Functional Materials and Innovative Strategies for Wearable Thermal Management Applications
Corresponding Author: Seung Hwan Ko
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 160
Abstract
Thermal management is essential in our body as it affects various bodily functions, ranging from thermal discomfort to serious organ failures, as an example of the worst-case scenario. There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body, employing diverse materials and systematic approaches to attaining thermal homeostasis. This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables, particularly emphasizing the strategic methodology to regulate body temperature. There exist several methods to promote personal thermal management in a wearable form. For instance, we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface. Thus, we classify many studies into two branches, passive and active thermal management modes, which are further subdivided into specific strategies. Apart from discussing the strategies and their mechanisms, we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.
Highlights:
1 This article systematically reviews the thermal management wearables with a specific emphasis on materials and strategies to regulate the human body temperature.
2 Thermal management wearables are subdivided into the active and passive thermal managing methods.
3 The strength and weakness of each thermal regulatory wearables are discussed in details from the view point of practical usage in real-life.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.J. Kaiyala, Energy Homeostasis: Thermoregulation, in Encyclopedia of Neuroscience. ed. by L.R. Squire (Elsevier, Oxford, 2009), pp.1043–1052
- E.V. Osilla, J.L. Marsidi, S. Sharma, Physiology, temperature regulation, in: StatPearls [Internet], StatPearls Publishing.
- I. Sarbu, A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration, air-conditioning and heat pump systems. Int. J. Refrig. 46(1), 123–141 (2014). https://doi.org/10.1016/j.ijrefrig.2014.04.023
- D.R. Brown, T. Stout, J.A. Dirks, N. Fernandez, The prospects of alternatives to vapor compression technology for space cooling and food refrigeration applications. Energy Eng. 109(6), 7–20 (2012). https://doi.org/10.1080/01998595.2012.10554226
- Q. Zhang, T. Xue, J. Tian, Y. Yang, W. Fan et al., Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. Compos. Sci. Technol. 226(28), 109541 (2022). https://doi.org/10.1016/j.compscitech.2022.109541
- J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool et al., Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. J. Mater. Chem. A 8(38), 20133–20140 (2020). https://doi.org/10.1039/C9TA13925G
- Y. Kou, K. Sun, J. Luo, F. Zhou, H. Huang et al., An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 34(1), 508–514 (2021). https://doi.org/10.1016/j.ensm.2020.10.014
- X. Qi, T. Zhu, W. Hu, W. Jiang, J. Yang et al., Multifunctional polyacrylamide/hydrated salt/mxene phase change hydrogels with high thermal energy storage, photothermal conversion capability and strain sensitivity for personal healthcare. Compos. Sci. Technol. 234(22), 109947 (2023). https://doi.org/10.1016/j.compscitech.2023.109947
- Y. Luo, H. Wu, J. Qiao, J. Zhang, K. Liu et al., Self-repairing thermal energy storage gels demonstrating superior thermophysical properties and wearability towards personal thermal management in static and dynamic modes. Chem. Eng. J. 457(1), 141201 (2023). https://doi.org/10.1016/j.cej.2022.141201
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11(1), 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- A.A. Candadai, E.J. Nadler, J.S. Burke, J.A. Weibel, A.M. Marconnet, Thermal and mechanical characterization of high performance polymer fabrics for applications in wearable devices. Sci. Rep. 11(1), 8705 (2021). https://doi.org/10.1038/s41598-021-87957-7
- H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15(1), 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
- Y. Jung, I. Ha, M. Kim, J. Ahn, J. Lee et al., High heat storing and thermally diffusive artificial skin for wearable thermal management. Nano Energy 105(1), 107979 (2023). https://doi.org/10.1016/j.nanoen.2022.107979
- Y. Hu, G. Yang, J. Zhou, H. Li, L. Shi et al., Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16(4), 5984–5993 (2022). https://doi.org/10.1021/acsnano.1c11301
- A. Choe, J. Yeom, Y. Kwon, Y. Lee, Y.-E. Shin et al., Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horizons. 7(12), 3258–3265 (2020). https://doi.org/10.1039/D0MH01405B
- C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11(1), 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
- X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2–Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 14(11), 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
- L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
- L. Su, H. Wang, S. Jia, S. Dai, M. Niu et al., Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 15(11), 18354–18362 (2021). https://doi.org/10.1021/acsnano.1c07755
- X. Fan, Y. Ding, Y. Liu, J. Liang, Y. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
- Q. Lei, D. He, L. Ding, F. Kong, P. He et al., Microneedle patches integrated with biomineralized melanin nanops for simultaneous skin tumor photothermal therapy and wound healing. Adv. Funct. Mater. 32(22), 2113269 (2022). https://doi.org/10.1002/adfm.202113269
- C. Chen, R. Wang, X.L. Li, B. Zhao et al., Structural design of nanowire wearable stretchable thermoelectric generator. Nano Lett. 22(10), 4131–4136 (2022). https://doi.org/10.1021/acs.nanolett.2c00872
- M.H. Jeong, K.C. Kim, J.S. Kim, K.J. Choi, Operation of wearable thermoelectric generators using dual sources of heat and light. Adv. Sci. 9(12), 2104915 (2022). https://doi.org/10.1002/advs.202104915
- K. Li, T.H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic mxene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
- M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx mxene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15(7), 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
- F. Li, S. Wang, Z. Wang, K. Jiang, X. Zhao et al., Fouling-proof cooling (fp-cool) fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation. Adv. Funct. Mater. 33(4), 2210769 (2023). https://doi.org/10.1021/acsnano.1c00903
- Y. Peng, J. Zhou, Y. Yang, J.C. Lai, Y. Ye et al., An integrated 3d hydrophilicity/hydrophobicity design for artificial sweating skin (i-trans) mimicking human body perspiration. Adv. Mater. 34(44), 2204168 (2022). https://doi.org/10.1002/adma.202204168
- Y. Wang, G. Xia, H. Yu, B. Qian, Y.H. Cheung et al., Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial inhibition on pet fabric. Adv. Mater. 33(35), 2100140 (2021). https://doi.org/10.1002/adma.202100140
- D. Miao, X. Wang, J. Yu, B. Ding, A biomimetic transpiration textile for highly efficient personal drying and cooling. Adv. Funct. Mater. 31(14), 2008705 (2021). https://doi.org/10.1002/adfm.202008705
- Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12(1), 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
- B. Zhu, W. Li, Q. Zhang, D. Li, X. Liu et al., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16(12), 1342–1348 (2021). https://doi.org/10.1038/s41565-021-00987-0
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/Scienceabi5484
- H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21(9), 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
- D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Sandwich-structured textiles with hierarchically nanofibrous network and janus wettability for outdoor personal thermal and moisture management. Chem. Eng. J. 450(1), 138012 (2022). https://doi.org/10.1016/j.cej.2022.138012
- X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16(2), 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
- R. Hu, N. Wang, L. Hou, J. Liu, Z. Cui et al., Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 14(7), 9833–9843 (2022). https://doi.org/10.1021/acsami.1c22974
- D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding et al., Integration of janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
- I. Yun, Y. Lee, Y.-G. Park, H. Seo, W.G. Chung et al., Transferable transparent electrodes of liquid metals for bifacial perovskite solar cells and heaters. Nano Energy 93(1), 106857 (2022). https://doi.org/10.1016/j.nanoen.2021.106857
- P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19(9), 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
- X. Zhao, L.-Y. Wang, C.-Y. Tang, X.-J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7), 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
- D. Kim, J. Bang, W. Lee, I. Ha, J. Lee et al., Highly stretchable and oxidation-resistive cu nanowire heater for replication of the feeling of heat in a virtual world. J. Mater. Chem. A 8(17), 8281–8291 (2020). https://doi.org/10.1039/D0TA00380H
- H. Kim, J. Choi, K.K. Kim, P. Won, S. Hong et al., Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12(1), 4658 (2021). https://doi.org/10.1038/s41467-021-24916-w
- S. Lee, S.H. Byun, C.Y. Kim, S. Cho, S. Park et al., Beyond human touch perception: An adaptive robotic skin based on gallium microgranules for pressure sensory augmentation. Adv. Mater. 34(44), 2204805 (2022). https://doi.org/10.1002/adma.202204805
- J.T. Reeder, Z. Xie, Q. Yang, M.H. Seo, Y. Yan et al., Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science 377(6601), 109–115 (2022). https://doi.org/10.1126/Scienceabl8532
- S. Yan, Q. Yuan, J. Wu, Z. Jia, A free-standing, phase-change liquid metal mold for 3d flexible microfluidics. Front. Bioeng. Biotechnol. 10(1), 1094294 (2022). https://doi.org/10.3389/fbioe.2022.1094294
- D.N. Ba, Y. Zheng, L. Becerra, M. Marangolo, M. Almanza et al., Magnetocaloric effect in flexible, free-standing gadolinium thick films for energy conversion applications. Phys. Rev. Appl. 15(6), 064045 (2021). https://doi.org/10.1103/PhysRevApplied.15.064045
- G. Zhang, X. Zhang, H. Huang, J. Wang, Q. Li et al., Toward wearable cooling devices: Highly flexible electrocaloric ba. 067sr0. 33tio3 nanowire arrays. Adv. Mater. 28(24), 4811–4816 (2016). https://doi.org/10.1002/adma.201506118
- D. Wang, X. Chen, G. Yuan, Y. Jia, Y. Wang et al., Toward artificial intelligent self-cooling electronic skins: large electrocaloric effect in all-inorganic flexible thin films at room temperature. J. Materiomics 5(1), 66–72 (2019). https://doi.org/10.1016/j.jmat.2018.10.003
- C. Yang, Y. Han, C. Feng, X. Lin, S. Huang et al., Toward multifunctional electronics: flexible nbt-based film with a large electrocaloric effect and high energy storage property. ACS Appl. Mater. Interfaces 12(5), 6082–6089 (2020). https://doi.org/10.1021/acsami.9b21105
- G. Qian, K. Zhu, X. Li, K. Yan, J. Wang et al., The electrocaloric effect of pbz/pvdf flexible composite film near room temperature. J. Mater. Sci.-Mater. Electron. 32(1), 12001–12016 (2021). https://doi.org/10.1007/s10854-021-05831-8
- M.D. Li, X.Q. Shen, X. Chen, J.M. Gan, F. Wang et al., Thermal management of chips by a device prototype using synergistic effects of 3-d heat-conductive network and electrocaloric refrigeration. Nat. Commun. 13(1), 5849 (2022). https://doi.org/10.1038/s41467-022-33596-z
- J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30(29), 1909171 (2020). https://doi.org/10.1002/adfm.201909171
- J. Lee, H. Sul, Y. Jung, H. Kim, S. Han et al., Thermally controlled, active imperceptible artificial skin in visible-to-infrared range. Adv. Funct. Mater. 30(36), 2003328 (2020). https://doi.org/10.1002/adfm.202003328
- B. Lee, H. Cho, K.T. Park, J.S. Kim, M. Park et al., High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 11(1), 5948 (2020). https://doi.org/10.1038/s41467-020-19756-z
- Y. Jung, J. Choi, Y. Yoon, H. Park, J. Lee et al., Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano Energy 95(1), 107002 (2022). https://doi.org/10.1016/j.nanoen.2022.107002
- T. Nomura, N. Sheng, C. Zhu, G. Saito, D. Hanzaki et al., Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Appl. Energy 188(15), 9–18 (2017). https://doi.org/10.1016/j.apenergy.2016.11.025
- M.T. Luu, D. Milani, M. Nomvar, A. Abbas, Computer-aided design for high efficiency latent heat storage–a case study of a novel domestic solar hot water process (Elsevier, Amsterdam, 2017), pp.1153–1158
- K. Lin, Y. Zhang, X. Xu, H. Di, R. Yang et al., Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates. Build. Environ. 39(12), 1427–1434 (2004). https://doi.org/10.1016/j.buildenv.2004.04.005
- Y. Zhang, K. Lin, Q. Zhang, H. Di, Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energy Build. 38(10), 1164–1170 (2006). https://doi.org/10.1016/j.enbuild.2006.01.008
- Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di et al., Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 42(6), 2197–2209 (2007). https://doi.org/10.1016/j.buildenv.2006.07.023
- S. Wang, Y. Yin, C. Hu, P. Rezai, 3d integrated circuit cooling with microfluidics. Micromachines 9(6), 287 (2018). https://doi.org/10.3390/mi9060287
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhange et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13(1), 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- M. Helm, C. Keil, S. Hiebler, H. Mehling, C. Schweigler et al., Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience. Int. J. Refrig. 32(4), 596–606 (2009). https://doi.org/10.1016/j.ijrefrig.2009.02.010
- S. Scalat, D. Banu, D. Hawes, J. Parish, F. Haghighata et al., Full scale thermal testing of latent heat storage in wallboard. Sol. Energy Mater. Sol. Cells 44(1), 49–61 (1996). https://doi.org/10.1016/0927-0248(96)00017-7
- D. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68(5), 393–403 (2000). https://doi.org/10.1016/S0038-092X(00)00012-8
- Y. He, W. Li, N. Han, J. Wang, X. Zhang, Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl. Energy 247(1), 615–629 (2019). https://doi.org/10.1016/j.apenergy.2019.04.077
- C. Tan, H. Zhu, T. Ma, W. Guo, X. Liu et al., A stretchable laminated GNRs/BNNSs nanocomposite with high electrical and thermal conductivity. Nanoscale 11(43), 20648–20658 (2019). https://doi.org/10.1039/c9nr06060j
- Z. Wang, J. Fan, D. He, L. Ren, Z. Hao et al., Superior stretchable, low thermal resistance and efficient self-healing composite elastomers for thermal management. J. Mater. Chem. A 10(41), 21923–21932 (2022). https://doi.org/10.1039/D2TA05781F
- Y. Guo, C. Dun, J. Xu, J. Mu, P. Li et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44), 1702645 (2017). https://doi.org/10.1002/smll.201702645
- T. Huang, F. Yang, T. Wang, J. Wang, Y. Li et al., Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Appl. Mater. Today 26(1), 101299 (2022). https://doi.org/10.1016/j.apmt.2021.101299
- Y. Yao, X. Zhu, X. Zeng, R. Sun, J.-B. Xu et al., Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces 10(11), 9669–9678 (2018). https://doi.org/10.1021/acsami.8b00328
- G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang, K.-S. Moon et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mat. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
- X. Wang, P. Wu, 3d vertically aligned BNNs network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl. Mater. Interfaces 11(32), 28943–28952 (2019). https://doi.org/10.1021/acsami.9b09398
- C. Du, M. Li, M. Cao, S. Feng, H. Guo et al., Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube. Carbon 126(1), 197–207 (2018). https://doi.org/10.1016/j.carbon.2017.10.027
- D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14(1), 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- F. Lv, M. Qin, F. Zhang, H. Yu, L. Gao et al., High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 149, 281–289 (2019). https://doi.org/10.1016/j.carbon.2019.04.043
- H. Niu, H. Guo, L. Kang, L. Ren, R. Lv et al., Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14(1), 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3d lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2021). https://doi.org/10.1007/s40820-020-00548-5
- L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected mxene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14(1), 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
- H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14(1), 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
- C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: Mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- Y. Wang, J. Ren, C. Ye, Y. Pei, S. Ling, Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 13, 72 (2021). https://doi.org/10.1007/s40820-021-00591-w
- D. Hu, W. Gong, J. Di, D. Li, R. Li et al., Strong graphene-interlayered carbon nanotube films with high thermal conductivity. Carbon 118(1), 659–665 (2017). https://doi.org/10.1016/j.carbon.2017.04.005
- S. Gao, X. Bai, J. Li, M. Han, Y. Yao et al., Facile fabrication of large-area BN films for thermal management in flexible electronics. Compos. Commun. 36(1), 101392 (2022). https://doi.org/10.1016/j.coco.2022.101392
- X. He, K. Zhang, H. Wang, Y. Zhang, G. Xiao et al., Tailored carbon-based aramid nanofiber nanocomposites with highly anisotropic thermal conductivity and superior mechanical properties for thermal management. Carbon 199(1), 367–378 (2022). https://doi.org/10.1016/j.carbon.2022.07.078
- B. Shin, S. Mondal, M. Lee, S. Kim, Y.-I. Huh et al., Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 418(1), 129282 (2021). https://doi.org/10.1016/j.cej.2021.129282
- M.D. Bartlett, N. Kazem, M.J. Powell-Palm, X. Huang, W. Sun et al., High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 114(9), 2143–2148 (2017). https://doi.org/10.1073/pnas.1616377114
- Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
- Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14(1), 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
- L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14(1), 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
- H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14(1), 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu et al., Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14(1), 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
- Y. Zhu, Z. Shen, Y. Li, B. Chai, J. Chen et al., High conduction band inorganic layers for distinct enhancement of electrical energy storage in polymer nanocomposites. Nano-Micro Lett. 14(1), 151 (2022). https://doi.org/10.1007/s40820-022-00902-9
- J. Yuan, X. Qian, Z. Meng, B. Yang, Z.Q. Liu et al., Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl. Mater. Interfaces 11(19), 17915–17924 (2019). https://doi.org/10.1021/acsami.9b06062
- C. Yuan, B. Duan, L. Li, B. Xie, M. Huang et al., Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl. Mater. Interfaces 7(23), 13000–13006 (2015). https://doi.org/10.1021/acsami.5b03007
- Y. Cui, Z. Qin, H. Wu, M. Li, Y. Hu et al., Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12(1), 1284 (2021). https://doi.org/10.1038/s41467-021-21531-7
- T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15(1), 2 (2023). https://doi.org/10.1007/s40820-022-00972-9
- X. Zuo, X. Zhang, L. Qu, J. Miao, Smart fibers and textiles for personal thermal management in emerging wearable applications. Adv. Mater. Technol. 8(1), 2201137 (2022). https://doi.org/10.1002/admt.202201137
- J. Yang, K.Y. Chan, H. Venkatesan, E. Kim, M.H. Adegun et al., Superinsulating bnns/pva composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 14(1), 54 (2022). https://doi.org/10.1007/s40820-022-00797-6
- D. Xu, Z. Chen, Y. Liu, C. Ge, C. Gao et al., Hump-inspired hierarchical fabric for personal thermal protection and thermal comfort management. Adv. Funct. Mater. 33(1), 2212626 (2023). https://doi.org/10.1002/adfm.202212626
- J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
- W. Dai, X.-J. Ren, Q. Yan, S. Wang, M. Yang et al., Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 15(1), 9 (2023). https://doi.org/10.1007/s40820-022-00979-2
- X. Li, A. Vázquez-López, J.S. del Río Sáez, D.-Y. Wang, Recent advances on early-stage fire-warning systems: mechanism, performance, and perspective. Nano-Micro Lett. 14(1), 197 (2022). https://doi.org/10.1007/s40820-022-00938-x
- C.F. Cao, B. Yu, Z.Y. Chen, Y.X. Qu, Y.T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14(1), 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
- Y. Peng, W. Zhao, F. Ni, W. Yu, X. Liu, Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 15(12), 19490–19502 (2021). https://doi.org/10.1021/acsnano.1c06277
- X. He, C. Fan, T. Xu, X. Zhang, Biospired Janus silk e-textiles with wet-thermal comfort for highly efficient biofluid monitoring. Nano Lett. 21(20), 8880–8887 (2021). https://doi.org/10.1021/acs.nanolett.1c03426
- Let’s talk about… how long plasma treatment lasts? Knowledge s 2023 (2023).
- B. Dai, K. Li, L. Shi, X. Wan, X. Liu et al., Bioinspired janus textile with conical micropores for human body moisture and thermal management. Adv. Mater. 31(41), 1904113 (2019). https://doi.org/10.1002/adma.201904113
- M.A. Gebbie, W. Wei, A.M. Schrader, T.R. Cristiani, H.A. Dobbs et al., Tuning underwater adhesion with cation–π interactions. Nat. Chem. 9(5), 473–479 (2017). https://doi.org/10.1038/nchem.2720
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat951
- Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7(1), 13729 (2016). https://doi.org/10.1038/ncomms13729
- J. Lee, Y. Jung, M. Lee, J.S. Hwang, J. Guo et al., Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz. 7(9), 1054–1064 (2022). https://doi.org/10.1039/D2NH00166G
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), 1802152 (2018). https://doi.org/10.1002/adma.201802152
- B. Zhao, M. Hu, X. Ao, G. Pei, Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Sol. Energy 176(1), 248–255 (2018). https://doi.org/10.1016/j.solener.2018.10.043
- Z. Zhan, M. ElKabbash, Z. Li, X. Li, J. Zhang et al., Enhancing thermoelectric output power via radiative cooling with nanoporous alumina. Nano Energy 65(1), 104060 (2019). https://doi.org/10.1016/j.nanoen.2019.104060
- Y. Liu, S. Hou, X. Wang, L. Yin, Z. Wu et al., Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small 18(10), 2106875 (2022). https://doi.org/10.1002/smll.202106875
- J. Liang, M. Huang, X. Zhang, C. Wan, Structural design for wearable self-powered thermoelectric modules with efficient temperature difference utilization and high normalized maximum power density. Appl. Energy 327(1), 120067 (2022). https://doi.org/10.1016/j.apenergy.2022.120067
- S. Khan, J. Kim, K. Roh, G. Park, W. Kim, High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy 87(1), 106180 (2021). https://doi.org/10.1016/j.nanoen.2021.106180
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- J. Fei, D. Han, J. Ge, X. Wang, S.W. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
- L. Zhan, Z. Han, Q. Shao, M.L. Etheridge, T. Hays et al., Rapid joule heating improves vitrification based cryopreservation. Nat. Commun. 13(1), 6017 (2022). https://doi.org/10.1038/s41467-022-33546-9
- V. Balakrishnan, T. Dinh, H.-P. Phan, D.V. Dao, N.-T. Nguyen, A generalized analytical model for joule heating of segmented wires. J. Heat Transf. 140(7), 072001 (2018). https://doi.org/10.1115/1.4038829
- H. Kim, H. Lee, I. Ha, J. Jung, P. Won et al., Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater. 28(32), 1801847 (2018). https://doi.org/10.1002/adfm.201801847
- C. Cho, W. Shin, M. Kim, J. Bang, P. Won et al., Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and metallic nanowire backbone. Small 18(37), 2202841 (2022). https://doi.org/10.1002/smll.202202841
- J. Byun, Y. Lee, J. Yoon, B. Lee, E. Oh et al., Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot. 3(18), eaas9020 (2018). https://doi.org/10.1126/scirobotics.aas9020
- J. Oh, S. Kim, S. Lee, S. Jeong, S.H. Ko et al., A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31(39), 2007772 (2021). https://doi.org/10.1002/adfm.202007772
- D.T. Papanastasiou, A. Schultheiss, D. Muñoz-Rojas, C. Celle, A. Carella et al., Transparent heaters: a review. Adv. Funct. Mater. 30(21), 1910225 (2020). https://doi.org/10.1002/adfm.201910225
- S. Hong, H. Lee, J. Lee, J. Kwon, S. Han et al., Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 27(32), 4744–4751 (2015). https://doi.org/10.1002/adma.201500917
- S.Y. Lee, J.Y. Hwang, Transparent heater with meshed amorphous oxide/metal/amorphous oxide for electric vehicle applications. Sci. Rep. 10(1), 9697 (2020). https://doi.org/10.1038/s41598-020-66514-8
- J. Jang, N.S. Parmar, W.K. Choi, J.W. Choi, Rapid defrost transparent thin-film heater with flexibility and chemical stability. ACS Appl. Mater. Interfaces 12(34), 38406–38414 (2020). https://doi.org/10.1021/acsami.0c10852
- L. Veeramuthu, B.Y. Chen, C.Y. Tsai, F.C. Liang, M. Venkatesan et al., Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire. RSC Adv. 9(61), 35786–35796 (2019). https://doi.org/10.1039/c9ra06508c
- A.K. Agarwal, L. Dong, D.J. Beebe, H. Jiang, Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab Chip 7(3), 310–315 (2007). https://doi.org/10.1039/B617767K
- R. Van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585(7824), 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
- Y. Okamoto, H. Ryoson, K. Fujimoto, K. Honjo, T. Ohba et al., Hotspot liquid microfluidic cooling: comparing the efficiency between horizontal flow and vertical flow. J. Phys. Conf. Ser. 773(1), 012066 (2016). https://doi.org/10.1088/1742-6596/773/1/012066
- P. Kotagama, A. Phadnis, K.C. Manning, K. Rykaczewski, Rational design of soft, thermally conductive composite liquid-cooled tubes for enhanced personal, robotics, and wearable electronics cooling. Adv. Mater. Technol. 4(7), 1800690 (2019). https://doi.org/10.1002/admt.201800690
- F. Schindler-Saefkow, O. Wittler, D. May, B. Michel, Thermal management in a 3d-PCB-package with water cooling. Electron. Systemintegr. Technol. Conf. 1, 107–110 (2006). https://doi.org/10.1109/ESTC.2006.279986
- V. Franco, J. Blázquez, J. Ipus, J. Law, L. Moreno-Ramírez et al., Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93(1), 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005
- S. Jacobs, J. Auringer, A. Boeder, J. Chell, L. Komorowski et al., The performance of a large-scale rotary magnetic refrigerator. Int. J. Refrig. 37(1), 84–91 (2014). https://doi.org/10.1016/j.ijrefrig.2013.09.025
- M.H. Tsui, D.T. Dryer, A.A. El-Gendy, E.E. Carpenter, Enhanced near room temperature magnetocaloric effect in La0.6Ca0.4MnO3 for magnetic refrigeration application. RSC Adv. 7(74), 46589–46593 (2017). https://doi.org/10.1039/C7RA06619H
- X. Tan, P. Chai, C.M. Thompson, M. Shatruk, Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements. J. Am. Chem. Soc. 135(25), 9553–9557 (2013). https://doi.org/10.1021/ja404107p
- V. Franco, J. Blázquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annu. Rev. Mater. Res. 42(1), 305–342 (2012). https://doi.org/10.1146/annurev-matsci-062910-100356
- N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash et al., Review on magnetocaloric effect and materials. J. Supercond. Nov. Magn. 31(1), 1971–1979 (2018). https://doi.org/10.1007/s10948-018-4666-z
- C. Zimm, A. Jastrab, A. Sternberg, V. Pecharsky, K. Gschneidner et al., Description and performance of a near-room temperature magnetic refrigerator. Adv. Cryog. Eng. (1998). https://doi.org/10.1007/978-1-4757-9047-4_222
- A. Biswas, A.K. Pathak, N.A. Zarkevich, X. Liu, Y. Mudryk et al., Designed materials with the giant magnetocaloric effect near room temperature. Acta Mater. 180(1), 341–348 (2019). https://doi.org/10.1016/j.actamat.2019.09.023
- K. Laajimi, M. Khlifi, E. Hlil, K. Taibi, M. Gazzah et al., Room temperature magnetocaloric effect and critical behavior in La0.67Ca 0.23Sr 0.1Mn 0.98Ni 0.02O3 oxide. J. Mater. Sci.-Mater. Electron. 30(1), 11868–11877 (2019). https://doi.org/10.1007/s10854-019-01510-x
- M.K. Hamad, E. Martinez-Teran, Y. Maswadeh, R. Hamad, E. Al-Nahari et al., Room temperature magnetocaloric effect in CrTe1-xSbx alloys. J. Magn. Magn. Mater. 514(1), 167171 (2020). https://doi.org/10.1016/j.jmmm.2020.167171
- V.M. Andrade, N.B. Barroca, A.L. Pires, J.H. Belo, A.M. Pereira et al., Freestanding and flexible composites of magnetocaloric Gd5(Si, Ge)4 microps embedded in thermoplastic poly (methyl methacrylate) matrix. Mater. Des. 186(1), 108354 (2020). https://doi.org/10.1016/j.matdes.2019.108354
- A. Waske, M.E. Gruner, T. Gottschall, O. Gutfleisch, Magnetocaloric materials for refrigeration near room temperature. MRS Bull. 43(4), 269–273 (2018). https://doi.org/10.1557/mrs.2018.69
- Z. Li, J. Shen, K. Li, X. Gao, X. Guo et al., Assessment of three different gadolinium-based regenerators in a rotary-type magnetic refrigerator. Appl. Therm. Eng. 153(1), 159–167 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.100
- H. Zeng, J. Zhang, C. Kuang, M. Yue, Magnetic entropy change in bulk nanocrystalline Gd metals. Appl. Nanosci. 1(1), 51–57 (2011). https://doi.org/10.1007/s13204-011-0007-2
- B.-L. Liu, Q.-F. Xu, L.-S. Long, L.-S. Zheng, Magnetocaloric effect of two Gd-based frameworks. Inorganics 10(7), 91 (2022). https://doi.org/10.3390/inorganics10070091
- H. Zhu, C. Xiao, H. Cheng, F. Grote, X. Zhang et al., Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nat. commun. 5(1), 3960 (2014). https://doi.org/10.1038/ncomms4960
- M.G. Schroeder, E. Brehob, A flexible numerical model of a multistage active magnetocaloric regenerator. Int. J. Refrig. 65(1), 250–257 (2016). https://doi.org/10.1016/j.ijrefrig.2016.01.023
- M. Falsaperna, P.J. Saines, Development of magnetocaloric coordination polymers for low temperature cooling. Dalton Trans. 51(9), 3394–3410 (2022). https://doi.org/10.1039/D1DT04073A
- S.G. Lu, Q. Zhang, Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21(19), 1983–1987 (2009). https://doi.org/10.1002/adma.200802902
- X.S. Qian, H.J. Ye, Y.T. Zhang, H. Gu, X. Li et al., Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater. 24(9), 1300–1305 (2014). https://doi.org/10.1002/adfm.201302386
- X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzalez-Alonso, S. Kar-Narayan et al., Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25(9), 1360–1365 (2013). https://doi.org/10.1002/adma.201203823
- J. Shi, D. Han, Z. Li, L. Yang, S.-G. Lu et al., Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3(5), 1200–1225 (2019). https://doi.org/10.1016/j.joule.2019.03.021
- J. Lee, D. Kim, H. Sul, S.H. Ko, Thermo-haptic materials and devices for wearable virtual and augmented reality. Adv. Funct. Mater. 31(39), 2007376 (2021). https://doi.org/10.1002/adfm.202007376
- Q.M. Zhang, V.V. Bharti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372), 2101–2104 (1998). https://doi.org/10.1126/Science280.5372.2101
- X. Li, X.-S. Qian, S.G. Lu, J. Cheng, Z. Fang et al., Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99(5), 052907 (2011). https://doi.org/10.1063/1.3624533
- X. Chen, W. Xu, B. Lu, T. Zhang, Q. Wang et al., Towards electrocaloric heat pump—a relaxor ferroelectric polymer exhibiting large electrocaloric response at low electric field. Appl. Phys. Lett. 113(11), 113902 (2018). https://doi.org/10.1063/1.5048599
- X.-Z. Chen, X. Li, X.-S. Qian, S. Wu, S.-G. Lu et al., A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer 54(9), 2373–2381 (2013). https://doi.org/10.1016/j.polymer.2013.02.041
- G. Zhang, B. Fan, P. Zhao, Z. Hu, Y. Liu et al., Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Appl. Energ. Mater. 1(3), 1344–1354 (2018). https://doi.org/10.1021/acsaem.8b00052
- X. Qian, H.J. Ye, T. Yang, W.Z. Shao, L. Zhen et al., Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Adv. Funct. Mater. 25(32), 5134–5139 (2015). https://doi.org/10.1002/adfm.201501840
- L. Yang, X. Qian, C. Koo, Y. Hou, T. Zhang et al., Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy 22(1), 461–467 (2016). https://doi.org/10.1016/j.nanoen.2016.02.026
- S. Hirasawa, T. Kawanami, K. Shirai, Efficient cooling system using electrocaloric effect. J. Electron. Cool. Therm. Control. 6(2), 78–87 (2016). https://doi.org/10.4236/jectc.2016.62007
- R. Ma, Z. Zhang, K. Tong, D. Huber, R. Kornbluh et al., Highly efficient electrocaloric cooling with electrostatic actuation. Science 357(6356), 1130–1134 (2017). https://doi.org/10.1126/science.aan5980
- N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi et al., A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6(7), 264–287 (2020). https://doi.org/10.1016/j.egyr.2019.12.011
- W. Jin, L. Liu, T. Yang, H. Shen, J. Zhu et al., Exploring peltier effect in organic thermoelectric films. Nat. Commun. 9(1), 3586 (2018). https://doi.org/10.1038/s41467-018-05999-4
- J.R. Suárez, B.M. Delgado, M.O. Abril, Study of the thomson effect on the performance of thermoelectric modules with application to the energy recovery. J. Phys. Conf. Ser. 1708(1), 012022 (2020). https://doi.org/10.1088/1742-6596/1708/1/012022
- J. Lee, Y. Yoon, H. Park, J. Choi, Y. Jung et al., Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv. Intell. Syst. 4(7), 2100271 (2022). https://doi.org/10.1002/aisy.202100271
- Y. Yoon, H. Park, J. Lee, J. Choi, Y. Jung et al., Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chem. Eng. J. 451, 138794 (2023). https://doi.org/10.1016/j.cej.2022.138794
- M.H. Malakooti, N. Kazem, J. Yan, C. Pan, E.J. Markvicka et al., Liquid metal supercooling for low-temperature thermoelectric wearables. Adv. Funct. Mater. 29(45), 1906098 (2019). https://doi.org/10.1002/adfm.201906098
- M. Zadan, M.H. Malakooti, C. Majidi, Soft and stretchable thermoelectric generators enabled by liquid metal elastomer composites. ACS Appl. Mater. Interfaces 12(15), 17921–17928 (2020). https://doi.org/10.1021/acsami.9b19837
- S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5(5), aaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
- C.S. Kim, O.K. Oh, H. Choi, Y.J. Kim, G.S. Lee et al., Variable rigidity module with a flexible thermoelectric device for bidirectional temperature control. Soft Robot 8(6), 662–672 (2021). https://doi.org/10.1089/soro.2020.0080
- I.T. Witting, T.C. Chasapis, F. Ricci, M. Peters, N.A. Heinz et al., The thermoelectric properties of bismuth telluride. Adv. Electron. Mater. 5(6), 1800904 (2019). https://doi.org/10.1002/aelm.201800904
- Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13(1), 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
- S. Lin, L. Zhang, W. Zeng, D. Shi, S. Liu et al., Flexible thermoelectric generator with high seebeck coefficients made from polymer composites and heat-sink fabrics. Commun. Mater. 3(1), 44 (2022). https://doi.org/10.1038/s43246-022-00263-1
- G. Lee, C.S. Kim, S. Kim, Y.J. Kim, H. Choi et al., Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy 179(1), 12–18 (2019). https://doi.org/10.1016/j.energy.2019.05.018
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5g base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- Y. Zhang, J. Gao, S. Zhu, J. Li, H. Lai et al., Wearable thermoelectric cooler based on a two-layer hydrogel/nickel foam heatsink with two-axis flexibility. ACS Appl. Mater. Interfaces 14(13), 15317–15323 (2022). https://doi.org/10.1021/acsami.2c01777
- S. Zhu, L. Miao, Y. Peng, J. Gao, H. Lai et al., Persistently self-powered wearable thermoelectric generator enabled by phase-change inorganics as the heat sink. Mater. Today Phys. 32(1), 101011 (2023). https://doi.org/10.1016/j.mtphys.2023.101011
- N. Wojtas, E. Schwyter, W. Glatz, S. Kühne, W. Escher et al., Power enhancement of micro thermoelectric generators by microfluidic heat transfer packaging. Sens. Actuator A-Phys. 188(1), 389–395 (2012). https://doi.org/10.1016/j.sna.2011.12.043
References
K.J. Kaiyala, Energy Homeostasis: Thermoregulation, in Encyclopedia of Neuroscience. ed. by L.R. Squire (Elsevier, Oxford, 2009), pp.1043–1052
E.V. Osilla, J.L. Marsidi, S. Sharma, Physiology, temperature regulation, in: StatPearls [Internet], StatPearls Publishing.
I. Sarbu, A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration, air-conditioning and heat pump systems. Int. J. Refrig. 46(1), 123–141 (2014). https://doi.org/10.1016/j.ijrefrig.2014.04.023
D.R. Brown, T. Stout, J.A. Dirks, N. Fernandez, The prospects of alternatives to vapor compression technology for space cooling and food refrigeration applications. Energy Eng. 109(6), 7–20 (2012). https://doi.org/10.1080/01998595.2012.10554226
Q. Zhang, T. Xue, J. Tian, Y. Yang, W. Fan et al., Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. Compos. Sci. Technol. 226(28), 109541 (2022). https://doi.org/10.1016/j.compscitech.2022.109541
J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool et al., Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. J. Mater. Chem. A 8(38), 20133–20140 (2020). https://doi.org/10.1039/C9TA13925G
Y. Kou, K. Sun, J. Luo, F. Zhou, H. Huang et al., An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 34(1), 508–514 (2021). https://doi.org/10.1016/j.ensm.2020.10.014
X. Qi, T. Zhu, W. Hu, W. Jiang, J. Yang et al., Multifunctional polyacrylamide/hydrated salt/mxene phase change hydrogels with high thermal energy storage, photothermal conversion capability and strain sensitivity for personal healthcare. Compos. Sci. Technol. 234(22), 109947 (2023). https://doi.org/10.1016/j.compscitech.2023.109947
Y. Luo, H. Wu, J. Qiao, J. Zhang, K. Liu et al., Self-repairing thermal energy storage gels demonstrating superior thermophysical properties and wearability towards personal thermal management in static and dynamic modes. Chem. Eng. J. 457(1), 141201 (2023). https://doi.org/10.1016/j.cej.2022.141201
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11(1), 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
A.A. Candadai, E.J. Nadler, J.S. Burke, J.A. Weibel, A.M. Marconnet, Thermal and mechanical characterization of high performance polymer fabrics for applications in wearable devices. Sci. Rep. 11(1), 8705 (2021). https://doi.org/10.1038/s41598-021-87957-7
H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15(1), 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
Y. Jung, I. Ha, M. Kim, J. Ahn, J. Lee et al., High heat storing and thermally diffusive artificial skin for wearable thermal management. Nano Energy 105(1), 107979 (2023). https://doi.org/10.1016/j.nanoen.2022.107979
Y. Hu, G. Yang, J. Zhou, H. Li, L. Shi et al., Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16(4), 5984–5993 (2022). https://doi.org/10.1021/acsnano.1c11301
A. Choe, J. Yeom, Y. Kwon, Y. Lee, Y.-E. Shin et al., Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horizons. 7(12), 3258–3265 (2020). https://doi.org/10.1039/D0MH01405B
C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11(1), 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2–Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 14(11), 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
L. Su, H. Wang, S. Jia, S. Dai, M. Niu et al., Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 15(11), 18354–18362 (2021). https://doi.org/10.1021/acsnano.1c07755
X. Fan, Y. Ding, Y. Liu, J. Liang, Y. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
Q. Lei, D. He, L. Ding, F. Kong, P. He et al., Microneedle patches integrated with biomineralized melanin nanops for simultaneous skin tumor photothermal therapy and wound healing. Adv. Funct. Mater. 32(22), 2113269 (2022). https://doi.org/10.1002/adfm.202113269
C. Chen, R. Wang, X.L. Li, B. Zhao et al., Structural design of nanowire wearable stretchable thermoelectric generator. Nano Lett. 22(10), 4131–4136 (2022). https://doi.org/10.1021/acs.nanolett.2c00872
M.H. Jeong, K.C. Kim, J.S. Kim, K.J. Choi, Operation of wearable thermoelectric generators using dual sources of heat and light. Adv. Sci. 9(12), 2104915 (2022). https://doi.org/10.1002/advs.202104915
K. Li, T.H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic mxene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx mxene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15(7), 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
F. Li, S. Wang, Z. Wang, K. Jiang, X. Zhao et al., Fouling-proof cooling (fp-cool) fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation. Adv. Funct. Mater. 33(4), 2210769 (2023). https://doi.org/10.1021/acsnano.1c00903
Y. Peng, J. Zhou, Y. Yang, J.C. Lai, Y. Ye et al., An integrated 3d hydrophilicity/hydrophobicity design for artificial sweating skin (i-trans) mimicking human body perspiration. Adv. Mater. 34(44), 2204168 (2022). https://doi.org/10.1002/adma.202204168
Y. Wang, G. Xia, H. Yu, B. Qian, Y.H. Cheung et al., Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial inhibition on pet fabric. Adv. Mater. 33(35), 2100140 (2021). https://doi.org/10.1002/adma.202100140
D. Miao, X. Wang, J. Yu, B. Ding, A biomimetic transpiration textile for highly efficient personal drying and cooling. Adv. Funct. Mater. 31(14), 2008705 (2021). https://doi.org/10.1002/adfm.202008705
Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12(1), 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
B. Zhu, W. Li, Q. Zhang, D. Li, X. Liu et al., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16(12), 1342–1348 (2021). https://doi.org/10.1038/s41565-021-00987-0
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/Scienceabi5484
H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21(9), 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Sandwich-structured textiles with hierarchically nanofibrous network and janus wettability for outdoor personal thermal and moisture management. Chem. Eng. J. 450(1), 138012 (2022). https://doi.org/10.1016/j.cej.2022.138012
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16(2), 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
R. Hu, N. Wang, L. Hou, J. Liu, Z. Cui et al., Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 14(7), 9833–9843 (2022). https://doi.org/10.1021/acsami.1c22974
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding et al., Integration of janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
I. Yun, Y. Lee, Y.-G. Park, H. Seo, W.G. Chung et al., Transferable transparent electrodes of liquid metals for bifacial perovskite solar cells and heaters. Nano Energy 93(1), 106857 (2022). https://doi.org/10.1016/j.nanoen.2021.106857
P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19(9), 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
X. Zhao, L.-Y. Wang, C.-Y. Tang, X.-J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7), 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
D. Kim, J. Bang, W. Lee, I. Ha, J. Lee et al., Highly stretchable and oxidation-resistive cu nanowire heater for replication of the feeling of heat in a virtual world. J. Mater. Chem. A 8(17), 8281–8291 (2020). https://doi.org/10.1039/D0TA00380H
H. Kim, J. Choi, K.K. Kim, P. Won, S. Hong et al., Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12(1), 4658 (2021). https://doi.org/10.1038/s41467-021-24916-w
S. Lee, S.H. Byun, C.Y. Kim, S. Cho, S. Park et al., Beyond human touch perception: An adaptive robotic skin based on gallium microgranules for pressure sensory augmentation. Adv. Mater. 34(44), 2204805 (2022). https://doi.org/10.1002/adma.202204805
J.T. Reeder, Z. Xie, Q. Yang, M.H. Seo, Y. Yan et al., Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science 377(6601), 109–115 (2022). https://doi.org/10.1126/Scienceabl8532
S. Yan, Q. Yuan, J. Wu, Z. Jia, A free-standing, phase-change liquid metal mold for 3d flexible microfluidics. Front. Bioeng. Biotechnol. 10(1), 1094294 (2022). https://doi.org/10.3389/fbioe.2022.1094294
D.N. Ba, Y. Zheng, L. Becerra, M. Marangolo, M. Almanza et al., Magnetocaloric effect in flexible, free-standing gadolinium thick films for energy conversion applications. Phys. Rev. Appl. 15(6), 064045 (2021). https://doi.org/10.1103/PhysRevApplied.15.064045
G. Zhang, X. Zhang, H. Huang, J. Wang, Q. Li et al., Toward wearable cooling devices: Highly flexible electrocaloric ba. 067sr0. 33tio3 nanowire arrays. Adv. Mater. 28(24), 4811–4816 (2016). https://doi.org/10.1002/adma.201506118
D. Wang, X. Chen, G. Yuan, Y. Jia, Y. Wang et al., Toward artificial intelligent self-cooling electronic skins: large electrocaloric effect in all-inorganic flexible thin films at room temperature. J. Materiomics 5(1), 66–72 (2019). https://doi.org/10.1016/j.jmat.2018.10.003
C. Yang, Y. Han, C. Feng, X. Lin, S. Huang et al., Toward multifunctional electronics: flexible nbt-based film with a large electrocaloric effect and high energy storage property. ACS Appl. Mater. Interfaces 12(5), 6082–6089 (2020). https://doi.org/10.1021/acsami.9b21105
G. Qian, K. Zhu, X. Li, K. Yan, J. Wang et al., The electrocaloric effect of pbz/pvdf flexible composite film near room temperature. J. Mater. Sci.-Mater. Electron. 32(1), 12001–12016 (2021). https://doi.org/10.1007/s10854-021-05831-8
M.D. Li, X.Q. Shen, X. Chen, J.M. Gan, F. Wang et al., Thermal management of chips by a device prototype using synergistic effects of 3-d heat-conductive network and electrocaloric refrigeration. Nat. Commun. 13(1), 5849 (2022). https://doi.org/10.1038/s41467-022-33596-z
J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30(29), 1909171 (2020). https://doi.org/10.1002/adfm.201909171
J. Lee, H. Sul, Y. Jung, H. Kim, S. Han et al., Thermally controlled, active imperceptible artificial skin in visible-to-infrared range. Adv. Funct. Mater. 30(36), 2003328 (2020). https://doi.org/10.1002/adfm.202003328
B. Lee, H. Cho, K.T. Park, J.S. Kim, M. Park et al., High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 11(1), 5948 (2020). https://doi.org/10.1038/s41467-020-19756-z
Y. Jung, J. Choi, Y. Yoon, H. Park, J. Lee et al., Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano Energy 95(1), 107002 (2022). https://doi.org/10.1016/j.nanoen.2022.107002
T. Nomura, N. Sheng, C. Zhu, G. Saito, D. Hanzaki et al., Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Appl. Energy 188(15), 9–18 (2017). https://doi.org/10.1016/j.apenergy.2016.11.025
M.T. Luu, D. Milani, M. Nomvar, A. Abbas, Computer-aided design for high efficiency latent heat storage–a case study of a novel domestic solar hot water process (Elsevier, Amsterdam, 2017), pp.1153–1158
K. Lin, Y. Zhang, X. Xu, H. Di, R. Yang et al., Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates. Build. Environ. 39(12), 1427–1434 (2004). https://doi.org/10.1016/j.buildenv.2004.04.005
Y. Zhang, K. Lin, Q. Zhang, H. Di, Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energy Build. 38(10), 1164–1170 (2006). https://doi.org/10.1016/j.enbuild.2006.01.008
Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di et al., Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 42(6), 2197–2209 (2007). https://doi.org/10.1016/j.buildenv.2006.07.023
S. Wang, Y. Yin, C. Hu, P. Rezai, 3d integrated circuit cooling with microfluidics. Micromachines 9(6), 287 (2018). https://doi.org/10.3390/mi9060287
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhange et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13(1), 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
M. Helm, C. Keil, S. Hiebler, H. Mehling, C. Schweigler et al., Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience. Int. J. Refrig. 32(4), 596–606 (2009). https://doi.org/10.1016/j.ijrefrig.2009.02.010
S. Scalat, D. Banu, D. Hawes, J. Parish, F. Haghighata et al., Full scale thermal testing of latent heat storage in wallboard. Sol. Energy Mater. Sol. Cells 44(1), 49–61 (1996). https://doi.org/10.1016/0927-0248(96)00017-7
D. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68(5), 393–403 (2000). https://doi.org/10.1016/S0038-092X(00)00012-8
Y. He, W. Li, N. Han, J. Wang, X. Zhang, Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl. Energy 247(1), 615–629 (2019). https://doi.org/10.1016/j.apenergy.2019.04.077
C. Tan, H. Zhu, T. Ma, W. Guo, X. Liu et al., A stretchable laminated GNRs/BNNSs nanocomposite with high electrical and thermal conductivity. Nanoscale 11(43), 20648–20658 (2019). https://doi.org/10.1039/c9nr06060j
Z. Wang, J. Fan, D. He, L. Ren, Z. Hao et al., Superior stretchable, low thermal resistance and efficient self-healing composite elastomers for thermal management. J. Mater. Chem. A 10(41), 21923–21932 (2022). https://doi.org/10.1039/D2TA05781F
Y. Guo, C. Dun, J. Xu, J. Mu, P. Li et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44), 1702645 (2017). https://doi.org/10.1002/smll.201702645
T. Huang, F. Yang, T. Wang, J. Wang, Y. Li et al., Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Appl. Mater. Today 26(1), 101299 (2022). https://doi.org/10.1016/j.apmt.2021.101299
Y. Yao, X. Zhu, X. Zeng, R. Sun, J.-B. Xu et al., Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces 10(11), 9669–9678 (2018). https://doi.org/10.1021/acsami.8b00328
G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang, K.-S. Moon et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mat. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
X. Wang, P. Wu, 3d vertically aligned BNNs network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl. Mater. Interfaces 11(32), 28943–28952 (2019). https://doi.org/10.1021/acsami.9b09398
C. Du, M. Li, M. Cao, S. Feng, H. Guo et al., Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube. Carbon 126(1), 197–207 (2018). https://doi.org/10.1016/j.carbon.2017.10.027
D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14(1), 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
F. Lv, M. Qin, F. Zhang, H. Yu, L. Gao et al., High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 149, 281–289 (2019). https://doi.org/10.1016/j.carbon.2019.04.043
H. Niu, H. Guo, L. Kang, L. Ren, R. Lv et al., Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14(1), 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3d lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2021). https://doi.org/10.1007/s40820-020-00548-5
L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected mxene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14(1), 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14(1), 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: Mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
Y. Wang, J. Ren, C. Ye, Y. Pei, S. Ling, Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 13, 72 (2021). https://doi.org/10.1007/s40820-021-00591-w
D. Hu, W. Gong, J. Di, D. Li, R. Li et al., Strong graphene-interlayered carbon nanotube films with high thermal conductivity. Carbon 118(1), 659–665 (2017). https://doi.org/10.1016/j.carbon.2017.04.005
S. Gao, X. Bai, J. Li, M. Han, Y. Yao et al., Facile fabrication of large-area BN films for thermal management in flexible electronics. Compos. Commun. 36(1), 101392 (2022). https://doi.org/10.1016/j.coco.2022.101392
X. He, K. Zhang, H. Wang, Y. Zhang, G. Xiao et al., Tailored carbon-based aramid nanofiber nanocomposites with highly anisotropic thermal conductivity and superior mechanical properties for thermal management. Carbon 199(1), 367–378 (2022). https://doi.org/10.1016/j.carbon.2022.07.078
B. Shin, S. Mondal, M. Lee, S. Kim, Y.-I. Huh et al., Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 418(1), 129282 (2021). https://doi.org/10.1016/j.cej.2021.129282
M.D. Bartlett, N. Kazem, M.J. Powell-Palm, X. Huang, W. Sun et al., High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 114(9), 2143–2148 (2017). https://doi.org/10.1073/pnas.1616377114
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14(1), 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14(1), 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14(1), 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu et al., Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14(1), 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
Y. Zhu, Z. Shen, Y. Li, B. Chai, J. Chen et al., High conduction band inorganic layers for distinct enhancement of electrical energy storage in polymer nanocomposites. Nano-Micro Lett. 14(1), 151 (2022). https://doi.org/10.1007/s40820-022-00902-9
J. Yuan, X. Qian, Z. Meng, B. