Half-Covered ‘Glitter-Cake’ AM@SE Composite: A Novel Electrode Design for High Energy Density All-Solid-State Batteries
Corresponding Author: Dae Soo Jung
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 119
Abstract
All-solid-state batteries (ASSBs) are pursued due to their potential for better safety and high energy density. However, the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials (AMs) at high loading. With small amount of solid electrolyte (SE) powder in the cathode, poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs, leading to high tortuosity and limitation of lithium and electron transport pathways. Here, we propose a novel cathode design that can achieve high volumetric energy density of 1258 Wh L−1 at high AM content of 85 wt% by synergizing the merits of AM@SE core–shell composite particles with conformally coated thin SE shell prepared from mechanofusion process and small SE particles. The core–shell structure with an intimate and thin SE shell guarantees high ionic conduction pathway while unharming the electronic conduction. In addition, small SE particles play the role of a filler that reduces the packing porosity in the cathode composite electrode as well as between the cathode and the SE separator layer. The systematic demonstration of the optimization process may provide understanding and guidance on the design of electrodes for ASSBs with high electrode density, capacity, and ultimately energy density.
Highlights:
1 A novel electrode design for high energy density all-solid-state batteries (ASSBs) is realized through the control of nano- and microstructures.
2 An active materials@solid electrolyte composite with a half-covered “glitter-cake” morphology is adopted to optimize the transport of electrons and ions in the electrode.
3 The optimized electrode design exhibited a volumetric energy density of 1258 Wh L−1 at an active material content of 85 wt%, exceeding the performance of the reported ASSB cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
- J.-M. Tarascon, Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 368, 3227–3241 (2010). https://doi.org/10.1098/rsta.2010.0112
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b
- S. Huang, K. Long, Y. Chen, T. Naren, P. Qing et al., In situ formed tribofilms as efficient organic/inorganic hybrid interlayers for stabilizing lithium metal anodes. Nano-Micro Lett. 15, 235 (2023). https://doi.org/10.1007/s40820-023-01210-6
- K. Long, S. Huang, H. Wang, A. Wang, Y. Chen et al., Green mechanochemical Li foil surface reconstruction toward long-life Li–metal pouch cells. Energy Environ. Sci. 17, 260–273 (2024). https://doi.org/10.1039/d3ee03185c
- K.K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li et al., Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017). https://doi.org/10.1039/c7ee01004d
- M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854 (2012). https://doi.org/10.1039/c2ee21892e
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
- J. Lau, R.H. DeBlock, D.M. Butts, D.S. Ashby, C.S. Choi et al., Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 8, 1800933 (2018). https://doi.org/10.1002/aenm.201800933
- A.L. Robinson, J. Janek, Solid-state batteries enter EV fray. MRS Bull. 39, 1046–1047 (2014). https://doi.org/10.1557/mrs.2014.285
- Y.S. Jung, D.Y. Oh, Y.J. Nam, K.H. Park, Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes. Isr. J. Chem. 55, 472–485 (2015). https://doi.org/10.1002/ijch.201400112
- X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15, 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
- Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z
- K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017). https://doi.org/10.1149/2.1571707jes
- B. Qi, X. Hong, Y. Jiang, J. Shi, M. Zhang et al., A review on engineering design for enhancing interfacial contact in solid-state lithium-sulfur batteries. Nano-Micro Lett. 16, 71 (2024). https://doi.org/10.1007/s40820-023-01306-z
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16, 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066
- K.H. Park, Q. Bai, D.H. Kim, D.Y. Oh, Y. Zhu et al., Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018). https://doi.org/10.1002/aenm.201800035
- K.H. Park, D.Y. Oh, Y.E. Choi, Y.J. Nam, L. Han et al., Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv. Mater. 28, 1874–1883 (2016). https://doi.org/10.1002/adma.201505008
- K.S. Oh, J.E. Lee, Y.H. Lee, Y.S. Jeong, I. Kristanto et al., Elucidating ion transport phenomena in sulfide/polymer composite electrolytes for practical solid-state batteries. Nano-Micro Lett. 15, 179 (2023). https://doi.org/10.1007/s40820-023-01139-w
