C.Y. Zhang, Y.X. Wang, W. Zhang, Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes. Chem. Eng. J. 445, 136752 (2022). https://doi.org/10.1016/j.cej.2022.136752
- D.W. Lim, M. Sadakiyo, H. Kitagawa, Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem. Sci. 10, 16–33 (2019). https://doi.org/10.1039/c8sc04475a
- S. Kim, B. Joarder, J.A. Hurd, J.F. Zhang, K.W. Dawson et al., Achieving superprotonic conduction in metal-organic frameworks through iterative design advances. J. Am. Chem. Soc. 140, 1077–1082 (2018). https://doi.org/10.1021/jacs.7b11364
- N.C. Jeong, B. Samanta, C.Y. Lee, O.K. Farha, J.T. Hupp, Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 134, 51–54 (2012). https://doi.org/10.1021/ja2110152
- C.H. Wang, X.L. Liu, N.K. Demir, J.P. Chen, K. Li, Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016). https://doi.org/10.1039/c6cs00362a
- B. Pramanik, R. Sahoo, M.C. Das, Ph-stable MOFs: Design principles and applications. Coordin. Chem. Rev. 493, 215301 (2023). https://doi.org/10.1016/j.ccr.2023.215301
- X.Y. Shi, G.A. Lee, S.H. Liu, D. Kim, A. Alahmed et al., Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Mater. Today 65, 207–226 (2023). https://doi.org/10.1016/j.mattod.2023.03.004
- A.J. Howarth, Y.Y. Liu, P. Li, Z.Y. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
- K.C. Wang, Y.P. Li, L.H. Xie, X.Y. Li, J.R. Li, Construction and application of base-stable MOFs: a critical review. Chem. Soc. Rev. 51, 6417–6441 (2022). https://doi.org/10.1039/d1cs00891a
- Y.H. Wen, P. Zhang, V.K. Sharma, X.M. Ma, H.C. Zhou, Metal-organic frameworks for environmental applications. Cell Rep. Phys. Sci. 2, 100348 (2021). https://doi.org/10.1016/j.xcrp.2021.100348
- S. Yuan, J.S. Qin, C.T. Lollar, H.C. Zhou, Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 4, 440–450 (2018). https://doi.org/10.1021/acscentsci.8b00073
- M.L. Ding, X.C. Cai, H.L. Jiang, Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019). https://doi.org/10.1039/c9sc03916c
- A. Dhakshinamoorthy, A.M. Asiri, H. García, Metal-organic frameworks as multifunctional solid catalysts. Trends Chem. 2, 454–466 (2020). https://doi.org/10.1016/j.trechm.2020.02.004
- S. Yuan, L. Feng, K.C. Wang, J.D. Pang, M. Bosch et al., Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018). https://doi.org/10.1002/adma.201704303
- A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak et al., A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 51, 7440–7444 (2012). https://doi.org/10.1002/anie.201202471
- W. Zhang, Y.L. Hu, J. Ge, H.L. Jiang, S.H. Yu, A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J. Am. Chem. Soc. 136, 16978–16981 (2014). https://doi.org/10.1021/ja509960n
- D.P. Sheng, L. Zhu, X. Dai, C. Xu, P. Li et al., Successful decontamination of 99TcO4- in groundwater at legacy nuclear sites by a cationic metal-organic framework with hydrophobic pockets. Angew. Chem. Int. Ed. 58, 4968–4972 (2019). https://doi.org/10.1002/anie.201814640
- X.X. Li, J. Liu, L. Zhan, L.Z. Dong, Z.F. Xin et al., Hydrophobic polyoxometalate-based metal-organic framework for efficient CO2 photoconversion. ACS Appl. Mater. Inter. 11, 25790–25795 (2019). https://doi.org/10.1021/acsami.9b03861
- N. Nijem, P. Canepa, U. Kaipa, K. Tan, K. Roodenko et al., Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework. J. Am. Chem. Soc. 135, 12615–12626 (2013). https://doi.org/10.1021/ja400754p
- J.G. Nguyen, S.M. Cohen, Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132, 4560–4561 (2010). https://doi.org/10.1021/ja100900c
- B. Wang, X.L. Lv, D.W. Feng, L.H. Xie, J. Zhang et al., Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138, 6204–6216 (2016). https://doi.org/10.1021/jacs.6b01663
- M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye et al., Synthesis and stability of tagged UIO-66 Zr-MOFs. Chem. Mater. 22, 6632–6640 (2010). https://doi.org/10.1021/cm102601v
- T. Devic, C. Serre, High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 43, 6097–6115 (2014). https://doi.org/10.1039/c4cs00081a
- J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E.J. DeMarco et al., Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013). https://doi.org/10.1021/ja4050828
- T.A. Makal, X. Wang, H.C. Zhou, Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups. Cryst. Growth Des. 13, 4760–4768 (2013). https://doi.org/10.1021/cg4009224
- S.M. Moosavi, P.G. Boyd, L. Sarkisov, B. Smit, Improving the mechanical stability of metal-organic frameworks using chemical caryatids. ACS Cent. Sci. 4, 832–839 (2018). https://doi.org/10.1021/acscentsci.8b00157
- H. Wu, T. Yildirim, W. Zhou, Exceptional mechanical stability of highly porous zirconium metal-organic framework UIO-66 and its important implications. J. Phys. Chem. Lett. 4, 925–930 (2013). https://doi.org/10.1021/jz4002345
- P.Z. Moghadam, S.M.J. Rogge, A. Li, C.M. Chow, J. Wieme et al., Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter 1, 219–234 (2019). https://doi.org/10.1016/j.matt.2019.03.002
- S.M.J. Rogge, M. Waroquier, V. Van Speybroeck, Reliably modeling the mechanical stability of rigid and flexible metal-organic frameworks. Acc. Chem. Res. 51, 138–148 (2018). https://doi.org/10.1021/acs.accounts.7b00404
- X.L. Deng, J.Y. Hu, J.Y. Luo, W.M. Liao, J. He, Conductive metal-organic frameworks: Mechanisms, design strategies and recent advances. Topics Curr. Chem. 378, 27 (2020). https://doi.org/10.1007/s41061-020-0289-5
- S.C. Pal, M.C. Das, Superprotonic conductivity of MOFs and other crystalline platforms beyond 10–1 S cm-1. Adv. Funct. Mater. 31, 2101584 (2021). https://doi.org/10.1002/adfm.202101584
- J.Y. Xu, H.Y. Jiang, Y.T. Shen, X.Z. Li, E.G. Wang et al., Transparent proton transport through a two-dimensional nanomesh material. Nat. Commun. 10, 3971 (2019). https://doi.org/10.1038/s41467-019-11899-y
- I. Popov, Z.H. Zhu, A.R. Young-Gonzales, R.L. Sacci, E. Mamontov et al., Search for a grotthuss mechanism through the observation of proton transfer. Commun. Chem. 6, 77 (2023). https://doi.org/10.1038/s42004-023-00878-6
- G.A. Ludueña, T.D. Kühne, D. Sebastiani, Mixed grotthuss and vehicle transport mechanism in proton conducting polymers from ab initio molecular dynamics simulations. Chem. Mater. 23, 1424–1429 (2011). https://doi.org/10.1021/cm102674u
- C. Chen, Y.L.S. Tse, G.E. Lindberg, C. Knight, G.A. Voth, Hydroxide solvation and transport in anion exchange membranes. J. Am. Chem. Soc. 138, 991–1000 (2016). https://doi.org/10.1021/jacs.5b11951
- K. Otake, K. Otsubo, T. Komatsu, S. Dekura, J.M. Taylor et al., Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube. Nat. Commun. 11, 843 (2020). https://doi.org/10.1038/s41467-020-14627-z
- C. Klumpen, S. Gödrich, G. Papastavrou, J. Senker, Water mediated proton conduction in a sulfonated microporous organic polymer. Chem. Commun. 53, 7592–7595 (2017). https://doi.org/10.1039/c7cc02117h
- L. Shi, Z.X. Ying, A. Xu, Y.H. Cheng, Unraveling the water-mediated proton conduction mechanism along the surface of graphene oxide. Chem. Mater. 32, 6062–6069 (2020). https://doi.org/10.1021/acs.chemmater.0c01512
- J.A. Hurd, R. Vaidhyanathan, V. Thangadurai, C.I. Ratcliffe, I.L. Moudrakovski et al., Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. Nat. Chem. 1, 705–710 (2009). https://doi.org/10.1038/Nchem.402
- S. Minami, R. Jinnouchi, Accelerating anhydrous proton conduction anion rotation and hydrogen bond recombination: a machine-learning molecular dynamics. J. Mater. Chem. A 11, 16104–16114 (2023). https://doi.org/10.1039/d3ta03164k
- M. Sadakiyo, T. Yamada, K. Honda, H. Matsui, H. Kitagawa, Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal-organic framework. J. Am. Chem. Soc. 136, 7701–7707 (2014). https://doi.org/10.1021/ja5022014
- S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi et al., High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132, 6620–6621 (2010). https://doi.org/10.1021/ja100385f
- F. Wang, S. Deng, H.C. Zhang, J.T. Wang, J.P. Zhao et al., A comprehensive review on high-temperature fuel cells with carbon capture. Appl. Energ. 275, 115342 (2020). https://doi.org/10.1016/j.apenergy.2020.115342
- R. Haider, Y.C. Wen, Z.F. Ma, D.P. Wilkinson, L. Zhang et al., High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 50, 1138–1187 (2021). https://doi.org/10.1039/d0cs00296h
- S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura et al., One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 8, 831–836 (2009). https://doi.org/10.1038/Nmat2526
- M. Kalaj, S.M. Cohen, Postsynthetic modification: an enabling technology for the advancement of metal-organic frameworks. ACS Cent. Sci. 6, 1046–1057 (2020). https://doi.org/10.1021/acscentsci.0c00690
- P. Apostol, S.M. Gali, A. Su, D. Tie, Y. Zhang et al., Controlling charge transport in 2D conductive MOFs-the role of nitrogen-rich ligands and chemical functionality. J. Am. Chem. Soc. 145, 24669–24677 (2023). https://doi.org/10.1021/jacs.3c07503
- E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo et al., High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. J. Am. Chem. Soc. 133, 15328–15331 (2011). https://doi.org/10.1021/ja206917z
- T.N. Tu, N.Q. Phan, T.T. Vu, H.L. Nguyen, K.E. Cordova et al., High proton conductivity at low relative humidity in an anionic Fe-based metal-organic framework. J. Mater. Chem. A 4, 3638–3641 (2016). https://doi.org/10.1039/c5ta10467j
- Y.S. Wei, X.P. Hu, Z. Han, X.Y. Dong, S.Q. Zang et al., Unique proton dynamics in an efficient MOF-based proton conductor. J. Am. Chem. Soc. 139, 3505–3512 (2017). https://doi.org/10.1021/jacs.6b12847
- S.J. Wang, M. Wahiduzzaman, L. Davis, A. Tissot, W. Shepard et al., A robust zirconium amino acid metal-organic framework for proton conduction. Nat. Commun. 9, 4937 (2018). https://doi.org/10.1038/s41467-018-07414-4
- Y.W. Xue, R. Gao, S.J. Lin, Q. Zhong, Q. Zhang et al., Regulating the interface electron distribution of iron-based MOFs through ligand functionalization enables efficient peroxymonosulfate utilization and catalytic performance. J. Colloid Interf. Sci. 663, 358–368 (2024). https://doi.org/10.1016/j.jcis.2024.02.118
- J.H. Qiu, J.F. Yao, Ligand functionalization of metal-organic frameworks for photocatalytic H2O2 production. Eur. J. Inorg. Chem. 27, e202300773 (2024). https://doi.org/10.1002/ejic.202300773
- B. Liu, H.F. Zhou, L. Hou, Y.Y. Wang, Functionalization of MOFs a mixed-ligand strategy: enhanced CO2 uptake by pore surface modification. Dalton T. 47, 5298–5303 (2018). https://doi.org/10.1039/c8dt00502h
- A. Shigematsu, T. Yamada, H. Kitagawa, Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011). https://doi.org/10.1021/ja109810w
- W.L. Xue, W.H. Deng, H. Chen, R.H. Liu, J.M. Taylor et al., MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew. Chem. Int. Ed. 60, 1290–1297 (2021). https://doi.org/10.1002/anie.202010783
- K. Fujie, T. Yamada, R. Ikeda, H. Kitagawa, Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. Angew. Chem. Int. Ed. 53, 11302–11305 (2014). https://doi.org/10.1002/anie.201406011
- Y. Yoshida, K. Fujie, D.W. Lim, R. Ikeda, H. Kitagawa, Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew. Chem. Int. Ed. 58, 10909–10913 (2019). https://doi.org/10.1002/anie.201903980
- S. Mandal, S. Natarajan, P. Mani, A. Pankajakshan, Post-synthetic modification of metal-organic frameworks toward applications. Adv. Funct. Mater. 31, 2006291 (2021). https://doi.org/10.1002/adfm.202006291
- L. Figueroa-Quintero, D. Villalgordo-Hernández, J.J. Delgado-Marín, J. Narciso, V.K. Velisoju et al., Post-synthetic surface modification of metal-organic frameworks and their potential applications. Small Method 7, 2201413 (2023). https://doi.org/10.1002/smtd.202201413
- H. Wang, M.Q. Pan, Y.F. Wang, C. Chen, J. Xu et al., Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chin. Chem. Lett. 35, 109581 (2024). https://doi.org/10.1016/j.cclet.2024.109581
- X.M. Li, Y.M. Wang, Y.B. Mu, J.K. Gao, L. Zeng, Oriented construction of efficient intrinsic proton transport pathways in MOF-808. J. Mater. Chem. A 10, 18592–18597 (2022). https://doi.org/10.1039/d2ta04572a
- W.J. Phang, H. Jo, W.R. Lee, J.H. Song, K. Yoo et al., Superprotonic conductivity of a UIO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54, 5142–5146 (2015). https://doi.org/10.1002/anie.201411703
- C.L. Li, J. Shen, K.B. Wu, N.J. Yang, Metal centers and organic ligands determine electrochemistry of metal-organic frameworks. Small 18, 2106607 (2022). https://doi.org/10.1002/smll.202106607
- P.A. Herrera-Herrera, E. Rodríguez-Sevilla, A.S. Varela, The role of the metal center on charge transport rate in MOF-525: Cobalt and nickel porphyrin. Dalton T. 50, 16939–16944 (2021). https://doi.org/10.1039/d1dt03435a
- D.O. Wasik, J.M. Vicent-Luna, A. Luna-Triguero, D. Dubbeldam, T.J.H. Vlugt et al., The impact of metal centers in the m-MOF-74 series on carbon dioxide and hydrogen separation. Sep. Purif. Technol. 339, 126539 (2024). https://doi.org/10.1016/j.seppur.2024.126539
- J.X. Wu, Y.H. Ma, H.C. Zhang, H.A. Xie, J. Hu et al., Regulating metal centers of MOF-74 promotes PEO-based electrolytes for all-solid-state lithium-metal batteries. ACS Appl. Mater. Inter. 16, 16351–16362 (2024). https://doi.org/10.1021/acsami.4c01316
- H.B. Luo, Q. Ren, P. Wang, J. Zhang, L.F. Wang et al., High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808. ACS Appl. Mater. Inter. 11, 9164–9171 (2019). https://doi.org/10.1021/acsami.9b01075
- F.M. Zhang, L.Z. Dong, J.S. Qin, W. Guan, J. Liu et al., Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks. J. Am. Chem. Soc. 139, 6183–6189 (2017). https://doi.org/10.1021/jacs.7b01559
- Y.X. Ye, W.G. Guo, L.H. Wan, Z.Y. Li, Z.J. Song et al., Straightforward loading of imidazole molecules into metal organic framework for high proton conduction. J. Am. Chem. Soc. 139, 15604–15607 (2017). https://doi.org/10.1021/jacs.7b09163
- M.K. Sarango-Ramírez, D.W. Lim, D.I. Kolokolov, A.E. Khudozhitkov, A.G. Stepanov et al., Superprotonic conductivity in metal-organic framework via solvent-free coordinative urea insertion. J. Am. Chem. Soc. 142, 6861–6865 (2020). https://doi.org/10.1021/jacs.0c00303
- S.S. Liu, Z. Han, J.S. Yang, S.Z. Huang, X.Y. Dong et al., Sulfonic groups lined along channels of metal-organic frameworks (MOFs) for super-proton conductor. Inorg. Chem. 59, 396–402 (2020). https://doi.org/10.1021/acs.inorgchem.9b02649
- W.L. Xiang, Y.P. Zhang, Y.F. Chen, C.J. Liu, X. Tu, Synthesis, characterization and application of defective metal-organic frameworks: Current status and perspectives. J. Mater. Chem. A 8, 21526–21546 (2020). https://doi.org/10.1039/d0ta08009h
- S. Dai, C. Simms, G. Patriarche, M. Daturi, A. Tissot et al., Highly defective ultra-small tetravalent MOF nanocrystals. Nat. Commun. 15, 3434 (2024). https://doi.org/10.1038/s41467-024-47426-x
- J.W. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langan, M. Mathe et al., Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coordin. Chem. Rev. 349, 169–197 (2017). https://doi.org/10.1016/j.ccr.2017.08.017
- S. Dissegna, K. Epp, W.R. Heinz, G. Kieslich, R.A. Fischer, Defective metal-organic frameworks. Adv. Mater. 30, 1704501 (2018). https://doi.org/10.1002/adma.201704501
- R.J. Mo, S. Chen, L.Q. Huang, X.L. Ding, S. Rafique et al., Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat. Commun. 15, 2145 (2024). https://doi.org/10.1038/s41467-024-46378-6
- Y.L. Dong, Y. Jiang, S. Ni, G.W. Guan, S.T. Zheng et al., Ligand defect-induced active sites in Ni-MOF-74 for efficient photocatalytic CO2 reduction to CO. Small 20, 2308005 (2024). https://doi.org/10.1002/smll.202308005
- J.M. Taylor, S. Dekura, R. Ikeda, H. Kitagawa, Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater. 27, 2286–2289 (2015). https://doi.org/10.1021/acs.chemmater.5b00665
- M. Inukai, S. Horike, T. Itakura, R. Shinozaki, N. Ogiwara et al., Encapsulating mobile proton carriers into structural defects in coordination polymer crystals: High anhydrous proton conduction and fuel cell application. J. Am. Chem. Soc. 138, 8505–8511 (2016). https://doi.org/10.1021/jacs.6b03625
- Z.L. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015). https://doi.org/10.1002/anie.201411540
- J.M. Taylor, T. Komatsu, S. Dekura, K. Otsubo, M. Takata et al., The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework. J. Am. Chem. Soc. 137, 11498–11506 (2015). https://doi.org/10.1021/jacs.5b07267
- M. Ray, S.K. Sethy, S.K. Maiti, N. Ali, A.C. Bhosale et al., Triazole-rich 3d metal-organic framework incorporated solid electrolytes for superior proton conductivity and durability in fuel cells. Phys. Chem. Chem. Phys. 26, 20971–20983 (2024). https://doi.org/10.1039/d4cp02196g
- D. Umeyama, S. Horike, M. Inukai, Y. Hijikata, S. Kitagawa, Confinement of mobile histamine in coordination nanochannels for fast proton transfer. Angew. Chem. Int. Ed. 50, 11706–11709 (2011). https://doi.org/10.1002/anie.201102997
- J. Lee, D.W. Lim, S. Dekura, H. Kitagawa, W. Choe, MOP x MOF: Collaborative combination of metal-organic polyhedra and metal organic framework for proton conductivity. ACS Appl. Mater. Inter. 11, 12639–12646 (2019). https://doi.org/10.1021/acsami.9b01026
- V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova et al., Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134, 15640–15643 (2012). https://doi.org/10.1021/ja305587n
- D.N. Dybtsev, V.G. Ponomareva, S.B. Aliev, A.P. Chupakhin, M.R. Gallyamov et al., High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids. ACS Appl. Mater. Inter. 6, 5161–5167 (2014). https://doi.org/10.1021/am500438a
- X.M. Li, J.C. Jia, D.T. Yang, J.L. Jin, J.K. Gao, Construction of biomimetic proton transport channels in metal-organic framework. Chin. Chem. Lett. 35, 108474 (2024). https://doi.org/10.1016/j.cclet.2023.108474
- Y.X. Ye, Z.L. Ma, R.B. Lin, R. Krishna, W. Zhou et al., Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 141, 4130–4136 (2019). https://doi.org/10.1021/jacs.9b00232
- S.S. Park, A.J. Rieth, C.H. Hendon, M. Dinca, Selective vapor pressure dependent proton transport in a metal-organic framework with two distinct hydrophilic pores. J. Am. Chem. Soc. 140, 2016–2019 (2018). https://doi.org/10.1021/jacs.7b12784
- L.H. Xie, M.M. Xu, X.M. Liu, M.J. Zhao, J.R. Li, Hydrophobic metal-organic frameworks: assessment, construction, and diverse applications. Adv. Sci. 7, 1901758 (2020). https://doi.org/10.1002/advs.201901758
- S. Mukherjee, K.K.R. Datta, R.A. Fischer, Hydrophobicity: a key factor en route to applications of metal-organic frameworks. Trends Chem. 3, 911–925 (2021). https://doi.org/10.1016/j.trechm.2021.09.002
- Z.H. Fard, N.E. Wong, C.D. Malliakas, P. Ramaswamy, J.M. Taylor et al., Superprotonic phase change to a robust phosphonate metal-organic framework. Chem. Mater. 30, 314–318 (2018). https://doi.org/10.1021/acs.chemmater.7b04467
- H. Okawa, A. Shigematsu, M. Sadakiyo, T. Miyagawa, K. Yoneda et al., Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = MnII, FeII, CoII; NH(prol)3+ = Tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. J. Am. Chem. Soc. 131, 13516–13522 (2009). https://doi.org/10.1021/ja905368d
- N.T.T. Nguyen, H. Furukawa, F. Gándara, C.A. Trickett, H.M. Jeong et al., Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity. J. Am. Chem. Soc. 137, 15394–15397 (2015). https://doi.org/10.1021/jacs.5b10999
- Q. Gao, X.L. Wang, J. Xu, X.H. Bu, The first demonstration of the gyroid in a polyoxometalate-based open framework with high proton conductivity. Chem. Eur. J. 22, 9082–9086 (2016). https://doi.org/10.1002/chem.201601233
- Y.H. Han, Y.X. Ye, C.B. Tian, Z.J. Zhang, S.W. Du et al., High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter. J. Mater. Chem. A 4, 18742–18746 (2016). https://doi.org/10.1039/c6ta07939c
- K. Zhang, X.J. Xie, H.Y. Li, J.X. Gao, L. Nie et al., Highly water-stable lanthanide-oxalate MOFs with remarkable proton conductivity and tunable luminescence. Adv. Mater. 29, 1701804 (2017). https://doi.org/10.1002/adma.201701804
- M. Bazaga-García, M. Papadaki, R.M.P. Colodrero, P. Olivera-Pastor, E.R. Losilla et al., Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem. Mater. 27, 424–435 (2015). https://doi.org/10.1021/cm502716e
- M. Inukai, S. Horike, W.Q. Chen, D. Umeyama, T. Itakura et al., Template-directed proton conduction pathways in a coordination framework. J. Mater. Chem. A 2, 10404–10409 (2014). https://doi.org/10.1039/c4ta01261e
- D. Umeyama, S. Horike, M. Inukai, S. Kitagawa, Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. J. Am. Chem. Soc. 135, 11345–11350 (2013). https://doi.org/10.1021/ja4051668
- J.M. Taylor, R.K. Mah, I.L. Moudrakovski, C.I. Ratcliffe, R. Vaidhyanathan et al., Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. J. Am. Chem. Soc. 132, 14055–14057 (2010). https://doi.org/10.1021/ja107035w
- S. Pili, S.P. Argent, C.G. Morris, P. Rought, V. García-Sakai et al., Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic “free diffusion inside a sphere.” J. Am. Chem. Soc. 138, 6352–6355 (2016). https://doi.org/10.1021/jacs.6b02194
- M. Bazaga-García, R.M.P. Colodrero, M. Papadaki, P. Garczarek, J. Zon et al., Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity. J. Am. Chem. Soc. 136, 5731–5739 (2014). https://doi.org/10.1021/ja500356z
- K. Cai, F.X. Sun, X.Q. Liang, C. Liu, N.A. Zhao et al., An acid-stable hexaphosphate ester based metal-organic framework and its polymer composite as proton exchange membrane. J. Mater. Chem. A 5, 12943–12950 (2017). https://doi.org/10.1039/c7ta00169j
- T. Kundu, S.C. Sahoo, R. Banerjee, Alkali earth metal (Ca, Sr, Ba) based thermostable metal-organic frameworks (MOFs) for proton conduction. Chem. Commun. 48, 4998–5000 (2012). https://doi.org/10.1039/c2cc31135f
- G.Y. Zhang, H.H. Fei, Missing metal-linker connectivities in a 3-D robust sulfonate-based metal-organic framework for enhanced proton conductivity. Chem. Commun. 53, 4156–4159 (2017). https://doi.org/10.1039/c7cc01461a
- M. Wahiduzzaman, S.J. Wang, J. Schnee, A. Vimont, V. Ortiz et al., A high proton conductive hydrogen-sulfate decorated titanium carboxylate metal-organic framework. ACS Sustain. Chem. Eng. 7, 5776–5783 (2019). https://doi.org/10.1021/acssuschemeng.8b05306
- H. Wu, F. Yang, X.L. Lv, B. Wang, Y.Z. Zhang et al., A stable porphyrinic metal-organic framework pore-functionalized by high-density carboxylic groups for proton conduction. J. Mater. Chem. A 5, 14525–14529 (2017). https://doi.org/10.1039/c7ta03917d
- S. Chand, S.C. Pal, D.W. Lim, K. Otsubo, A. Pal et al., A 2D Mg(II)-MOF with high density of coordinated waters as sole intrinsic proton sources for ultrahigh superprotonic conduction. ACS Mater. Lett. 2, 1343–1350 (2020). https://doi.org/10.1021/acsmaterialslett.0c00358
- S.J. Liu, C. Cao, F. Yang, M.H. Yu, S.L. Yao et al., High proton conduction in two CoII and MnII anionic metal-organic frameworks derived from 1,3,5-benzenetricarboxylic acid. Cryst. Growth Des. 16, 6776–6780 (2016). https://doi.org/10.1021/acs.cgd.6b00776
- W.J. Phang, W.R. Lee, K. Yoo, D.W. Ryu, B. Kim et al., Ph-dependent proton conducting behavior in a metal-organic framework material. Angew. Chem. Int. Ed. 53, 8383–8387 (2014). https://doi.org/10.1002/anie.201404164
- M.V. Nguyen, T.H.N. Lo, L.C. Luu, H.T.T. Nguyen, T.N. Tu, Enhancing proton conductivity in a metal-organic framework at T>80 °C by an anchoring strategy. J. Mater. Chem. A 6, 1816–1821 (2018). https://doi.org/10.1039/c7ta10148a
- S.C. Liu, Z.F. Yue, Y. Liu, Incorporation of imidazole within the metal-organic framework UIO-67 for enhanced anhydrous proton conductivity. Dalton T. 44, 12976–12980 (2015). https://doi.org/10.1039/c5dt01667c
- J.J. Gassensmith, J.Y. Kim, J.M. Holcroft, O.K. Farha, J.F. Stoddart et al., A metal-organic framework-based material for electrochemical sensing of carbon dioxide. J. Am. Chem. Soc. 136, 8277–8282 (2014). https://doi.org/10.1021/ja5006465
- Y.W. You, C. Xue, Z.F. Tian, S.X. Liu, X.M. Ren, Three orders of magnitude enhancement of proton conductivity of porous coordination polymers by incorporating ion-pairs into a framework. Dalton T. 45, 7893–7899 (2016). https://doi.org/10.1039/c6dt00290k
- C.H. Tsai, C.C. Wang, C.Y. Chang, C.H. Lin, Y.W. Chen-Yang, Enhancing performance of nafion®-based PEMFC by 1-D channel metal-organic frameworks as pem filler. Int. J. Hydrogen Energ. 39, 15696–15705 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.134
- A. Donnadio, R. Narducci, M. Casciola, F. Marmottini, R. D’Amato et al., Mixed membrane matrices based on NAFION/UIO-66/SO3H-UIO-66 nano-MOFs: Revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Appl. Mater. Inter. 9, 42239–42246 (2017). https://doi.org/10.1021/acsami.7b14847
- B. Zhang, Y. Cao, Z. Li, H. Wu, Y.H. Yin et al., Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochim. Acta 240, 186–194 (2017). https://doi.org/10.1016/j.electacta.2017.04.087
- J. Zhang, H.J. Bai, Q. Ren, H.B. Luo, X.M. Ren et al., Extra water- and acid-stable MOF-801 with high proton conductivity and its composite membrane for proton-exchange membrane. ACS Appl. Mater. Inter. 10, 28656–28663 (2018). https://doi.org/10.1021/acsami.8b09070
- X.M. Li, J. Liu, C. Zhao, J.L. Zhou, L. Zhao et al., Strategic hierarchical improvement of superprotonic conductivity in a stable metal-organic framework system. J. Mater. Chem. A 7, 25165–25171 (2019). https://doi.org/10.1039/c9ta10286h
- X.M. Li, Y.M. Wang, B.K. Wu, L. Zeng, Efficient proton transport in stable functionalized channels of zirconium metal-organic frameworks. ACS Appl. Energ. Mater. 4, 8303–8310 (2021). https://doi.org/10.1021/acsaem.1c01541
- X.M. Li, Y.M. Wang, Y.B. Mu, J. Liu, L. Zeng et al., Superprotonic conductivity of a functionalized metal-organic framework at ambient conditions. ACS Appl. Mater. Inter. 14, 9264–9271 (2022). https://doi.org/10.1021/acsami.2c00500
- X.Y. Dong, J.J. Li, Z. Han, P.G. Duan, L.K. Li et al., Tuning the functional substituent group and guest of metal-organic frameworks in hybrid membranes for improved interface compatibility and proton conduction. J. Mater. Chem. A 5, 3464–3474 (2017). https://doi.org/10.1039/c6ta07761g
- X.Y. Dong, J.H. Wang, S.S. Liu, Z. Han, Q.J. Tang et al., Synergy between isomorphous acid and basic metal-organic frameworks for anhydrous proton conduction of low-cost hybrid membranes at high temperatures. ACS Appl. Mater. Inter. 10, 38209–38216 (2018). https://doi.org/10.1021/acsami.8b12846
- K.W. Xu, G.P. Liu, X.J. Xu, Z.H. Wang, G.C. Liu et al., Cerium based metal-organic framework as the efficient radical quencher for proton exchange membrane fuel cells. J. Membr. Sci. 699, 122641 (2024). https://doi.org/10.1016/j.memsci.2024.122641
- A. Pathak, H. Watanabe, B. Manna, K. Hatakeyama, S. Ida, Hydrogen-bonded metal-organic framework nanosheet as a proton conducting membrane for an H2/O2 fuel cell. Small 20, 2400222 (2024). https://doi.org/10.1002/smll.202400222
- Z. Rao, B.B. Tang, P.Y. Wu, Proton conductivity of proton exchange membrane synergistically promoted by different functionalized metal organic frameworks. ACS Appl. Mater. Inter. 9, 22597–22603 (2017). https://doi.org/10.1021/acsami.7b05969
- L.Y. Wang, N.P. Deng, Y.Y. Liang, J.G. Ju, B.W. Cheng et al., Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton exchange membranes. J. Power. Sour. 450, 227592 (2020). https://doi.org/10.1016/j.jpowsour.2019.227592
- Z.M. Wang, J.M. Ren, Y.X. Sun, L. Wang, Y. Fan et al., Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. J. Membr. Sci. 645, 120193 (2022). https://doi.org/10.1016/j.memsci.2021.120193
- C.Y. Ru, Y.Y. Gu, H. Na, H.L. Li, C.J. Zhao, Preparation of a cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane with enhanced proton conductivity and methanol resistance by introducing an ionic liquid-impregnated metal organic framework. ACS Appl. Mater. Inter. 11, 31899–31908 (2019). https://doi.org/10.1021/acsami.9b09183
- Y.T. Duan, C.Y. Ru, J.L. Li, Y.N. Sun, X.T. Pu et al., Enhancing proton conductivity and methanol resistance of spaek membrane by incorporating MOF with flexible alkyl sulfonic acid for dmfc. J. Membr. Sci. 641, 119906 (2022). https://doi.org/10.1016/j.memsci.2021.119906
- Y. Guo, Z.Q. Jiang, W. Ying, L.P. Chen, Y.Z. Liu et al., A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 30, 1705155 (2018). https://doi.org/10.1002/adma.201705155
- L. Xin, D.Z. Zhang, K. Qu, Y.Q. Lu, Y.X. Wang et al., Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane. Adv. Funct. Mater. 31, 2104629 (2021). https://doi.org/10.1002/adfm.202104629
- D.H. Zhang, W.J. Yu, Y. Zhang, S.H. Cheng, M.Y. Zhu et al., Reconstructing proton channels via Zr-MOFs realizes highly ion- selective and proton-conductive speek-based hybrid membrane for vanadium flow battery. J. Energy Chem. 75, 448–456 (2022). https://doi.org/10.1016/j.jechem.2022.08.043
- Y.Q. Lu, S.H. Lin, H.Y. Cao, Y.S. Xia, Y. Xia et al., Efficient proton-selective hybrid membrane embedded with polydopamine modified MOF-808 for vanadium flow battery. J. Membr. Sci. 671, 121347 (2023). https://doi.org/10.1016/j.memsci.2023.121347
- S.S. Peng, L.Y. Zhang, C.K. Zhang, Y. Ding, X.L. Guo et al., Gradient-distributed metal-organic framework-based porous membranes for nonaqueous redox flow batteries. Adv. Energy Mater. 8, 1802533 (2018). https://doi.org/10.1002/aenm.201802533
- D.Z. Zhang, L. Xin, Y.S. Xia, L.H. Dai, K. Qu et al., Advanced nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J. Membr. Sci. 624, 119047 (2021). https://doi.org/10.1016/j.memsci.2020.119047
References
F. Yang, G. Xu, Y.B. Dou, B. Wang, H. Zhang et al., A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2, 877–883 (2017). https://doi.org/10.1038/s41560-017-0018-7
T. Xu, H.S. Du, H.Y. Liu, W. Liu, X.Y. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33, 2101368 (2021). https://doi.org/10.1002/adma.202101368
H. Zhou, L. Yan, D.X. Tang, T. Xu, L. Dai et al., Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Adv. Mater. 36, 2403876 (2024). https://doi.org/10.1002/adma.202403876
Q.D. Liang, K. Liu, T. Xu, Y.X. Wang, M. Zhang et al., Interfacial modulation of Ti3C2Tx mxene by cellulose nanofibrils to construct hybrid fibers with high volumetric specific capacitance. Small 20, 2307344 (2024). https://doi.org/10.1002/smll.202307344
Y. Wang, T. Xu, K. Liu, M. Zhang, X.M. Cai et al., Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate 5, e428 (2023). https://doi.org/10.1002/agt2.428
W. Liu, K. Liu, H.S. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/Nmat2317
Y. Zheng, H. Liu, L. Yan, H.Y. Yang, L. Dai et al., Lignin-based encapsulation of liquid metal ps for flexible and high-efficiently recyclable electronics. Adv. Funct. Mater. 34, 2310653 (2024). https://doi.org/10.1002/adfm.202310653
W. Li, W.H. Zhang, Y. Xu, G.H. Wang, T. Xu et al., Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality. Nano Energy 128, 109912 (2024). https://doi.org/10.1016/j.nanoen.2024.109912
K. Jiao, J. Xuan, Q. Du, Z.M. Bao, B.A. Xie et al., Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021). https://doi.org/10.1038/s41586-021-03482-7
C.H.Y. Lee, W.J.M. Kort-Kamp, H.R. Yu, D.A. Cullen, B.M. Patterson et al., Grooved electrodes for high-power-density fuel cells. Nat. Energy 8, 685–694 (2023). https://doi.org/10.1038/s41560-023-01263-2
H.Y. Tang, K. Geng, L. Wu, J.J. Liu, Z.Q. Chen et al., Fuel cells with an operational range of − 20 to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy 7, 153–162 (2022). https://doi.org/10.1038/s41560-021-00956-w
L.Y. Zhu, Y.C. Li, P. Ye, J.Y. Zhao, J. Liu et al., Ultra-stable, highly proton conductive, and self-healing proton exchange membranes based on molecule intercalation technique and noncovalent assembly nanostructure. Adv. Funct. Mater. 33, 2210453 (2023). https://doi.org/10.1002/adfm.202210453
L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang et al., Recent developments in high-performance nafion membranes for hydrogen fuel cells applications. Petrol. Sci. 19, 1371–1381 (2022). https://doi.org/10.1016/j.petsci.2021.11.004
H.B. Yang, L.Y. Zhu, Y.J. Zhou, T. Xu, C.Y. Zheng et al., Engineering modulation of cellulose-induced metal–organic frameworks assembly behavior for advanced adsorption and separation. Chem. Eng. J. 498, 155333 (2024). https://doi.org/10.1016/j.cej.2024.155333
W. Li, Y. Xu, G. Wang, T. Xu, C. Si, Design and functionalization of lignocellulose-derived silicon-carbon composites for rechargeable batteries. Adv. Energy Mater. 2403593 (2024). https://doi.org/10.1002/aenm.202403593
X.T. Qian, L. Chen, L.C. Yin, Z.B. Liu, S.F. Pei et al., CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 370, 596–600 (2020). https://doi.org/10.1126/science.abb9704
L.Y. Zhu, L.M. Zhang, Y.T. Ren, J.D. Lei, L.Y. Wang et al., Subnanometer nanowire-reinforced construction of COF-based membranes with engineering biomimetic texture for efficient and stable proton conduction. Adv. Funct. Mater. 34, 2313844 (2024). https://doi.org/10.1002/adfm.202313844
Z.P. Li, K.S. Oh, J.M. Seo, W.L. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16, 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
J.B. Zhang, Y.B. Tian, Z.G. Gu, J. Zhang, Metal-organic framework-based photodetectors. Nano-Micro Lett. 16, 253 (2024). https://doi.org/10.1007/s40820-024-01465-7
X.M. Liu, D. Zhao, J.H. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16, 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
Y.Y. Dong, J. Zhang, H.Y. Zhang, W. Wang, B.Y. Hu et al., Multifunctional MOF@COF nanops mediated perovskite films management toward sustainable perovskite solar cells. Nano-Micro Lett. 16, 171 (2024). https://doi.org/10.1007/s40820-024-01390-9
X.Y. Xu, J. Zhang, Z.H. Zhang, G.D. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
Q.S. Zhao, T. Xu, K. Liu, H.S. Du, M. Zhang et al., Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater 71, 103605 (2024). https://doi.org/10.1016/j.ensm.2024.103605
T. Xu, K. Liu, N. Sheng, M.H. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
T. Xu, Q. Song, K. Liu, H.Y. Liu, J.J. Pan et al., Nanocellulose-assisted construction of multifunctional mxene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
Y.B. Mu, S.X. Yu, Y.Z. Chen, Y.Q. Chu, B.K. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
L.Y. Zhu, H.T. Zhu, L.Y. Wang, J.D. Lei, J. Liu, Efficient proton conduction in porous and crystalline covalent-organic frameworks (COFs). J. Energy Chem. 82, 198–218 (2023). https://doi.org/10.1016/j.jechem.2023.04.002
H.Y. Liu, T. Xu, C.Y. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2113082 (2022). https://doi.org/10.1002/adfm.202113082
K. Liu, W. Liu, W. Li, Y.X. Duan, K.Y. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
Q. Zhang, S. Jiang, T.T. Lv, Y. Peng, H. Pang, Application of conductive MOF in zinc-based batteries. Adv. Mater. 35, 2305532 (2023). https://doi.org/10.1002/adma.202305532
H.L. Wang, Q.L. Zhu, R.Q. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
H.B. Wu, X.W. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3, eaap9252 (2017). https://doi.org/10.1126/sciadv.aap9252
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
Z.Y. Zhuang, D.X. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12, 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
H. Molavi, K. Mirzaei, M. Barjasteh, S.Y. Rahnamaee, S. Saeedi et al., 3D-printed MOF monoliths: fabrication strategies and environmental applications. Nano-Micro Lett. 16, 272 (2024). https://doi.org/10.1007/s40820-024-01487-1
L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, H.L. Jiang, Metal-organic frameworks: structures and functional applications. Mater. Today 27, 43–68 (2019). https://doi.org/10.1016/j.mattod.2018.10.038
Y.R. Liu, Y.Y. Chen, Q. Zhuang, G. Li, Recent advances in MOFs-based proton exchange membranes. Coordin. Chem. Rev. 471, 214740 (2022). https://doi.org/10.1016/j.ccr.2022.214740
L.L. Kang, M. Xue, Y.Y. Liu, Y.H. Yu, Y.R. Liu et al., Proton conductive metal-organic frameworks based on main-group metals. Coordin. Chem. Rev. 452, 214301 (2022). https://doi.org/10.1016/j.ccr.2021.214301
A. Karmakar, A.V. Desai, S.K. Ghosh, Ionic metal-organic frameworks (iMOFs): design principles and applications. Coordin. Chem. Rev. 307, 313–341 (2016). https://doi.org/10.1016/j.ccr.2015.08.007
S.M. Moosavi, A. Nandy, K.M. Jablonka, D. Ongari, J.P. Janet et al., Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068 (2020). https://doi.org/10.1038/s41467-020-17755-8
X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
G.K.H. Shimizu, J.M. Taylor, S. Kim, Proton conduction with metal-organic frameworks. Science 341, 354–355 (2013). https://doi.org/10.1126/science.1239872
S. Kanda, K. Yamashita, K. Ohkawa, A proton conductive coordination polymer I [n, n′-bis(2-hydroxyethyl)dithiooxamido]copper(II). Bull. Chem. Soc. Jpn. 52, 3296–3301 (1979). https://doi.org/10.1246/bcsj.52.3296
T. Yamada, M. Sadakiyo, H. Kitagawa, High proton conductivity of one-dimensional ferrous oxalate dihydrate. J. Am. Chem. Soc. 131, 3144–3145 (2009). https://doi.org/10.1021/ja808681m
Y.X. Ye, L.S. Gong, S.C. Xiang, Z.J. Zhang, B.L. Chen, Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mater. 32, 1907090 (2020). https://doi.org/10.1002/adma.201907090
D.W. Lim, H. Kitagawa, Proton transport in metal-organic frameworks. Chem. Rev. 120, 8416–8467 (2020). https://doi.org/10.1021/acs.chemrev.9b00842
P. Ramaswamy, N.E. Wong, G.K.H. Shimizu, MOFs as proton conductors—challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014). https://doi.org/10.1039/c4cs00093e
D.W. Lim, H. Kitagawa, Rational strategies for proton-conductive metal-organic frameworks. Chem. Soc. Rev. 50, 6349–6368 (2021). https://doi.org/10.1039/d1cs00004g
M. Yoon, K. Suh, S. Natarajan, K. Kim, Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013). https://doi.org/10.1002/anie.201206410
S.N. Zhao, Y. Zhang, S.Y. Song, H.J. Zhang, Design strategies and applications of charged metal organic frameworks. Coordin. Chem. Rev. 398, 113007 (2019). https://doi.org/10.1016/j.ccr.2019.07.004
A.E. Baumann, D.A. Burns, B.Q. Liu, V.S. Thoi, Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2, 86 (2019). https://doi.org/10.1038/s42004-019-0184-6
F.D. Wang, B.C. Wang, B.B. Hao, C.X. Zhang, Q.L. Wang, Designable guest-molecule encapsulation in metal-organic frameworks for proton conductivity. Chem. Eur. J. 28, e202103732 (2022). https://doi.org/10.1002/chem.202103732
M. Szufla, J.A.R. Navarro, K. Góra-Marek, D. Matoga, Effect of missing-linker defects and ion exchange on stability and proton conduction of a sulfonated layered Zr-MOF. ACS Appl. Mater. Inter. 15, 28184–28192 (2023). https://doi.org/10.1021/acsami.3c03873
M. Sadakiyo, H. Okawa, A. Shigematsu, M. Ohba, T. Yamada et al., Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks. J. Am. Chem. Soc. 134, 5472–5475 (2012). https://doi.org/10.1021/ja300122r
H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi et al., Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010). https://doi.org/10.1126/science.1192160
M.J. Kalmutzki, N. Hanikel, O.M. Yaghi, Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018). https://doi.org/10.1126/sciadv.aat9180
S.S. Park, C.H. Hendon, A.J. Fielding, A. Walsh, M. O’Keeffe et al., The organic secondary building unit: strong intermolecular π interactions define topology in MIT-25, a mesoporous MOF with proton-replete channels. J. Am. Chem. Soc. 139, 3619–3622 (2017). https://doi.org/10.1021/jacs.6b13176
V. Unnikrishnan, O. Zabihi, M. Ahmadi, Q.X. Li, P. Blanchard et al., Metal-organic framework structure-property relationships for high-performance multifunctional polymer nanocomposite applications. J. Mater. Chem. A 9, 4348–4378 (2021). https://doi.org/10.1039/d0ta11255k
H.B. Yang, L.Y. Zhu, Y.J.M. Zhou, T. Xu, C.Y. Zheng et al., Engineering modulation of cellulose-induced metal-organic frameworks assembly behavior for advanced adsorption and separation. Chem. Eng. J. 498, 155333 (2024). https://doi.org/10.1016/j.cej.2024.155333
G. Chakraborty, I.H. Park, R. Medishetty, J.J. Vittal, Two-dimensional metal-organic framework materials: synthesis, structures, properties and applications. Chem. Rev. 121, 3751–3891 (2021). https://doi.org/10.1021/acs.chemrev.0c01049
D.B. Yu, Q. Shao, Q.J. Song, J.W. Cui, Y.L. Zhang et al., A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat. Commun. 11, 927 (2020). https://doi.org/10.1038/s41467-020-14671-9
A. Saad, S. Biswas, E. Gkaniatsou, C. Sicard, E. Dumas et al., Metal-organic framework based 1D nanostructures and their superstructures: synthesis, microstructure, and properties. Chem. Mater. 33, 5825–5849 (2021). https://doi.org/10.1021/acs.chemmater.1c01034
J. Maier, Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005). https://doi.org/10.1038/nmat1513
S. Morikawa, T. Yamada, H. Kitagawa, Crystal structure and proton conductivity of a one dimensional coordination polymer, {Mn(DHBQ)(H2O)2}. Chem. Lett. 38, 654–655 (2009). https://doi.org/10.1246/cl.2009.654
Y.R. Gao, A.M. Nolan, P. Du, Y.F. Wu, C. Yang et al., Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020). https://doi.org/10.1021/acs.chemrev.9b00747
S. Horike, D. Umeyama, M. Inukai, T. Itakura, S. Kitagawa, Coordination-network-based ionic plastic crystal for anhydrous proton conductivity. J. Am. Chem. Soc. 134, 7612–7615 (2012). https://doi.org/10.1021/ja301875x
K.I. Otake, K. Otsubo, K. Sugimoto, A. Fujiwara, H. Kitagawa, Ultrafine metal-organic right square prism shaped nanowires. Angew. Chem. Int. Ed. 55, 6448–6451 (2016). https://doi.org/10.1002/anie.201601678
L.J. Wang, S.E. Saji, L.J. Wu, Z.X. Wang, Z.J. Chen et al., Emerging synthesis strategies of 2D MOFs for electrical devices and integrated circuits. Small 18, 2201642 (2022). https://doi.org/10.1002/smll.202201642
L.Y. Xiao, Z.L. Wang, J.Q. Guan, 2D MOFs and their derivatives for electrocatalytic applications: recent advances and new challenges. Coordin. Chem. Rev. 472, 214777 (2022). https://doi.org/10.1016/j.ccr.2022.214777
M.C. Wang, R.H. Dong, X.L. Feng, Two-dimensional conjugated metal-organic frameworks (2D-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021). https://doi.org/10.1039/d0cs01160f
M. Sadakiyo, T. Yamada, H. Kitagawa, Rational designs for highly proton-conductive metal-organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009). https://doi.org/10.1021/ja9040016
I. Huskic, N. Novendra, D.W. Lim, F. Topic, H.M. Titi et al., Functionality in metal-organic framework minerals: proton conductivity, stability and potential for polymorphism. Chem. Sci. 10, 4923–4929 (2019). https://doi.org/10.1039/c8sc05088k
W.D. Xue, C.D. Sewell, Q.X. Zhou, Z.Q. Lin, Metal-organic frameworks for ion conduction. Angew. Chem. Int. Ed. 61, e202206512 (2022). https://doi.org/10.1002/anie.202206512
D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa, Inherent proton conduction in a 2D coordination framework. J. Am. Chem. Soc. 134, 12780–12785 (2012). https://doi.org/10.1021/ja304693r
G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 135, 7438–7441 (2013). https://doi.org/10.1021/ja402727d
J. Annamalai, P. Murugan, D. Ganapathy, D. Nallaswamy, R. Atchudan et al., Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications-a review. Chemosphere 298, 134184 (2022). https://doi.org/10.1016/j.chemosphere.2022.134184
A.G. Zavyalova, D.V. Kladko, I.Y. Chernyshov, V.V. Vinogradov, Large MOFs: synthesis strategies and applications where size matters. J. Mater. Chem. A 9, 25258–25271 (2021). https://doi.org/10.1039/d1ta05283g
S.S. Nagarkar, S.M. Unni, A. Sharma, S. Kurungot, S.K. Ghosh, Two-in-one: Inherent anhydrous and water-assisted high proton conduction in a 3d metal-organic framework. Angew. Chem. Int. Ed. 53, 2638–2642 (2014). https://doi.org/10.1002/anie.201309077
Y.N. Zhou, L.L. Liu, Q.W. Liu, X.X. Liu, M.Z. Feng et al., Dual-functional metal-organic framework for luminescent detection of carcinoid biomarkers and high proton conduction. Inorg. Chem. 60, 17303–17314 (2021). https://doi.org/10.1021/acs.inorgchem.1c02655
R.L. Liu, D.Y. Wang, J.R. Shi, G. Li, Proton conductive metal sulfonate frameworks. Coordin. Chem. Rev. 431, 213747 (2021). https://doi.org/10.1016/j.ccr.2020.213747
Y. Li, J.Y. Feng, L.Y. Wang, G. Li, High proton conduction in two highly stable phenyl imidazole dicarboxylate-based Cd(II)-MOFs. J. Solid State Chem. 319, 123828 (2023). https://doi.org/10.1016/j.jssc.2022.123828
D.K. Yoo, G. Lee, M.M.H. Mondol, H.J. Lee, C.M. Kim et al., Preparation and applications of metal-organic frameworks composed of sulfonic acid. Coordin. Chem. Rev. 474, 214868 (2023). https://doi.org/10.1016/j.ccr.2022.214868
T. Deng, X.J. Zeng, C.Y. Zhang, Y.X. Wang, W. Zhang, Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes. Chem. Eng. J. 445, 136752 (2022). https://doi.org/10.1016/j.cej.2022.136752
D.W. Lim, M. Sadakiyo, H. Kitagawa, Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem. Sci. 10, 16–33 (2019). https://doi.org/10.1039/c8sc04475a
S. Kim, B. Joarder, J.A. Hurd, J.F. Zhang, K.W. Dawson et al., Achieving superprotonic conduction in metal-organic frameworks through iterative design advances. J. Am. Chem. Soc. 140, 1077–1082 (2018). https://doi.org/10.1021/jacs.7b11364
N.C. Jeong, B. Samanta, C.Y. Lee, O.K. Farha, J.T. Hupp, Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 134, 51–54 (2012). https://doi.org/10.1021/ja2110152
C.H. Wang, X.L. Liu, N.K. Demir, J.P. Chen, K. Li, Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016). https://doi.org/10.1039/c6cs00362a
B. Pramanik, R. Sahoo, M.C. Das, Ph-stable MOFs: Design principles and applications. Coordin. Chem. Rev. 493, 215301 (2023). https://doi.org/10.1016/j.ccr.2023.215301
X.Y. Shi, G.A. Lee, S.H. Liu, D. Kim, A. Alahmed et al., Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Mater. Today 65, 207–226 (2023). https://doi.org/10.1016/j.mattod.2023.03.004
A.J. Howarth, Y.Y. Liu, P. Li, Z.Y. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
K.C. Wang, Y.P. Li, L.H. Xie, X.Y. Li, J.R. Li, Construction and application of base-stable MOFs: a critical review. Chem. Soc. Rev. 51, 6417–6441 (2022). https://doi.org/10.1039/d1cs00891a
Y.H. Wen, P. Zhang, V.K. Sharma, X.M. Ma, H.C. Zhou, Metal-organic frameworks for environmental applications. Cell Rep. Phys. Sci. 2, 100348 (2021). https://doi.org/10.1016/j.xcrp.2021.100348
S. Yuan, J.S. Qin, C.T. Lollar, H.C. Zhou, Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 4, 440–450 (2018). https://doi.org/10.1021/acscentsci.8b00073
M.L. Ding, X.C. Cai, H.L. Jiang, Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019). https://doi.org/10.1039/c9sc03916c
A. Dhakshinamoorthy, A.M. Asiri, H. García, Metal-organic frameworks as multifunctional solid catalysts. Trends Chem. 2, 454–466 (2020). https://doi.org/10.1016/j.trechm.2020.02.004
S. Yuan, L. Feng, K.C. Wang, J.D. Pang, M. Bosch et al., Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018). https://doi.org/10.1002/adma.201704303
A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak et al., A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 51, 7440–7444 (2012). https://doi.org/10.1002/anie.201202471
W. Zhang, Y.L. Hu, J. Ge, H.L. Jiang, S.H. Yu, A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J. Am. Chem. Soc. 136, 16978–16981 (2014). https://doi.org/10.1021/ja509960n
D.P. Sheng, L. Zhu, X. Dai, C. Xu, P. Li et al., Successful decontamination of 99TcO4- in groundwater at legacy nuclear sites by a cationic metal-organic framework with hydrophobic pockets. Angew. Chem. Int. Ed. 58, 4968–4972 (2019). https://doi.org/10.1002/anie.201814640
X.X. Li, J. Liu, L. Zhan, L.Z. Dong, Z.F. Xin et al., Hydrophobic polyoxometalate-based metal-organic framework for efficient CO2 photoconversion. ACS Appl. Mater. Inter. 11, 25790–25795 (2019). https://doi.org/10.1021/acsami.9b03861
N. Nijem, P. Canepa, U. Kaipa, K. Tan, K. Roodenko et al., Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework. J. Am. Chem. Soc. 135, 12615–12626 (2013). https://doi.org/10.1021/ja400754p
J.G. Nguyen, S.M. Cohen, Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132, 4560–4561 (2010). https://doi.org/10.1021/ja100900c
B. Wang, X.L. Lv, D.W. Feng, L.H. Xie, J. Zhang et al., Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138, 6204–6216 (2016). https://doi.org/10.1021/jacs.6b01663
M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye et al., Synthesis and stability of tagged UIO-66 Zr-MOFs. Chem. Mater. 22, 6632–6640 (2010). https://doi.org/10.1021/cm102601v
T. Devic, C. Serre, High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 43, 6097–6115 (2014). https://doi.org/10.1039/c4cs00081a
J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E.J. DeMarco et al., Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013). https://doi.org/10.1021/ja4050828
T.A. Makal, X. Wang, H.C. Zhou, Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups. Cryst. Growth Des. 13, 4760–4768 (2013). https://doi.org/10.1021/cg4009224
S.M. Moosavi, P.G. Boyd, L. Sarkisov, B. Smit, Improving the mechanical stability of metal-organic frameworks using chemical caryatids. ACS Cent. Sci. 4, 832–839 (2018). https://doi.org/10.1021/acscentsci.8b00157
H. Wu, T. Yildirim, W. Zhou, Exceptional mechanical stability of highly porous zirconium metal-organic framework UIO-66 and its important implications. J. Phys. Chem. Lett. 4, 925–930 (2013). https://doi.org/10.1021/jz4002345
P.Z. Moghadam, S.M.J. Rogge, A. Li, C.M. Chow, J. Wieme et al., Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter 1, 219–234 (2019). https://doi.org/10.1016/j.matt.2019.03.002
S.M.J. Rogge, M. Waroquier, V. Van Speybroeck, Reliably modeling the mechanical stability of rigid and flexible metal-organic frameworks. Acc. Chem. Res. 51, 138–148 (2018). https://doi.org/10.1021/acs.accounts.7b00404
X.L. Deng, J.Y. Hu, J.Y. Luo, W.M. Liao, J. He, Conductive metal-organic frameworks: Mechanisms, design strategies and recent advances. Topics Curr. Chem. 378, 27 (2020). https://doi.org/10.1007/s41061-020-0289-5
S.C. Pal, M.C. Das, Superprotonic conductivity of MOFs and other crystalline platforms beyond 10–1 S cm-1. Adv. Funct. Mater. 31, 2101584 (2021). https://doi.org/10.1002/adfm.202101584
J.Y. Xu, H.Y. Jiang, Y.T. Shen, X.Z. Li, E.G. Wang et al., Transparent proton transport through a two-dimensional nanomesh material. Nat. Commun. 10, 3971 (2019). https://doi.org/10.1038/s41467-019-11899-y
I. Popov, Z.H. Zhu, A.R. Young-Gonzales, R.L. Sacci, E. Mamontov et al., Search for a grotthuss mechanism through the observation of proton transfer. Commun. Chem. 6, 77 (2023). https://doi.org/10.1038/s42004-023-00878-6
G.A. Ludueña, T.D. Kühne, D. Sebastiani, Mixed grotthuss and vehicle transport mechanism in proton conducting polymers from ab initio molecular dynamics simulations. Chem. Mater. 23, 1424–1429 (2011). https://doi.org/10.1021/cm102674u
C. Chen, Y.L.S. Tse, G.E. Lindberg, C. Knight, G.A. Voth, Hydroxide solvation and transport in anion exchange membranes. J. Am. Chem. Soc. 138, 991–1000 (2016). https://doi.org/10.1021/jacs.5b11951
K. Otake, K. Otsubo, T. Komatsu, S. Dekura, J.M. Taylor et al., Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube. Nat. Commun. 11, 843 (2020). https://doi.org/10.1038/s41467-020-14627-z
C. Klumpen, S. Gödrich, G. Papastavrou, J. Senker, Water mediated proton conduction in a sulfonated microporous organic polymer. Chem. Commun. 53, 7592–7595 (2017). https://doi.org/10.1039/c7cc02117h
L. Shi, Z.X. Ying, A. Xu, Y.H. Cheng, Unraveling the water-mediated proton conduction mechanism along the surface of graphene oxide. Chem. Mater. 32, 6062–6069 (2020). https://doi.org/10.1021/acs.chemmater.0c01512
J.A. Hurd, R. Vaidhyanathan, V. Thangadurai, C.I. Ratcliffe, I.L. Moudrakovski et al., Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. Nat. Chem. 1, 705–710 (2009). https://doi.org/10.1038/Nchem.402
S. Minami, R. Jinnouchi, Accelerating anhydrous proton conduction anion rotation and hydrogen bond recombination: a machine-learning molecular dynamics. J. Mater. Chem. A 11, 16104–16114 (2023). https://doi.org/10.1039/d3ta03164k
M. Sadakiyo, T. Yamada, K. Honda, H. Matsui, H. Kitagawa, Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal-organic framework. J. Am. Chem. Soc. 136, 7701–7707 (2014). https://doi.org/10.1021/ja5022014
S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi et al., High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132, 6620–6621 (2010). https://doi.org/10.1021/ja100385f
F. Wang, S. Deng, H.C. Zhang, J.T. Wang, J.P. Zhao et al., A comprehensive review on high-temperature fuel cells with carbon capture. Appl. Energ. 275, 115342 (2020). https://doi.org/10.1016/j.apenergy.2020.115342
R. Haider, Y.C. Wen, Z.F. Ma, D.P. Wilkinson, L. Zhang et al., High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 50, 1138–1187 (2021). https://doi.org/10.1039/d0cs00296h
S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura et al., One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 8, 831–836 (2009). https://doi.org/10.1038/Nmat2526
M. Kalaj, S.M. Cohen, Postsynthetic modification: an enabling technology for the advancement of metal-organic frameworks. ACS Cent. Sci. 6, 1046–1057 (2020). https://doi.org/10.1021/acscentsci.0c00690
P. Apostol, S.M. Gali, A. Su, D. Tie, Y. Zhang et al., Controlling charge transport in 2D conductive MOFs-the role of nitrogen-rich ligands and chemical functionality. J. Am. Chem. Soc. 145, 24669–24677 (2023). https://doi.org/10.1021/jacs.3c07503
E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo et al., High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. J. Am. Chem. Soc. 133, 15328–15331 (2011). https://doi.org/10.1021/ja206917z
T.N. Tu, N.Q. Phan, T.T. Vu, H.L. Nguyen, K.E. Cordova et al., High proton conductivity at low relative humidity in an anionic Fe-based metal-organic framework. J. Mater. Chem. A 4, 3638–3641 (2016). https://doi.org/10.1039/c5ta10467j
Y.S. Wei, X.P. Hu, Z. Han, X.Y. Dong, S.Q. Zang et al., Unique proton dynamics in an efficient MOF-based proton conductor. J. Am. Chem. Soc. 139, 3505–3512 (2017). https://doi.org/10.1021/jacs.6b12847
S.J. Wang, M. Wahiduzzaman, L. Davis, A. Tissot, W. Shepard et al., A robust zirconium amino acid metal-organic framework for proton conduction. Nat. Commun. 9, 4937 (2018). https://doi.org/10.1038/s41467-018-07414-4
Y.W. Xue, R. Gao, S.J. Lin, Q. Zhong, Q. Zhang et al., Regulating the interface electron distribution of iron-based MOFs through ligand functionalization enables efficient peroxymonosulfate utilization and catalytic performance. J. Colloid Interf. Sci. 663, 358–368 (2024). https://doi.org/10.1016/j.jcis.2024.02.118
J.H. Qiu, J.F. Yao, Ligand functionalization of metal-organic frameworks for photocatalytic H2O2 production. Eur. J. Inorg. Chem. 27, e202300773 (2024). https://doi.org/10.1002/ejic.202300773
B. Liu, H.F. Zhou, L. Hou, Y.Y. Wang, Functionalization of MOFs a mixed-ligand strategy: enhanced CO2 uptake by pore surface modification. Dalton T. 47, 5298–5303 (2018). https://doi.org/10.1039/c8dt00502h
A. Shigematsu, T. Yamada, H. Kitagawa, Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011). https://doi.org/10.1021/ja109810w
W.L. Xue, W.H. Deng, H. Chen, R.H. Liu, J.M. Taylor et al., MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew. Chem. Int. Ed. 60, 1290–1297 (2021). https://doi.org/10.1002/anie.202010783
K. Fujie, T. Yamada, R. Ikeda, H. Kitagawa, Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. Angew. Chem. Int. Ed. 53, 11302–11305 (2014). https://doi.org/10.1002/anie.201406011
Y. Yoshida, K. Fujie, D.W. Lim, R. Ikeda, H. Kitagawa, Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew. Chem. Int. Ed. 58, 10909–10913 (2019). https://doi.org/10.1002/anie.201903980
S. Mandal, S. Natarajan, P. Mani, A. Pankajakshan, Post-synthetic modification of metal-organic frameworks toward applications. Adv. Funct. Mater. 31, 2006291 (2021). https://doi.org/10.1002/adfm.202006291
L. Figueroa-Quintero, D. Villalgordo-Hernández, J.J. Delgado-Marín, J. Narciso, V.K. Velisoju et al., Post-synthetic surface modification of metal-organic frameworks and their potential applications. Small Method 7, 2201413 (2023). https://doi.org/10.1002/smtd.202201413
H. Wang, M.Q. Pan, Y.F. Wang, C. Chen, J. Xu et al., Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chin. Chem. Lett. 35, 109581 (2024). https://doi.org/10.1016/j.cclet.2024.109581
X.M. Li, Y.M. Wang, Y.B. Mu, J.K. Gao, L. Zeng, Oriented construction of efficient intrinsic proton transport pathways in MOF-808. J. Mater. Chem. A 10, 18592–18597 (2022). https://doi.org/10.1039/d2ta04572a
W.J. Phang, H. Jo, W.R. Lee, J.H. Song, K. Yoo et al., Superprotonic conductivity of a UIO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54, 5142–5146 (2015). https://doi.org/10.1002/anie.201411703
C.L. Li, J. Shen, K.B. Wu, N.J. Yang, Metal centers and organic ligands determine electrochemistry of metal-organic frameworks. Small 18, 2106607 (2022). https://doi.org/10.1002/smll.202106607
P.A. Herrera-Herrera, E. Rodríguez-Sevilla, A.S. Varela, The role of the metal center on charge transport rate in MOF-525: Cobalt and nickel porphyrin. Dalton T. 50, 16939–16944 (2021). https://doi.org/10.1039/d1dt03435a
D.O. Wasik, J.M. Vicent-Luna, A. Luna-Triguero, D. Dubbeldam, T.J.H. Vlugt et al., The impact of metal centers in the m-MOF-74 series on carbon dioxide and hydrogen separation. Sep. Purif. Technol. 339, 126539 (2024). https://doi.org/10.1016/j.seppur.2024.126539
J.X. Wu, Y.H. Ma, H.C. Zhang, H.A. Xie, J. Hu et al., Regulating metal centers of MOF-74 promotes PEO-based electrolytes for all-solid-state lithium-metal batteries. ACS Appl. Mater. Inter. 16, 16351–16362 (2024). https://doi.org/10.1021/acsami.4c01316
H.B. Luo, Q. Ren, P. Wang, J. Zhang, L.F. Wang et al., High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808. ACS Appl. Mater. Inter. 11, 9164–9171 (2019). https://doi.org/10.1021/acsami.9b01075
F.M. Zhang, L.Z. Dong, J.S. Qin, W. Guan, J. Liu et al., Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks. J. Am. Chem. Soc. 139, 6183–6189 (2017). https://doi.org/10.1021/jacs.7b01559
Y.X. Ye, W.G. Guo, L.H. Wan, Z.Y. Li, Z.J. Song et al., Straightforward loading of imidazole molecules into metal organic framework for high proton conduction. J. Am. Chem. Soc. 139, 15604–15607 (2017). https://doi.org/10.1021/jacs.7b09163
M.K. Sarango-Ramírez, D.W. Lim, D.I. Kolokolov, A.E. Khudozhitkov, A.G. Stepanov et al., Superprotonic conductivity in metal-organic framework via solvent-free coordinative urea insertion. J. Am. Chem. Soc. 142, 6861–6865 (2020). https://doi.org/10.1021/jacs.0c00303
S.S. Liu, Z. Han, J.S. Yang, S.Z. Huang, X.Y. Dong et al., Sulfonic groups lined along channels of metal-organic frameworks (MOFs) for super-proton conductor. Inorg. Chem. 59, 396–402 (2020). https://doi.org/10.1021/acs.inorgchem.9b02649
W.L. Xiang, Y.P. Zhang, Y.F. Chen, C.J. Liu, X. Tu, Synthesis, characterization and application of defective metal-organic frameworks: Current status and perspectives. J. Mater. Chem. A 8, 21526–21546 (2020). https://doi.org/10.1039/d0ta08009h
S. Dai, C. Simms, G. Patriarche, M. Daturi, A. Tissot et al., Highly defective ultra-small tetravalent MOF nanocrystals. Nat. Commun. 15, 3434 (2024). https://doi.org/10.1038/s41467-024-47426-x
J.W. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langan, M. Mathe et al., Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coordin. Chem. Rev. 349, 169–197 (2017). https://doi.org/10.1016/j.ccr.2017.08.017
S. Dissegna, K. Epp, W.R. Heinz, G. Kieslich, R.A. Fischer, Defective metal-organic frameworks. Adv. Mater. 30, 1704501 (2018). https://doi.org/10.1002/adma.201704501
R.J. Mo, S. Chen, L.Q. Huang, X.L. Ding, S. Rafique et al., Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat. Commun. 15, 2145 (2024). https://doi.org/10.1038/s41467-024-46378-6
Y.L. Dong, Y. Jiang, S. Ni, G.W. Guan, S.T. Zheng et al., Ligand defect-induced active sites in Ni-MOF-74 for efficient photocatalytic CO2 reduction to CO. Small 20, 2308005 (2024). https://doi.org/10.1002/smll.202308005
J.M. Taylor, S. Dekura, R. Ikeda, H. Kitagawa, Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater. 27, 2286–2289 (2015). https://doi.org/10.1021/acs.chemmater.5b00665
M. Inukai, S. Horike, T. Itakura, R. Shinozaki, N. Ogiwara et al., Encapsulating mobile proton carriers into structural defects in coordination polymer crystals: High anhydrous proton conduction and fuel cell application. J. Am. Chem. Soc. 138, 8505–8511 (2016). https://doi.org/10.1021/jacs.6b03625
Z.L. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015). https://doi.org/10.1002/anie.201411540
J.M. Taylor, T. Komatsu, S. Dekura, K. Otsubo, M. Takata et al., The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework. J. Am. Chem. Soc. 137, 11498–11506 (2015). https://doi.org/10.1021/jacs.5b07267
M. Ray, S.K. Sethy, S.K. Maiti, N. Ali, A.C. Bhosale et al., Triazole-rich 3d metal-organic framework incorporated solid electrolytes for superior proton conductivity and durability in fuel cells. Phys. Chem. Chem. Phys. 26, 20971–20983 (2024). https://doi.org/10.1039/d4cp02196g
D. Umeyama, S. Horike, M. Inukai, Y. Hijikata, S. Kitagawa, Confinement of mobile histamine in coordination nanochannels for fast proton transfer. Angew. Chem. Int. Ed. 50, 11706–11709 (2011). https://doi.org/10.1002/anie.201102997
J. Lee, D.W. Lim, S. Dekura, H. Kitagawa, W. Choe, MOP x MOF: Collaborative combination of metal-organic polyhedra and metal organic framework for proton conductivity. ACS Appl. Mater. Inter. 11, 12639–12646 (2019). https://doi.org/10.1021/acsami.9b01026
V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova et al., Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134, 15640–15643 (2012). https://doi.org/10.1021/ja305587n
D.N. Dybtsev, V.G. Ponomareva, S.B. Aliev, A.P. Chupakhin, M.R. Gallyamov et al., High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids. ACS Appl. Mater. Inter. 6, 5161–5167 (2014). https://doi.org/10.1021/am500438a
X.M. Li, J.C. Jia, D.T. Yang, J.L. Jin, J.K. Gao, Construction of biomimetic proton transport channels in metal-organic framework. Chin. Chem. Lett. 35, 108474 (2024). https://doi.org/10.1016/j.cclet.2023.108474
Y.X. Ye, Z.L. Ma, R.B. Lin, R. Krishna, W. Zhou et al., Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 141, 4130–4136 (2019). https://doi.org/10.1021/jacs.9b00232
S.S. Park, A.J. Rieth, C.H. Hendon, M. Dinca, Selective vapor pressure dependent proton transport in a metal-organic framework with two distinct hydrophilic pores. J. Am. Chem. Soc. 140, 2016–2019 (2018). https://doi.org/10.1021/jacs.7b12784
L.H. Xie, M.M. Xu, X.M. Liu, M.J. Zhao, J.R. Li, Hydrophobic metal-organic frameworks: assessment, construction, and diverse applications. Adv. Sci. 7, 1901758 (2020). https://doi.org/10.1002/advs.201901758
S. Mukherjee, K.K.R. Datta, R.A. Fischer, Hydrophobicity: a key factor en route to applications of metal-organic frameworks. Trends Chem. 3, 911–925 (2021). https://doi.org/10.1016/j.trechm.2021.09.002
Z.H. Fard, N.E. Wong, C.D. Malliakas, P. Ramaswamy, J.M. Taylor et al., Superprotonic phase change to a robust phosphonate metal-organic framework. Chem. Mater. 30, 314–318 (2018). https://doi.org/10.1021/acs.chemmater.7b04467
H. Okawa, A. Shigematsu, M. Sadakiyo, T. Miyagawa, K. Yoneda et al., Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = MnII, FeII, CoII; NH(prol)3+ = Tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. J. Am. Chem. Soc. 131, 13516–13522 (2009). https://doi.org/10.1021/ja905368d
N.T.T. Nguyen, H. Furukawa, F. Gándara, C.A. Trickett, H.M. Jeong et al., Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity. J. Am. Chem. Soc. 137, 15394–15397 (2015). https://doi.org/10.1021/jacs.5b10999
Q. Gao, X.L. Wang, J. Xu, X.H. Bu, The first demonstration of the gyroid in a polyoxometalate-based open framework with high proton conductivity. Chem. Eur. J. 22, 9082–9086 (2016). https://doi.org/10.1002/chem.201601233
Y.H. Han, Y.X. Ye, C.B. Tian, Z.J. Zhang, S.W. Du et al., High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter. J. Mater. Chem. A 4, 18742–18746 (2016). https://doi.org/10.1039/c6ta07939c
K. Zhang, X.J. Xie, H.Y. Li, J.X. Gao, L. Nie et al., Highly water-stable lanthanide-oxalate MOFs with remarkable proton conductivity and tunable luminescence. Adv. Mater. 29, 1701804 (2017). https://doi.org/10.1002/adma.201701804
M. Bazaga-García, M. Papadaki, R.M.P. Colodrero, P. Olivera-Pastor, E.R. Losilla et al., Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem. Mater. 27, 424–435 (2015). https://doi.org/10.1021/cm502716e
M. Inukai, S. Horike, W.Q. Chen, D. Umeyama, T. Itakura et al., Template-directed proton conduction pathways in a coordination framework. J. Mater. Chem. A 2, 10404–10409 (2014). https://doi.org/10.1039/c4ta01261e
D. Umeyama, S. Horike, M. Inukai, S. Kitagawa, Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. J. Am. Chem. Soc. 135, 11345–11350 (2013). https://doi.org/10.1021/ja4051668
J.M. Taylor, R.K. Mah, I.L. Moudrakovski, C.I. Ratcliffe, R. Vaidhyanathan et al., Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. J. Am. Chem. Soc. 132, 14055–14057 (2010). https://doi.org/10.1021/ja107035w
S. Pili, S.P. Argent, C.G. Morris, P. Rought, V. García-Sakai et al., Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic “free diffusion inside a sphere.” J. Am. Chem. Soc. 138, 6352–6355 (2016). https://doi.org/10.1021/jacs.6b02194
M. Bazaga-García, R.M.P. Colodrero, M. Papadaki, P. Garczarek, J. Zon et al., Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity. J. Am. Chem. Soc. 136, 5731–5739 (2014). https://doi.org/10.1021/ja500356z
K. Cai, F.X. Sun, X.Q. Liang, C. Liu, N.A. Zhao et al., An acid-stable hexaphosphate ester based metal-organic framework and its polymer composite as proton exchange membrane. J. Mater. Chem. A 5, 12943–12950 (2017). https://doi.org/10.1039/c7ta00169j
T. Kundu, S.C. Sahoo, R. Banerjee, Alkali earth metal (Ca, Sr, Ba) based thermostable metal-organic frameworks (MOFs) for proton conduction. Chem. Commun. 48, 4998–5000 (2012). https://doi.org/10.1039/c2cc31135f
G.Y. Zhang, H.H. Fei, Missing metal-linker connectivities in a 3-D robust sulfonate-based metal-organic framework for enhanced proton conductivity. Chem. Commun. 53, 4156–4159 (2017). https://doi.org/10.1039/c7cc01461a
M. Wahiduzzaman, S.J. Wang, J. Schnee, A. Vimont, V. Ortiz et al., A high proton conductive hydrogen-sulfate decorated titanium carboxylate metal-organic framework. ACS Sustain. Chem. Eng. 7, 5776–5783 (2019). https://doi.org/10.1021/acssuschemeng.8b05306
H. Wu, F. Yang, X.L. Lv, B. Wang, Y.Z. Zhang et al., A stable porphyrinic metal-organic framework pore-functionalized by high-density carboxylic groups for proton conduction. J. Mater. Chem. A 5, 14525–14529 (2017). https://doi.org/10.1039/c7ta03917d
S. Chand, S.C. Pal, D.W. Lim, K. Otsubo, A. Pal et al., A 2D Mg(II)-MOF with high density of coordinated waters as sole intrinsic proton sources for ultrahigh superprotonic conduction. ACS Mater. Lett. 2, 1343–1350 (2020). https://doi.org/10.1021/acsmaterialslett.0c00358
S.J. Liu, C. Cao, F. Yang, M.H. Yu, S.L. Yao et al., High proton conduction in two CoII and MnII anionic metal-organic frameworks derived from 1,3,5-benzenetricarboxylic acid. Cryst. Growth Des. 16, 6776–6780 (2016). https://doi.org/10.1021/acs.cgd.6b00776
W.J. Phang, W.R. Lee, K. Yoo, D.W. Ryu, B. Kim et al., Ph-dependent proton conducting behavior in a metal-organic framework material. Angew. Chem. Int. Ed. 53, 8383–8387 (2014). https://doi.org/10.1002/anie.201404164
M.V. Nguyen, T.H.N. Lo, L.C. Luu, H.T.T. Nguyen, T.N. Tu, Enhancing proton conductivity in a metal-organic framework at T>80 °C by an anchoring strategy. J. Mater. Chem. A 6, 1816–1821 (2018). https://doi.org/10.1039/c7ta10148a
S.C. Liu, Z.F. Yue, Y. Liu, Incorporation of imidazole within the metal-organic framework UIO-67 for enhanced anhydrous proton conductivity. Dalton T. 44, 12976–12980 (2015). https://doi.org/10.1039/c5dt01667c
J.J. Gassensmith, J.Y. Kim, J.M. Holcroft, O.K. Farha, J.F. Stoddart et al., A metal-organic framework-based material for electrochemical sensing of carbon dioxide. J. Am. Chem. Soc. 136, 8277–8282 (2014). https://doi.org/10.1021/ja5006465
Y.W. You, C. Xue, Z.F. Tian, S.X. Liu, X.M. Ren, Three orders of magnitude enhancement of proton conductivity of porous coordination polymers by incorporating ion-pairs into a framework. Dalton T. 45, 7893–7899 (2016). https://doi.org/10.1039/c6dt00290k
C.H. Tsai, C.C. Wang, C.Y. Chang, C.H. Lin, Y.W. Chen-Yang, Enhancing performance of nafion®-based PEMFC by 1-D channel metal-organic frameworks as pem filler. Int. J. Hydrogen Energ. 39, 15696–15705 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.134
A. Donnadio, R. Narducci, M. Casciola, F. Marmottini, R. D’Amato et al., Mixed membrane matrices based on NAFION/UIO-66/SO3H-UIO-66 nano-MOFs: Revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Appl. Mater. Inter. 9, 42239–42246 (2017). https://doi.org/10.1021/acsami.7b14847
B. Zhang, Y. Cao, Z. Li, H. Wu, Y.H. Yin et al., Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochim. Acta 240, 186–194 (2017). https://doi.org/10.1016/j.electacta.2017.04.087
J. Zhang, H.J. Bai, Q. Ren, H.B. Luo, X.M. Ren et al., Extra water- and acid-stable MOF-801 with high proton conductivity and its composite membrane for proton-exchange membrane. ACS Appl. Mater. Inter. 10, 28656–28663 (2018). https://doi.org/10.1021/acsami.8b09070
X.M. Li, J. Liu, C. Zhao, J.L. Zhou, L. Zhao et al., Strategic hierarchical improvement of superprotonic conductivity in a stable metal-organic framework system. J. Mater. Chem. A 7, 25165–25171 (2019). https://doi.org/10.1039/c9ta10286h
X.M. Li, Y.M. Wang, B.K. Wu, L. Zeng, Efficient proton transport in stable functionalized channels of zirconium metal-organic frameworks. ACS Appl. Energ. Mater. 4, 8303–8310 (2021). https://doi.org/10.1021/acsaem.1c01541
X.M. Li, Y.M. Wang, Y.B. Mu, J. Liu, L. Zeng et al., Superprotonic conductivity of a functionalized metal-organic framework at ambient conditions. ACS Appl. Mater. Inter. 14, 9264–9271 (2022). https://doi.org/10.1021/acsami.2c00500
X.Y. Dong, J.J. Li, Z. Han, P.G. Duan, L.K. Li et al., Tuning the functional substituent group and guest of metal-organic frameworks in hybrid membranes for improved interface compatibility and proton conduction. J. Mater. Chem. A 5, 3464–3474 (2017). https://doi.org/10.1039/c6ta07761g
X.Y. Dong, J.H. Wang, S.S. Liu, Z. Han, Q.J. Tang et al., Synergy between isomorphous acid and basic metal-organic frameworks for anhydrous proton conduction of low-cost hybrid membranes at high temperatures. ACS Appl. Mater. Inter. 10, 38209–38216 (2018). https://doi.org/10.1021/acsami.8b12846
K.W. Xu, G.P. Liu, X.J. Xu, Z.H. Wang, G.C. Liu et al., Cerium based metal-organic framework as the efficient radical quencher for proton exchange membrane fuel cells. J. Membr. Sci. 699, 122641 (2024). https://doi.org/10.1016/j.memsci.2024.122641
A. Pathak, H. Watanabe, B. Manna, K. Hatakeyama, S. Ida, Hydrogen-bonded metal-organic framework nanosheet as a proton conducting membrane for an H2/O2 fuel cell. Small 20, 2400222 (2024). https://doi.org/10.1002/smll.202400222
Z. Rao, B.B. Tang, P.Y. Wu, Proton conductivity of proton exchange membrane synergistically promoted by different functionalized metal organic frameworks. ACS Appl. Mater. Inter. 9, 22597–22603 (2017). https://doi.org/10.1021/acsami.7b05969
L.Y. Wang, N.P. Deng, Y.Y. Liang, J.G. Ju, B.W. Cheng et al., Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton exchange membranes. J. Power. Sour. 450, 227592 (2020). https://doi.org/10.1016/j.jpowsour.2019.227592
Z.M. Wang, J.M. Ren, Y.X. Sun, L. Wang, Y. Fan et al., Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. J. Membr. Sci. 645, 120193 (2022). https://doi.org/10.1016/j.memsci.2021.120193
C.Y. Ru, Y.Y. Gu, H. Na, H.L. Li, C.J. Zhao, Preparation of a cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane with enhanced proton conductivity and methanol resistance by introducing an ionic liquid-impregnated metal organic framework. ACS Appl. Mater. Inter. 11, 31899–31908 (2019). https://doi.org/10.1021/acsami.9b09183
Y.T. Duan, C.Y. Ru, J.L. Li, Y.N. Sun, X.T. Pu et al., Enhancing proton conductivity and methanol resistance of spaek membrane by incorporating MOF with flexible alkyl sulfonic acid for dmfc. J. Membr. Sci. 641, 119906 (2022). https://doi.org/10.1016/j.memsci.2021.119906
Y. Guo, Z.Q. Jiang, W. Ying, L.P. Chen, Y.Z. Liu et al., A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 30, 1705155 (2018). https://doi.org/10.1002/adma.201705155
L. Xin, D.Z. Zhang, K. Qu, Y.Q. Lu, Y.X. Wang et al., Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane. Adv. Funct. Mater. 31, 2104629 (2021). https://doi.org/10.1002/adfm.202104629
D.H. Zhang, W.J. Yu, Y. Zhang, S.H. Cheng, M.Y. Zhu et al., Reconstructing proton channels via Zr-MOFs realizes highly ion- selective and proton-conductive speek-based hybrid membrane for vanadium flow battery. J. Energy Chem. 75, 448–456 (2022). https://doi.org/10.1016/j.jechem.2022.08.043
Y.Q. Lu, S.H. Lin, H.Y. Cao, Y.S. Xia, Y. Xia et al., Efficient proton-selective hybrid membrane embedded with polydopamine modified MOF-808 for vanadium flow battery. J. Membr. Sci. 671, 121347 (2023). https://doi.org/10.1016/j.memsci.2023.121347
S.S. Peng, L.Y. Zhang, C.K. Zhang, Y. Ding, X.L. Guo et al., Gradient-distributed metal-organic framework-based porous membranes for nonaqueous redox flow batteries. Adv. Energy Mater. 8, 1802533 (2018). https://doi.org/10.1002/aenm.201802533
D.Z. Zhang, L. Xin, Y.S. Xia, L.H. Dai, K. Qu et al., Advanced nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J. Membr. Sci. 624, 119047 (2021). https://doi.org/10.1016/j.memsci.2020.119047