Unlocking Novel Functionality: Pseudocapacitive Sensing in MXene-Based Flexible Supercapacitors
Corresponding Author: Yonghee Lee
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 86
Abstract
Extensively explored for their distinctive pseudocapacitance characteristics, MXenes, a distinguished group of 2D materials, have led to remarkable achievements, particularly in the realm of energy storage devices. This work presents an innovative Pseudocapacitive Sensor. The key lies in switching the energy storage kinetics from pseudocapacitor to electrical double layer capacitor by employing the change of local pH (-log[H+]) in MXene-based flexible supercapacitors during bending. Pseudocapacitive sensing is observed in acidic electrolyte but absent in neutral electrolyte. Applied shearing during bending causes liquid-crystalline MXene sheets to increase in their degree of anisotropic alignment. With blocking of H+ mobility due to the higher diffusion barrier, local pH increases. The electrochemical energy storage kinetics transits from Faradaic chemical protonation (intercalation) to non-Faradaic physical adsorption. We utilize the phenomenon of capacitance change due to shifting energy storage kinetics for strain sensing purposes. The developed highly sensitive Pseudocapacitive Sensors feature a remarkable gauge factor (GF) of approximately 1200, far surpassing conventional strain sensors (GF: ~ 1 for dielectric-cap sensor). The introduction of the Pseudocapacitive Sensor represents a paradigm shift, expanding the application of pseudocapacitance from being solely confined to energy devices to the realm of multifunctional electronics. This technological leap enriches our understanding of the pseudocapacitance mechanism of MXenes, and will drive innovation in cutting-edge technology areas, including advanced robotics, implantable biomedical devices, and health monitoring systems.
Highlights:
1 We have discovered a novel phenomenon where the pseudocapacitance of flexible MXene supercapacitors changes sensitively in response to bending, leading to the development of Pseudocapacitive Sensors.
2 Pseudocapacitive Sensors repurpose supercapacitors as strain sensors, detecting capacitance changes from shifts between pseudocapacitance and electrical double layer capacitor. These highly sensitive sensors have a gauge factor of about 1200, far exceeding that of conventional strain sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
- D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides–solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
- Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
- Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/C6EE01717G
- E. Kim, B.-J. Lee, K. Maleski, Y. Chae, Y. Lee et al., Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes. Nano Energy 81, 105616 (2021). https://doi.org/10.1016/j.nanoen.2020.105616
- C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang et al., Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015). https://doi.org/10.1038/ncomms7694
- C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- X. Mu, D. Wang, F. Du, G. Chen, C. Wang et al., Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 29, 1902953 (2019). https://doi.org/10.1002/adfm.201902953
- M. Boota, B. Anasori, C. Voigt, M.-Q. Zhao, M.W. Barsoum et al., Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
- K. Li, X. Wang, X. Wang, M. Liang, V. Nicolosi et al., All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy 75, 104971 (2020). https://doi.org/10.1016/j.nanoen.2020.104971
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon et al., Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019). https://doi.org/10.1002/aenm.201902007
- M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc. Chem. Res. 51, 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
- C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi et al., Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
- K. Okada, T. Horii, Y. Yamaguchi, K. Son, N. Hosoya et al., Ultraconformable capacitive strain sensor utilizing network structure of single-walled carbon nanotubes for wireless body sensing. ACS Appl. Mater. Interfaces 16, 10427–10438 (2024). https://doi.org/10.1021/acsami.3c19320
- A.F. Yilmaz, I.A.K. Ahmed, C. Gumus, K. Ozlem, M.S. Cetin et al., Highly stretchable textile knitted interdigital sensor for wearable technology applications. Adv. Sens. Res. 3, 2300121 (2024). https://doi.org/10.1002/adsr.202300121
- H. Xu, Y. Lv, D. Qiu, Y. Zhou, H. Zeng et al., An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale 11, 1570–1578 (2019). https://doi.org/10.1039/c8nr08589g
- V.K. Rao, N. Shauloff, X. Sui, H.D. Wagner, R. Jelinek, Polydiacetylene hydrogel self-healing capacitive strain sensor. J. Mater. Chem. C 8, 6034–6041 (2020). https://doi.org/10.1039/d0tc00576b
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- E. Kim, J. Song, T.-E. Song, H. Kim, Y.-J. Kim et al., Scalable fabrication of MXene-based flexible micro-supercapacitor with outstanding volumetric capacitance. Chem. Eng. J. 450, 138456 (2022). https://doi.org/10.1016/j.cej.2022.138456
- V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier et al., A critical analysis of the X-ray photoelectron spectra of Ti3C2Tx MXenes. Matter 4, 1224–1251 (2021). https://doi.org/10.1016/j.matt.2021.01.015
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- H. Yun, Y. Chae, E. Kim, H.K. Kim, S. Jang et al., Ultra-stable titanium carbide MXene functionalized with heterocyclic aromatic amines. Adv. Funct. Mater. 32, 2203296 (2022). https://doi.org/10.1002/adfm.202203296
- E. Berger, Z.-P. Lv, H.-P. Komsa, Raman spectra of 2D titanium carbide MXene from machine-learning force field molecular dynamics. J. Mater. Chem. C 11, 1311–1319 (2023). https://doi.org/10.1039/D2TC04374B
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
- A. Sarycheva, M. Shanmugasundaram, A. Krayev, Y. Gogotsi, Tip-enhanced Raman scattering imaging of single- to few-layer Ti3C2Tx MXene. ACS Nano 16, 6858–6865 (2022). https://doi.org/10.1021/acsnano.2c01868
- M.R. Lukatskaya et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- Q. Zhu, J. Li, P. Simon, B. Xu, Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater. 35, 630–660 (2021). https://doi.org/10.1016/j.ensm.2020.11.035
- H. Li, X. Li, J. Liang, Y. Chen, Micro-supercapacitors: Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9, 1970050 (2019). https://doi.org/10.1002/aenm.201970050
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11, 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
- J. Ma, H. Huang, B. Li, Wavy-shaped flexible capacitive strain sensor for multiple deformations recognition. Sens. Actuat. A Phys. 366, 115025 (2024). https://doi.org/10.1016/j.sna.2024.115025
- A. Prokopchuk et al., Manufacturing of soft capacitive strain sensor based on dielectric elastomer material for an elastic element of a jaw coupling. Eng. Res. Express. 6, 015403 (2024). https://doi.org/10.1088/2631-8695/ad2b28
- S. Matsalis, G. Paterakis, N. Koutroumanis, G. Anagnostopoulos, C. Galiotis, Fabrication and performance of capacitive humidity and strain sensors that incorporate 3D-printed nanocomposite electrodes. Sens. Int. 5, 100272 (2024). https://doi.org/10.1016/j.sintl.2023.100272
- C. Deng, L. Lan, P. He, C. Ding, B. Chen et al., High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. J. Mater. Chem. C 8, 5541–5546 (2020). https://doi.org/10.1039/d0tc00491j
- L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang et al., Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep. 3, 3048 (2013). https://doi.org/10.1038/srep03048
- J. Shintake, Y. Piskarev, S.H. Jeong, D. Floreano, Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors. Adv. Mater. Technol. 3, 1700284 (2018). https://doi.org/10.1002/admt.201700284
- Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori et al., Electrochemical and in situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun. 72, 50–53 (2016). https://doi.org/10.1016/j.elecom.2016.08.023
- X. Huang et al., High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. Sci. Adv. (2023). https://doi.org/10.1126/sciadv.adh9799
- L. Zhao, P. Yang, S. Shi, X. Wang, S. Yu, Highly adaptable strain capacitive sensors with exceptional selectivity using spontaneous micrometer-pyramid electrodes. ACS Appl. Electron. Mater. 5, 977–984 (2023). https://doi.org/10.1021/acsaelm.2c01504
- P. Goel, J.P. Singh, Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing. J. Phys. D Appl. Phys. 48, 445303 (2014). https://doi.org/10.1088/0022-3727/48/44/445303
- X. Wang, Y. Deng, P. Jiang, X. Chen, H. Yu, Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. Microsyst. Nanoeng. 8, 113 (2022). https://doi.org/10.1038/s41378-022-00450-7
- J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5, 1900285 (2019). https://doi.org/10.1002/aelm.201900285
- X. Zheng, Y. Wang, W. Nie, Z. Wang, Q. Hu et al., Elastic polyaniline nanoarrays/MXene textiles for all-solid-state supercapacitors and anisotropic strain sensors. Compos. Part A Appl. Sci. Manuf. 158, 106985 (2022). https://doi.org/10.1016/j.compositesa.2022.106985
- Y. Xie, P. Ou, X. Wang, Z. Xu, Y.C. Li et al., High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022). https://doi.org/10.1038/s41929-022-00788-1
- K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee et al., Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. 56, 796–800 (2017). https://doi.org/10.1002/anie.201610432
- D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015). https://doi.org/10.1021/cs502128q
- Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
- M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima et al., An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517, 68–72 (2015). https://doi.org/10.1038/nature14060
- G.S. Lee, T. Yun, H. Kim, I.H. Kim, J. Choi et al., Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14, 11722–11732 (2020). https://doi.org/10.1021/acsnano.0c04411
- G. Zhong, T. Cheng, A.H. Shah, C. Wan, Z. Huang et al., Determining the hydronium pKα at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics. PNAS 119, e2208187119 (2022). https://doi.org/10.1073/pnas.2208187119
References
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides–solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/C6EE01717G
E. Kim, B.-J. Lee, K. Maleski, Y. Chae, Y. Lee et al., Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes. Nano Energy 81, 105616 (2021). https://doi.org/10.1016/j.nanoen.2020.105616
C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang et al., Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015). https://doi.org/10.1038/ncomms7694
C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
X. Mu, D. Wang, F. Du, G. Chen, C. Wang et al., Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 29, 1902953 (2019). https://doi.org/10.1002/adfm.201902953
M. Boota, B. Anasori, C. Voigt, M.-Q. Zhao, M.W. Barsoum et al., Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
K. Li, X. Wang, X. Wang, M. Liang, V. Nicolosi et al., All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy 75, 104971 (2020). https://doi.org/10.1016/j.nanoen.2020.104971
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon et al., Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019). https://doi.org/10.1002/aenm.201902007
M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc. Chem. Res. 51, 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi et al., Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
K. Okada, T. Horii, Y. Yamaguchi, K. Son, N. Hosoya et al., Ultraconformable capacitive strain sensor utilizing network structure of single-walled carbon nanotubes for wireless body sensing. ACS Appl. Mater. Interfaces 16, 10427–10438 (2024). https://doi.org/10.1021/acsami.3c19320
A.F. Yilmaz, I.A.K. Ahmed, C. Gumus, K. Ozlem, M.S. Cetin et al., Highly stretchable textile knitted interdigital sensor for wearable technology applications. Adv. Sens. Res. 3, 2300121 (2024). https://doi.org/10.1002/adsr.202300121
H. Xu, Y. Lv, D. Qiu, Y. Zhou, H. Zeng et al., An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale 11, 1570–1578 (2019). https://doi.org/10.1039/c8nr08589g
V.K. Rao, N. Shauloff, X. Sui, H.D. Wagner, R. Jelinek, Polydiacetylene hydrogel self-healing capacitive strain sensor. J. Mater. Chem. C 8, 6034–6041 (2020). https://doi.org/10.1039/d0tc00576b
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
E. Kim, J. Song, T.-E. Song, H. Kim, Y.-J. Kim et al., Scalable fabrication of MXene-based flexible micro-supercapacitor with outstanding volumetric capacitance. Chem. Eng. J. 450, 138456 (2022). https://doi.org/10.1016/j.cej.2022.138456
V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier et al., A critical analysis of the X-ray photoelectron spectra of Ti3C2Tx MXenes. Matter 4, 1224–1251 (2021). https://doi.org/10.1016/j.matt.2021.01.015
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
H. Yun, Y. Chae, E. Kim, H.K. Kim, S. Jang et al., Ultra-stable titanium carbide MXene functionalized with heterocyclic aromatic amines. Adv. Funct. Mater. 32, 2203296 (2022). https://doi.org/10.1002/adfm.202203296
E. Berger, Z.-P. Lv, H.-P. Komsa, Raman spectra of 2D titanium carbide MXene from machine-learning force field molecular dynamics. J. Mater. Chem. C 11, 1311–1319 (2023). https://doi.org/10.1039/D2TC04374B
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
A. Sarycheva, M. Shanmugasundaram, A. Krayev, Y. Gogotsi, Tip-enhanced Raman scattering imaging of single- to few-layer Ti3C2Tx MXene. ACS Nano 16, 6858–6865 (2022). https://doi.org/10.1021/acsnano.2c01868
M.R. Lukatskaya et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
Q. Zhu, J. Li, P. Simon, B. Xu, Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater. 35, 630–660 (2021). https://doi.org/10.1016/j.ensm.2020.11.035
H. Li, X. Li, J. Liang, Y. Chen, Micro-supercapacitors: Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9, 1970050 (2019). https://doi.org/10.1002/aenm.201970050
J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11, 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
J. Ma, H. Huang, B. Li, Wavy-shaped flexible capacitive strain sensor for multiple deformations recognition. Sens. Actuat. A Phys. 366, 115025 (2024). https://doi.org/10.1016/j.sna.2024.115025
A. Prokopchuk et al., Manufacturing of soft capacitive strain sensor based on dielectric elastomer material for an elastic element of a jaw coupling. Eng. Res. Express. 6, 015403 (2024). https://doi.org/10.1088/2631-8695/ad2b28
S. Matsalis, G. Paterakis, N. Koutroumanis, G. Anagnostopoulos, C. Galiotis, Fabrication and performance of capacitive humidity and strain sensors that incorporate 3D-printed nanocomposite electrodes. Sens. Int. 5, 100272 (2024). https://doi.org/10.1016/j.sintl.2023.100272
C. Deng, L. Lan, P. He, C. Ding, B. Chen et al., High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. J. Mater. Chem. C 8, 5541–5546 (2020). https://doi.org/10.1039/d0tc00491j
L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang et al., Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep. 3, 3048 (2013). https://doi.org/10.1038/srep03048
J. Shintake, Y. Piskarev, S.H. Jeong, D. Floreano, Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors. Adv. Mater. Technol. 3, 1700284 (2018). https://doi.org/10.1002/admt.201700284
Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori et al., Electrochemical and in situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun. 72, 50–53 (2016). https://doi.org/10.1016/j.elecom.2016.08.023
X. Huang et al., High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. Sci. Adv. (2023). https://doi.org/10.1126/sciadv.adh9799
L. Zhao, P. Yang, S. Shi, X. Wang, S. Yu, Highly adaptable strain capacitive sensors with exceptional selectivity using spontaneous micrometer-pyramid electrodes. ACS Appl. Electron. Mater. 5, 977–984 (2023). https://doi.org/10.1021/acsaelm.2c01504
P. Goel, J.P. Singh, Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing. J. Phys. D Appl. Phys. 48, 445303 (2014). https://doi.org/10.1088/0022-3727/48/44/445303
X. Wang, Y. Deng, P. Jiang, X. Chen, H. Yu, Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. Microsyst. Nanoeng. 8, 113 (2022). https://doi.org/10.1038/s41378-022-00450-7
J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5, 1900285 (2019). https://doi.org/10.1002/aelm.201900285
X. Zheng, Y. Wang, W. Nie, Z. Wang, Q. Hu et al., Elastic polyaniline nanoarrays/MXene textiles for all-solid-state supercapacitors and anisotropic strain sensors. Compos. Part A Appl. Sci. Manuf. 158, 106985 (2022). https://doi.org/10.1016/j.compositesa.2022.106985
Y. Xie, P. Ou, X. Wang, Z. Xu, Y.C. Li et al., High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022). https://doi.org/10.1038/s41929-022-00788-1
K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee et al., Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. 56, 796–800 (2017). https://doi.org/10.1002/anie.201610432
D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015). https://doi.org/10.1021/cs502128q
Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima et al., An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517, 68–72 (2015). https://doi.org/10.1038/nature14060
G.S. Lee, T. Yun, H. Kim, I.H. Kim, J. Choi et al., Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14, 11722–11732 (2020). https://doi.org/10.1021/acsnano.0c04411
G. Zhong, T. Cheng, A.H. Shah, C. Wan, Z. Huang et al., Determining the hydronium pKα at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics. PNAS 119, e2208187119 (2022). https://doi.org/10.1073/pnas.2208187119