- B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium–sulfur batteries for commercialization. Nano-Micro Lett. 16, 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- Y. Ito, M. Otoyama, A. Hayashi, T. Ohtomo, M. Tatsumisago, Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 ps. J. Power Sources 360, 328–335 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.112
- D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam et al., Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). https://doi.org/10.1021/acs.nanolett.7b00330
- Y.J. Nam, D.Y. Oh, S.H. Jung, Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.031
- W. Jiang, X. Zhu, R. Huang, S. Zhao, X. Fan et al., Revealing the design principles of Ni-rich cathodes for all-solid-state batteries. Adv. Energy Mater. 12, 2103473 (2022). https://doi.org/10.1002/aenm.202103473
- A. Bielefeld, D.A. Weber, J. Janek, Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2019). https://doi.org/10.1021/acs.jpcc.8b11043
- H. Nakamura, T. Kawaguchi, T. Masuyama, A. Sakuda, T. Saito et al., Dry coating of active material ps with sulfide solid electrolytes for an all-solid-state lithium battery. J. Power. Sources 448, 227579 (2020). https://doi.org/10.1016/j.jpowsour.2019.227579
- S. Choi, J. Ann, J. Do, S. Lim, C. Park et al., Application of rod-like Li6PS5Cl directly synthesized by a liquid phase process to sheet-type electrodes for all-solid-state lithium batteries. J. Electrochem. Soc. 166, A5193–A5200 (2018). https://doi.org/10.1149/2.0301903jes
- B. Chen, S. Sui, F. He, C. He, H.-M. Cheng et al., Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem. Soc. Rev. 52, 7802–7847 (2023). https://doi.org/10.1039/D3CS00445G
- B. Chen, Z. Qi, B. Chen, X. Liu, H. Li et al., Room-temperature salt template synthesis of nitrogen-doped 3D porous carbon for fast metal-ion storage. Angew. Chem. Int. Ed. 63, e202316116 (2024). https://doi.org/10.1002/anie.202316116
- J. Kim, M.J. Kim, J. Kim, J.W. Lee, J. Park et al., High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes. Adv. Funct. Mater. 33, 2211355 (2023). https://doi.org/10.1002/adfm.202211355
- A. Sakuda, T. Takeuchi, H. Kobayashi, Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S-P2S5 solid electrolytes. Solid State Ion. 285, 112–117 (2016). https://doi.org/10.1016/j.ssi.2015.09.010
- C. Park, S. Lee, K. Kim, M. Kim, S. Choi et al., Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries. J. Electrochem. Soc. 166, A5318–A5322 (2019). https://doi.org/10.1149/2.0481903jes
- R. Rajagopal, Y. Subramanian, K.-S. Ryu, Improving the electrochemical performance of cathode composites using different sized solid electrolytes for all solid-state lithium batteries. RSC Adv. 11, 32981–32987 (2021). https://doi.org/10.1039/D1RA05897E
- M. Cronau, M. Duchardt, M. Szabo, B. Roling, Ionic conductivity versus p size of ball-milled sulfide-based solid electrolytes: strategy towards optimized composite cathode performance in all-solid-state batteries. Batter. Supercaps 5, e202200041 (2022). https://doi.org/10.1002/batt.202200041
- T. Shi, Q. Tu, Y. Tian, Y. Xiao, L.J. Miara et al., High active material loading in all-solid-state battery electrode via p size optimization. Adv. Energy Mater. 10, 1902881 (2020). https://doi.org/10.1002/aenm.201902881
- R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang et al., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017). https://doi.org/10.1021/acs.chemmater.7b00931
- X. Chen, W. He, L.-X. Ding, S. Wang, H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019). https://doi.org/10.1039/c8ee02617c
- W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke et al., Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017). https://doi.org/10.1021/acsami.7b01137
- S. Noh, W.T. Nichols, M. Cho, D. Shin, Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte. J. Electroceram. 40, 293–299 (2018). https://doi.org/10.1007/s10832-018-0129-y
- F. Strauss, T. Bartsch, L. de Biasi, A.-Y. Kim, J. Janek et al., Impact of cathode material p size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 3, 992–996 (2018). https://doi.org/10.1021/acsenergylett.8b00275
- E. Hayakawa, H. Nakamura, S. Ohsaki, S. Watano, Design of active-material/solid-electrolyte composite ps with conductive additives for all-solid-state lithium-ion batteries. J. Power Sources 555, 232379 (2023). https://doi.org/10.1016/j.jpowsour.2022.232379
- P. Oh, H. Lee, S. Park, H. Cha, J. Kim et al., Improvements to the overpotential of all-solid-state lithium-ion batteries during the past ten years. Adv. Energy Mater. 10, 2000904 (2020). https://doi.org/10.1002/aenm.202000904
- A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, All-solid-state lithium secondary batteries using LiCoO2 ps with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes. J. Power Sources 196, 6735–6741 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.103
- R. Pfeffer, R.N. Dave, D. Wei, M. Ramlakhan, Synthesis of engineered particulates with tailored properties using dry p coating. Powder Technol. 117, 40–67 (2001). https://doi.org/10.1016/s0032-5910(01)00314-x
- L. Zheng, T.D. Hatchard, M.N. Obrovac, A high-quality mechanofusion coating for enhancing lithium-ion battery cathode material performance. MRS Commun. 9, 245–250 (2019). https://doi.org/10.1557/mrc.2018.209
- J. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Viallet, V. Seznec et al., Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017). https://doi.org/10.1021/acs.chemmater.6b04990
- P. Minnmann, L. Quillman, S. Burkhardt, F.H. Richter, J. Janek, Editors’ choice—quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J. Electrochem. Soc. 168, 040537 (2021). https://doi.org/10.1149/1945-7111/abf8d7
- S. Noh, W.T. Nichols, C. Park, D. Shin, Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte. Ceram. Int. 43, 15952–15958 (2017). https://doi.org/10.1016/j.ceramint.2017.08.176
- E. Quemin, R. Dugas, T. Koc, B. Hennequart, R. Chometon et al., Decoupling parasitic reactions at the positive electrode interfaces in argyrodite-based systems. ACS Appl. Mater. Interfaces 14, 49284–49294 (2022). https://doi.org/10.1021/acsami.2c13150
- F. Hao, F. Han, Y. Liang, C. Wang, Y. Yao, Architectural design and fabrication approaches for solid-state batteries. MRS Bull. 43, 775–781 (2018). https://doi.org/10.1557/mrs.2018.211
- D. Cao, Y. Zhao, X. Sun, A. Natan, Y. Wang et al., Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state Li metal batteries and beyond. ACS Energy Lett. 5, 3468–3489 (2020). https://doi.org/10.1021/acsenergylett.0c01905
- J.S. Kim, S. Jung, H. Kwak, Y. Han, S. Kim et al., Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-state Li batteries. Energy Storage Mater. 55, 193–204 (2023). https://doi.org/10.1016/j.ensm.2022.11.038
- M. Yamamoto, Y. Terauchi, A. Sakuda, M. Takahashi, Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 8, 1212 (2018). https://doi.org/10.1038/s41598-018-19398-8
- A. Sakuda, K. Kuratani, M. Yamamoto, M. Takahashi, T. Takeuchi et al., All-solid-state battery electrode sheets prepared by a slurry coating process. J. Electrochem. Soc. 164, A2474–A2478 (2017). https://doi.org/10.1149/2.0951712jes
- A.-Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade et al., Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries. Chem. Mater. 31, 9664–9672 (2019). https://doi.org/10.1021/acs.chemmater.9b02947
- S.J. Choi, S.H. Choi, A.D. Bui, Y.J. Lee, S.M. Lee et al., LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 10, 31404–31412 (2018). https://doi.org/10.1021/acsami.8b11244
- T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2019). https://doi.org/10.1016/j.ensm.2018.11.011
- F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki et al., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019). https://doi.org/10.1016/j.ensm.2019.05.033
References
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
J.-M. Tarascon, Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 368, 3227–3241 (2010). https://doi.org/10.1098/rsta.2010.0112
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b
S. Huang, K. Long, Y. Chen, T. Naren, P. Qing et al., In situ formed tribofilms as efficient organic/inorganic hybrid interlayers for stabilizing lithium metal anodes. Nano-Micro Lett. 15, 235 (2023). https://doi.org/10.1007/s40820-023-01210-6
K. Long, S. Huang, H. Wang, A. Wang, Y. Chen et al., Green mechanochemical Li foil surface reconstruction toward long-life Li–metal pouch cells. Energy Environ. Sci. 17, 260–273 (2024). https://doi.org/10.1039/d3ee03185c
K.K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li et al., Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017). https://doi.org/10.1039/c7ee01004d
M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854 (2012). https://doi.org/10.1039/c2ee21892e
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
J. Lau, R.H. DeBlock, D.M. Butts, D.S. Ashby, C.S. Choi et al., Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 8, 1800933 (2018). https://doi.org/10.1002/aenm.201800933
A.L. Robinson, J. Janek, Solid-state batteries enter EV fray. MRS Bull. 39, 1046–1047 (2014). https://doi.org/10.1557/mrs.2014.285
Y.S. Jung, D.Y. Oh, Y.J. Nam, K.H. Park, Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes. Isr. J. Chem. 55, 472–485 (2015). https://doi.org/10.1002/ijch.201400112
X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15, 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z
K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017). https://doi.org/10.1149/2.1571707jes
B. Qi, X. Hong, Y. Jiang, J. Shi, M. Zhang et al., A review on engineering design for enhancing interfacial contact in solid-state lithium-sulfur batteries. Nano-Micro Lett. 16, 71 (2024). https://doi.org/10.1007/s40820-023-01306-z
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16, 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066
K.H. Park, Q. Bai, D.H. Kim, D.Y. Oh, Y. Zhu et al., Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018). https://doi.org/10.1002/aenm.201800035
K.H. Park, D.Y. Oh, Y.E. Choi, Y.J. Nam, L. Han et al., Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv. Mater. 28, 1874–1883 (2016). https://doi.org/10.1002/adma.201505008
K.S. Oh, J.E. Lee, Y.H. Lee, Y.S. Jeong, I. Kristanto et al., Elucidating ion transport phenomena in sulfide/polymer composite electrolytes for practical solid-state batteries. Nano-Micro Lett. 15, 179 (2023). https://doi.org/10.1007/s40820-023-01139-w
B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium–sulfur batteries for commercialization. Nano-Micro Lett. 16, 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
Y. Ito, M. Otoyama, A. Hayashi, T. Ohtomo, M. Tatsumisago, Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 ps. J. Power Sources 360, 328–335 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.112
D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam et al., Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). https://doi.org/10.1021/acs.nanolett.7b00330
Y.J. Nam, D.Y. Oh, S.H. Jung, Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.031
W. Jiang, X. Zhu, R. Huang, S. Zhao, X. Fan et al., Revealing the design principles of Ni-rich cathodes for all-solid-state batteries. Adv. Energy Mater. 12, 2103473 (2022). https://doi.org/10.1002/aenm.202103473
A. Bielefeld, D.A. Weber, J. Janek, Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2019). https://doi.org/10.1021/acs.jpcc.8b11043
H. Nakamura, T. Kawaguchi, T. Masuyama, A. Sakuda, T. Saito et al., Dry coating of active material ps with sulfide solid electrolytes for an all-solid-state lithium battery. J. Power. Sources 448, 227579 (2020). https://doi.org/10.1016/j.jpowsour.2019.227579
S. Choi, J. Ann, J. Do, S. Lim, C. Park et al., Application of rod-like Li6PS5Cl directly synthesized by a liquid phase process to sheet-type electrodes for all-solid-state lithium batteries. J. Electrochem. Soc. 166, A5193–A5200 (2018). https://doi.org/10.1149/2.0301903jes
B. Chen, S. Sui, F. He, C. He, H.-M. Cheng et al., Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem. Soc. Rev. 52, 7802–7847 (2023). https://doi.org/10.1039/D3CS00445G
B. Chen, Z. Qi, B. Chen, X. Liu, H. Li et al., Room-temperature salt template synthesis of nitrogen-doped 3D porous carbon for fast metal-ion storage. Angew. Chem. Int. Ed. 63, e202316116 (2024). https://doi.org/10.1002/anie.202316116
J. Kim, M.J. Kim, J. Kim, J.W. Lee, J. Park et al., High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes. Adv. Funct. Mater. 33, 2211355 (2023). https://doi.org/10.1002/adfm.202211355
A. Sakuda, T. Takeuchi, H. Kobayashi, Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S-P2S5 solid electrolytes. Solid State Ion. 285, 112–117 (2016). https://doi.org/10.1016/j.ssi.2015.09.010
C. Park, S. Lee, K. Kim, M. Kim, S. Choi et al., Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries. J. Electrochem. Soc. 166, A5318–A5322 (2019). https://doi.org/10.1149/2.0481903jes
R. Rajagopal, Y. Subramanian, K.-S. Ryu, Improving the electrochemical performance of cathode composites using different sized solid electrolytes for all solid-state lithium batteries. RSC Adv. 11, 32981–32987 (2021). https://doi.org/10.1039/D1RA05897E
M. Cronau, M. Duchardt, M. Szabo, B. Roling, Ionic conductivity versus p size of ball-milled sulfide-based solid electrolytes: strategy towards optimized composite cathode performance in all-solid-state batteries. Batter. Supercaps 5, e202200041 (2022). https://doi.org/10.1002/batt.202200041
T. Shi, Q. Tu, Y. Tian, Y. Xiao, L.J. Miara et al., High active material loading in all-solid-state battery electrode via p size optimization. Adv. Energy Mater. 10, 1902881 (2020). https://doi.org/10.1002/aenm.201902881
R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang et al., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017). https://doi.org/10.1021/acs.chemmater.7b00931
X. Chen, W. He, L.-X. Ding, S. Wang, H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019). https://doi.org/10.1039/c8ee02617c
W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke et al., Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017). https://doi.org/10.1021/acsami.7b01137
S. Noh, W.T. Nichols, M. Cho, D. Shin, Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte. J. Electroceram. 40, 293–299 (2018). https://doi.org/10.1007/s10832-018-0129-y
F. Strauss, T. Bartsch, L. de Biasi, A.-Y. Kim, J. Janek et al., Impact of cathode material p size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 3, 992–996 (2018). https://doi.org/10.1021/acsenergylett.8b00275
E. Hayakawa, H. Nakamura, S. Ohsaki, S. Watano, Design of active-material/solid-electrolyte composite ps with conductive additives for all-solid-state lithium-ion batteries. J. Power Sources 555, 232379 (2023). https://doi.org/10.1016/j.jpowsour.2022.232379
P. Oh, H. Lee, S. Park, H. Cha, J. Kim et al., Improvements to the overpotential of all-solid-state lithium-ion batteries during the past ten years. Adv. Energy Mater. 10, 2000904 (2020). https://doi.org/10.1002/aenm.202000904
A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, All-solid-state lithium secondary batteries using LiCoO2 ps with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes. J. Power Sources 196, 6735–6741 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.103
R. Pfeffer, R.N. Dave, D. Wei, M. Ramlakhan, Synthesis of engineered particulates with tailored properties using dry p coating. Powder Technol. 117, 40–67 (2001). https://doi.org/10.1016/s0032-5910(01)00314-x
L. Zheng, T.D. Hatchard, M.N. Obrovac, A high-quality mechanofusion coating for enhancing lithium-ion battery cathode material performance. MRS Commun. 9, 245–250 (2019). https://doi.org/10.1557/mrc.2018.209
J. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Viallet, V. Seznec et al., Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017). https://doi.org/10.1021/acs.chemmater.6b04990
P. Minnmann, L. Quillman, S. Burkhardt, F.H. Richter, J. Janek, Editors’ choice—quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J. Electrochem. Soc. 168, 040537 (2021). https://doi.org/10.1149/1945-7111/abf8d7
S. Noh, W.T. Nichols, C. Park, D. Shin, Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte. Ceram. Int. 43, 15952–15958 (2017). https://doi.org/10.1016/j.ceramint.2017.08.176
E. Quemin, R. Dugas, T. Koc, B. Hennequart, R. Chometon et al., Decoupling parasitic reactions at the positive electrode interfaces in argyrodite-based systems. ACS Appl. Mater. Interfaces 14, 49284–49294 (2022). https://doi.org/10.1021/acsami.2c13150
F. Hao, F. Han, Y. Liang, C. Wang, Y. Yao, Architectural design and fabrication approaches for solid-state batteries. MRS Bull. 43, 775–781 (2018). https://doi.org/10.1557/mrs.2018.211
D. Cao, Y. Zhao, X. Sun, A. Natan, Y. Wang et al., Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state Li metal batteries and beyond. ACS Energy Lett. 5, 3468–3489 (2020). https://doi.org/10.1021/acsenergylett.0c01905
J.S. Kim, S. Jung, H. Kwak, Y. Han, S. Kim et al., Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-state Li batteries. Energy Storage Mater. 55, 193–204 (2023). https://doi.org/10.1016/j.ensm.2022.11.038
M. Yamamoto, Y. Terauchi, A. Sakuda, M. Takahashi, Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 8, 1212 (2018). https://doi.org/10.1038/s41598-018-19398-8
A. Sakuda, K. Kuratani, M. Yamamoto, M. Takahashi, T. Takeuchi et al., All-solid-state battery electrode sheets prepared by a slurry coating process. J. Electrochem. Soc. 164, A2474–A2478 (2017). https://doi.org/10.1149/2.0951712jes
A.-Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade et al., Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries. Chem. Mater. 31, 9664–9672 (2019). https://doi.org/10.1021/acs.chemmater.9b02947
S.J. Choi, S.H. Choi, A.D. Bui, Y.J. Lee, S.M. Lee et al., LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 10, 31404–31412 (2018). https://doi.org/10.1021/acsami.8b11244
T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2019). https://doi.org/10.1016/j.ensm.2018.11.011
F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki et al., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019). https://doi.org/10.1016/j.ensm.2019.05.033