Organic Radical-Boosted Ionic Conductivity in Redox Polymer Electrolyte for Advanced Fiber-Shaped Energy Storage Devices
Corresponding Author: Nam Dong Kim
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 185
Abstract
Fiber-shaped energy storage devices (FSESDs) with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation. Among the solid options, polymer electrolytes are particularly preferred due to their robustness and flexibility, although their low ionic conductivity remains a significant challenge. Here, we present a redox polymer electrolyte (HT_RPE) with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HT) as a multi-functional additive. HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species. These synergetic effects lead to high ionic conductivity (73.5 mS cm−1) based on a lower activation energy of 0.13 eV than other redox additives. Moreover, HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes (energy density of 25.4 W h kg−1 at a power density of 25,000 W kg−1) without typical active materials, along with excellent stability (capacitance retention of 91.2% after 8,000 bending cycles). This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability, providing a promising pathway for next-generation flexible energy storage devices.
Highlights:
1 Developed a versatile HT-based redox polymer electrolyte with exceptional ionic conductivity (73.5 mS cm−1) through self-exchange reaction-based ion hopping mechanism and enhanced polymer chain mobility.
2 Achieved superior electrochemical performance (25.4 Wh kg−1 at 25,000 W kg−1) in fiber-shaped energy storage devices without additional active materials by utilizing HT as both ionic conductor and redox-active species.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Chen, J. Feng, J. Li, Y. Guo, X. Shi et al., Functional fiber materials to smart fiber devices. Chem. Rev. 123, 613–662 (2023). https://doi.org/10.1021/acs.chemrev.2c00192
- J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
- X. Huang, C. Wang, C. Li, M. Liao, J. Li et al., Braided fiber current collectors for high-energy-density fiber lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202303616 (2023). https://doi.org/10.1002/anie.202303616
- J.G. Kim, H. Yu, J.Y. Jung, M.J. Kim, D.Y. Jeon et al., 3D architecturing strategy on the utmost carbon nanotube fiber for ultra-high performance fiber-shaped supercapacitor. Adv. Funct. Mater. 32, 2113057 (2022). https://doi.org/10.1002/adfm.202113057
- M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
- C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- L. Han, L. Wang, Z. Chen, Y. Kan, Y. Hu et al., Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv. Funct. Mater. 33, 2300892 (2023). https://doi.org/10.1002/adfm.202300892
- Y. Liu, Q. Zeng, Z. Li, A. Chen, J. Guan et al., Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv. Sci. 10, e2206978 (2023). https://doi.org/10.1002/advs.202206978
- X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8, 1702184 (2018). https://doi.org/10.1002/aenm.201702184
- W. Ren, C. Ding, X. Fu, Y. Huang, Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives. Energy Storage Mater. 34, 515–535 (2021). https://doi.org/10.1016/j.ensm.2020.10.018
- N. Yadav, N. Yadav, S.A. Hashmi, High-energy-density carbon supercapacitors incorporating a plastic-crystal-based nonaqueous redox-active gel polymer electrolyte. ACS Appl. Energy Mater. 4, 6635–6649 (2021). https://doi.org/10.1021/acsaem.1c00703
- Y. Zhang, T. Zeng, W. Yan, D. Huang, Y. Zhang et al., A high-performance flexible supercapacitor using dual alkaline redox electrolytes. Carbon 188, 315–324 (2022). https://doi.org/10.1016/j.carbon.2021.12.024
- S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J. Energy Storage 27, 101072 (2020). https://doi.org/10.1016/j.est.2019.101072
- N. Yadav, N. Yadav, S.A. Hashmi, Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor. J. Power Sources 451, 227771 (2020). https://doi.org/10.1016/j.jpowsour.2020.227771
- K. Nasrin, S. Gokulnath, M. Karnan, K. Subramani, M. Sathish, Redox-additives in aqueous, non-aqueous, and all-solid-state electrolytes for carbon-based supercapacitor: a mini-review. Energy Fuels 35, 6465–6482 (2021). https://doi.org/10.1021/acs.energyfuels.1c00341
- M. Skunik-Nuckowska, K. Węgrzyn, S. Dyjak, N.H. Wisińska, P.J. Kulesza, Polyoxometalate/hydroquinone dual redox electrolyte for hybrid energy storage systems. Energy Storage Mater. 21, 427–438 (2019). https://doi.org/10.1016/j.ensm.2019.06.003
- J. Zhong, L.-Q. Fan, X. Wu, J.-H. Wu, G.-J. Liu et al., Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochim. Acta 166, 150–156 (2015). https://doi.org/10.1016/j.electacta.2015.03.114
- P. Bujewska, B. Gorska, K. Fic, Redox activity of selenocyanate anion in electrochemical capacitor application. Synth. Met. 253, 62–72 (2019). https://doi.org/10.1016/j.synthmet.2019.04.024
- E.J. Son, J.H. Kim, K. Kim, C.B. Park, Quinone and its derivatives for energy harvesting and storage materials. J. Mater. Chem. A 4, 11179–11202 (2016). https://doi.org/10.1039/C6TA03123D
- H. Hayashi, K. Ohkubo, S. Karasawa, N. Koga, Assemblies of functional small-sized molecules having 4-amino-2, 2, 6, 6-tetramethylpiperidine-1-oxyl responsive to heat and pH in water and their water proton relaxivities. Langmuir 27, 12709–12719 (2011). https://doi.org/10.1021/la2029565
- T. Ma, C.H. Li, R.M. Thakur, D.P. Tabor, J.L. Lutkenhaus, The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes. Nat. Mater. 22, 495–502 (2023). https://doi.org/10.1038/s41563-023-01518-z
- T.P. Nguyen, A.D. Easley, N. Kang, S. Khan, S.-M. Lim et al., Polypeptide organic radical batteries. Nature 593, 61–66 (2021). https://doi.org/10.1038/s41586-021-03399-1
- J. Zhang, B. Sun, Y. Zhao, A. Tkacheva, Z. Liu et al., A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 10, 602 (2019). https://doi.org/10.1038/s41467-019-08422-8
- L. Hu, C. Shi, K. Guo, T. Zhai, H. Li et al., Electrochemical double-layer capacitor energized by adding an ambipolar organic redox radical into the electrolyte. Angew. Chem. Int. Ed. 57, 8214–8218 (2018). https://doi.org/10.1002/anie.201804582
- L.T. Hu, L.L. Xue, J.Z. Fu, P. Xiao, T.Y. Zhai et al., A versatile capacity balancer for asymmetric supercapacitors. Adv. Energy Mater. 10, 2001608 (2020). https://doi.org/10.1002/aenm.202001608
- E. Pedraza, C. de la Cruz, A. Mavrandonakis, E. Ventosa, R. Rubio-Presa et al., Unprecedented aqueous solubility of TEMPO and its application as high capacity catholyte for aqueous organic redox flow batteries. Adv. Energy Mater. 13, 2301929 (2023). https://doi.org/10.1002/aenm.202301929
- I. Yu, Y. Jo, J. Ko, D.-Y. Kim, D. Sohn et al., Making nonconjugated small-molecule organic radicals conduct. Nano Lett. 20, 5376–5382 (2020). https://doi.org/10.1021/acs.nanolett.0c01730
- Y. Jo, I. Yu, J. Ko, J.E. Kwon, Y. Joo, Sequential codoping making nonconjugated organic radicals conduct ionically electronically. Small Sci. 2, 2100081 (2022). https://doi.org/10.1002/smsc.202100081
- Gaussian 16 Rev. C.01 (Wallingford, CT, 2016).
- L. Guan, Y. Zhu, Y. Wan, M. Zhang, Q. Li et al., Strong interaction between redox mediators and defect-rich carbons enabling simultaneously boosted voltage windows and capacitance for aqueous supercapacitors. Energy Environ. Mater. 7, e12658 (2024). https://doi.org/10.1002/eem2.12658
- L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10, 2201718 (2023). https://doi.org/10.1002/advs.202201718
- L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). https://doi.org/10.1039/c6ta02621d
- I. Yu, D. Jeon, B. Boudouris, Y. Joo, Mixed ionic and electronic conduction in radical polymers. Macromolecules 53, 4435–4441 (2020). https://doi.org/10.1021/acs.macromol.0c00460
- K. Sato, R. Ichinoi, R. Mizukami, T. Serikawa, Y. Sasaki et al., Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J. Am. Chem. Soc. 140, 1049–1056 (2018). https://doi.org/10.1021/jacs.7b11272
- G. Grampp, K. Rasmussen, Solvent dynamical effects on the electron self-exchange rate of the TEMPO˙/TEMPO+ couple (TEMPO = 2, 2, 6, 6-tetramethyl-1-piperidinyloxy radical) Part I. ESR-linebroadening measurements at T = 298 K. Phys. Chem. Chem. Phys. 4, 5546–5549 (2002). https://doi.org/10.1039/B206313A
- J. Blumberger, Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115, 11191–11238 (2015). https://doi.org/10.1021/acs.chemrev.5b00298
- T.-Y. Kim, Y. Wang, A.L. Raithel, T.W. Hamann, Real-time observation of the diffusion mechanism progression from liquid to solid state of transition metal complexes. ACS Energy Lett. 5, 583–588 (2020). https://doi.org/10.1021/acsenergylett.9b02677
- R.A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956). https://doi.org/10.1063/1.1742723
- T.P. Öztürk, A. Gelir, N.A. Keshtiban, Ö. Yargı, O.B. Özdemir et al., Synthesis and characterization of PVA-based binary-gel electrolytes including massive ions. J. Solid State Electrochem. 27, 885–894 (2023). https://doi.org/10.1007/s10008-023-05390-4
- X. Zhang, L. Wang, J. Peng, P. Cao, X. Cai et al., A flexible ionic liquid gelled PVA-Li2SO4 polymer electrolyte for semi-solid-state supercapacitors. Adv. Mater. Interfaces 2, 1500267 (2015). https://doi.org/10.1002/admi.201500267
- L.-Q. Fan, Q.-M. Tu, C.-L. Geng, J.-L. Huang, Y. Gu et al., High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte. Electrochim. Acta 331, 135425 (2020). https://doi.org/10.1016/j.electacta.2019.135425
- E. Feng, W. Gao, J. Li, J. Wei, Q. Yang et al., Stretchable, healable, adhesive, and redox-active multifunctional supramolecular hydrogel-based flexible supercapacitor. ACS Sustain. Chem. Eng. 8, 3311–3320 (2020). https://doi.org/10.1021/acssuschemeng.9b07153
- M. Sandhiya, S.S. Vivekanand, M.S. Balaji, Na2MoO4-incorporated polymer gel electrolyte for high energy density flexible supercapacitor. ACS Appl. Energy Mater. 3, 11368–11377 (2020). https://doi.org/10.1021/acsaem.0c02299
- X. Tang, Y.H. Lui, A.R. Merhi, B. Chen, S. Ding et al., Redox-active hydrogel polymer electrolytes with different pH values for enhancing the energy density of the hybrid solid-state supercapacitor. ACS Appl. Mater. Interfaces 9, 44429–44440 (2017). https://doi.org/10.1021/acsami.7b11849
- Q.-M. Tu, L.-Q. Fan, F. Pan, J.-L. Huang, Y. Gu et al., Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim. Acta 268, 562–568 (2018). https://doi.org/10.1016/j.electacta.2018.02.008
- Z. Yong, S. Wang, X. Wang, G. Liu, D. Liang et al., An all-in-one flexible supercapacitor based on redox ionogel electrolyte with high cycle performance. J. Alloys Compd. 893, 162197 (2022). https://doi.org/10.1016/j.jallcom.2021.162197
- R.C. Agrawal, G.P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D Appl. Phys. 41, 223001 (2008). https://doi.org/10.1088/0022-3727/41/22/223001
- S. Xue, S. Chen, Y. Fu, H. Zhu, Y. Ji et al., Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes. Small 19, 2305326 (2023). https://doi.org/10.1002/smll.202305326
- H. Yang, N. Wu, Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy Sci. Eng. 10, 1643–1671 (2022). https://doi.org/10.1002/ese3.1163
- J. Liu, Z. Khanam, S. Ahmed, H. Wang, T. Wang et al., A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J. Power Sources 488, 229461 (2021). https://doi.org/10.1016/j.jpowsour.2021.229461
- L.C.O. da Silva, B.G. Soares, New all solid-state polymer electrolyte based on epoxy resin and ionic liquid for high temperature applications. J. Appl. Polym. Sci. 135, 45838 (2018). https://doi.org/10.1002/app.45838
- D.-J. You, Z. Yin, Y.-K. Ahn, S.-H. Lee, J. Yoo et al., Redox-active ionic liquid electrolyte with multi energy storage mechanism for high energy density supercapacitor. RSC Adv. 7, 55702–55708 (2017). https://doi.org/10.1039/C7RA10772B
- B. Asbani, C. Douard, T. Brousse, J. Le Bideau, High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Mater. 21, 439–445 (2019). https://doi.org/10.1016/j.ensm.2019.06.004
- S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 (2023). https://doi.org/10.1007/s40820-023-01150-1
- J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16, 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
- Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231 (2023). https://doi.org/10.1007/s40820-023-01204-4
- H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
- Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023). https://doi.org/10.1007/s40820-023-01113-6
- J. Wang, W. Guo, K. Tian, X. Li, X. Wang et al., Proof of aerobically autoxidized self-charge concept based on single catechol-enriched carbon cathode material. Nano-Micro Lett. 16, 62 (2023). https://doi.org/10.1007/s40820-023-01283-3
References
C. Chen, J. Feng, J. Li, Y. Guo, X. Shi et al., Functional fiber materials to smart fiber devices. Chem. Rev. 123, 613–662 (2023). https://doi.org/10.1021/acs.chemrev.2c00192
J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
X. Huang, C. Wang, C. Li, M. Liao, J. Li et al., Braided fiber current collectors for high-energy-density fiber lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202303616 (2023). https://doi.org/10.1002/anie.202303616
J.G. Kim, H. Yu, J.Y. Jung, M.J. Kim, D.Y. Jeon et al., 3D architecturing strategy on the utmost carbon nanotube fiber for ultra-high performance fiber-shaped supercapacitor. Adv. Funct. Mater. 32, 2113057 (2022). https://doi.org/10.1002/adfm.202113057
M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
L. Han, L. Wang, Z. Chen, Y. Kan, Y. Hu et al., Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv. Funct. Mater. 33, 2300892 (2023). https://doi.org/10.1002/adfm.202300892
Y. Liu, Q. Zeng, Z. Li, A. Chen, J. Guan et al., Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv. Sci. 10, e2206978 (2023). https://doi.org/10.1002/advs.202206978
X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8, 1702184 (2018). https://doi.org/10.1002/aenm.201702184
W. Ren, C. Ding, X. Fu, Y. Huang, Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives. Energy Storage Mater. 34, 515–535 (2021). https://doi.org/10.1016/j.ensm.2020.10.018
N. Yadav, N. Yadav, S.A. Hashmi, High-energy-density carbon supercapacitors incorporating a plastic-crystal-based nonaqueous redox-active gel polymer electrolyte. ACS Appl. Energy Mater. 4, 6635–6649 (2021). https://doi.org/10.1021/acsaem.1c00703
Y. Zhang, T. Zeng, W. Yan, D. Huang, Y. Zhang et al., A high-performance flexible supercapacitor using dual alkaline redox electrolytes. Carbon 188, 315–324 (2022). https://doi.org/10.1016/j.carbon.2021.12.024
S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J. Energy Storage 27, 101072 (2020). https://doi.org/10.1016/j.est.2019.101072
N. Yadav, N. Yadav, S.A. Hashmi, Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor. J. Power Sources 451, 227771 (2020). https://doi.org/10.1016/j.jpowsour.2020.227771
K. Nasrin, S. Gokulnath, M. Karnan, K. Subramani, M. Sathish, Redox-additives in aqueous, non-aqueous, and all-solid-state electrolytes for carbon-based supercapacitor: a mini-review. Energy Fuels 35, 6465–6482 (2021). https://doi.org/10.1021/acs.energyfuels.1c00341
M. Skunik-Nuckowska, K. Węgrzyn, S. Dyjak, N.H. Wisińska, P.J. Kulesza, Polyoxometalate/hydroquinone dual redox electrolyte for hybrid energy storage systems. Energy Storage Mater. 21, 427–438 (2019). https://doi.org/10.1016/j.ensm.2019.06.003
J. Zhong, L.-Q. Fan, X. Wu, J.-H. Wu, G.-J. Liu et al., Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochim. Acta 166, 150–156 (2015). https://doi.org/10.1016/j.electacta.2015.03.114
P. Bujewska, B. Gorska, K. Fic, Redox activity of selenocyanate anion in electrochemical capacitor application. Synth. Met. 253, 62–72 (2019). https://doi.org/10.1016/j.synthmet.2019.04.024
E.J. Son, J.H. Kim, K. Kim, C.B. Park, Quinone and its derivatives for energy harvesting and storage materials. J. Mater. Chem. A 4, 11179–11202 (2016). https://doi.org/10.1039/C6TA03123D
H. Hayashi, K. Ohkubo, S. Karasawa, N. Koga, Assemblies of functional small-sized molecules having 4-amino-2, 2, 6, 6-tetramethylpiperidine-1-oxyl responsive to heat and pH in water and their water proton relaxivities. Langmuir 27, 12709–12719 (2011). https://doi.org/10.1021/la2029565
T. Ma, C.H. Li, R.M. Thakur, D.P. Tabor, J.L. Lutkenhaus, The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes. Nat. Mater. 22, 495–502 (2023). https://doi.org/10.1038/s41563-023-01518-z
T.P. Nguyen, A.D. Easley, N. Kang, S. Khan, S.-M. Lim et al., Polypeptide organic radical batteries. Nature 593, 61–66 (2021). https://doi.org/10.1038/s41586-021-03399-1
J. Zhang, B. Sun, Y. Zhao, A. Tkacheva, Z. Liu et al., A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 10, 602 (2019). https://doi.org/10.1038/s41467-019-08422-8
L. Hu, C. Shi, K. Guo, T. Zhai, H. Li et al., Electrochemical double-layer capacitor energized by adding an ambipolar organic redox radical into the electrolyte. Angew. Chem. Int. Ed. 57, 8214–8218 (2018). https://doi.org/10.1002/anie.201804582
L.T. Hu, L.L. Xue, J.Z. Fu, P. Xiao, T.Y. Zhai et al., A versatile capacity balancer for asymmetric supercapacitors. Adv. Energy Mater. 10, 2001608 (2020). https://doi.org/10.1002/aenm.202001608
E. Pedraza, C. de la Cruz, A. Mavrandonakis, E. Ventosa, R. Rubio-Presa et al., Unprecedented aqueous solubility of TEMPO and its application as high capacity catholyte for aqueous organic redox flow batteries. Adv. Energy Mater. 13, 2301929 (2023). https://doi.org/10.1002/aenm.202301929
I. Yu, Y. Jo, J. Ko, D.-Y. Kim, D. Sohn et al., Making nonconjugated small-molecule organic radicals conduct. Nano Lett. 20, 5376–5382 (2020). https://doi.org/10.1021/acs.nanolett.0c01730
Y. Jo, I. Yu, J. Ko, J.E. Kwon, Y. Joo, Sequential codoping making nonconjugated organic radicals conduct ionically electronically. Small Sci. 2, 2100081 (2022). https://doi.org/10.1002/smsc.202100081
Gaussian 16 Rev. C.01 (Wallingford, CT, 2016).
L. Guan, Y. Zhu, Y. Wan, M. Zhang, Q. Li et al., Strong interaction between redox mediators and defect-rich carbons enabling simultaneously boosted voltage windows and capacitance for aqueous supercapacitors. Energy Environ. Mater. 7, e12658 (2024). https://doi.org/10.1002/eem2.12658
L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10, 2201718 (2023). https://doi.org/10.1002/advs.202201718
L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). https://doi.org/10.1039/c6ta02621d
I. Yu, D. Jeon, B. Boudouris, Y. Joo, Mixed ionic and electronic conduction in radical polymers. Macromolecules 53, 4435–4441 (2020). https://doi.org/10.1021/acs.macromol.0c00460
K. Sato, R. Ichinoi, R. Mizukami, T. Serikawa, Y. Sasaki et al., Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J. Am. Chem. Soc. 140, 1049–1056 (2018). https://doi.org/10.1021/jacs.7b11272
G. Grampp, K. Rasmussen, Solvent dynamical effects on the electron self-exchange rate of the TEMPO˙/TEMPO+ couple (TEMPO = 2, 2, 6, 6-tetramethyl-1-piperidinyloxy radical) Part I. ESR-linebroadening measurements at T = 298 K. Phys. Chem. Chem. Phys. 4, 5546–5549 (2002). https://doi.org/10.1039/B206313A
J. Blumberger, Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115, 11191–11238 (2015). https://doi.org/10.1021/acs.chemrev.5b00298
T.-Y. Kim, Y. Wang, A.L. Raithel, T.W. Hamann, Real-time observation of the diffusion mechanism progression from liquid to solid state of transition metal complexes. ACS Energy Lett. 5, 583–588 (2020). https://doi.org/10.1021/acsenergylett.9b02677
R.A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956). https://doi.org/10.1063/1.1742723
T.P. Öztürk, A. Gelir, N.A. Keshtiban, Ö. Yargı, O.B. Özdemir et al., Synthesis and characterization of PVA-based binary-gel electrolytes including massive ions. J. Solid State Electrochem. 27, 885–894 (2023). https://doi.org/10.1007/s10008-023-05390-4
X. Zhang, L. Wang, J. Peng, P. Cao, X. Cai et al., A flexible ionic liquid gelled PVA-Li2SO4 polymer electrolyte for semi-solid-state supercapacitors. Adv. Mater. Interfaces 2, 1500267 (2015). https://doi.org/10.1002/admi.201500267
L.-Q. Fan, Q.-M. Tu, C.-L. Geng, J.-L. Huang, Y. Gu et al., High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte. Electrochim. Acta 331, 135425 (2020). https://doi.org/10.1016/j.electacta.2019.135425
E. Feng, W. Gao, J. Li, J. Wei, Q. Yang et al., Stretchable, healable, adhesive, and redox-active multifunctional supramolecular hydrogel-based flexible supercapacitor. ACS Sustain. Chem. Eng. 8, 3311–3320 (2020). https://doi.org/10.1021/acssuschemeng.9b07153
M. Sandhiya, S.S. Vivekanand, M.S. Balaji, Na2MoO4-incorporated polymer gel electrolyte for high energy density flexible supercapacitor. ACS Appl. Energy Mater. 3, 11368–11377 (2020). https://doi.org/10.1021/acsaem.0c02299
X. Tang, Y.H. Lui, A.R. Merhi, B. Chen, S. Ding et al., Redox-active hydrogel polymer electrolytes with different pH values for enhancing the energy density of the hybrid solid-state supercapacitor. ACS Appl. Mater. Interfaces 9, 44429–44440 (2017). https://doi.org/10.1021/acsami.7b11849
Q.-M. Tu, L.-Q. Fan, F. Pan, J.-L. Huang, Y. Gu et al., Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim. Acta 268, 562–568 (2018). https://doi.org/10.1016/j.electacta.2018.02.008
Z. Yong, S. Wang, X. Wang, G. Liu, D. Liang et al., An all-in-one flexible supercapacitor based on redox ionogel electrolyte with high cycle performance. J. Alloys Compd. 893, 162197 (2022). https://doi.org/10.1016/j.jallcom.2021.162197
R.C. Agrawal, G.P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D Appl. Phys. 41, 223001 (2008). https://doi.org/10.1088/0022-3727/41/22/223001
S. Xue, S. Chen, Y. Fu, H. Zhu, Y. Ji et al., Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes. Small 19, 2305326 (2023). https://doi.org/10.1002/smll.202305326
H. Yang, N. Wu, Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy Sci. Eng. 10, 1643–1671 (2022). https://doi.org/10.1002/ese3.1163
J. Liu, Z. Khanam, S. Ahmed, H. Wang, T. Wang et al., A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J. Power Sources 488, 229461 (2021). https://doi.org/10.1016/j.jpowsour.2021.229461
L.C.O. da Silva, B.G. Soares, New all solid-state polymer electrolyte based on epoxy resin and ionic liquid for high temperature applications. J. Appl. Polym. Sci. 135, 45838 (2018). https://doi.org/10.1002/app.45838
D.-J. You, Z. Yin, Y.-K. Ahn, S.-H. Lee, J. Yoo et al., Redox-active ionic liquid electrolyte with multi energy storage mechanism for high energy density supercapacitor. RSC Adv. 7, 55702–55708 (2017). https://doi.org/10.1039/C7RA10772B
B. Asbani, C. Douard, T. Brousse, J. Le Bideau, High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Mater. 21, 439–445 (2019). https://doi.org/10.1016/j.ensm.2019.06.004
S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 (2023). https://doi.org/10.1007/s40820-023-01150-1
J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16, 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231 (2023). https://doi.org/10.1007/s40820-023-01204-4
H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023). https://doi.org/10.1007/s40820-023-01113-6
J. Wang, W. Guo, K. Tian, X. Li, X. Wang et al., Proof of aerobically autoxidized self-charge concept based on single catechol-enriched carbon cathode material. Nano-Micro Lett. 16, 62 (2023). https://doi.org/10.1007/s40820-023-01283-3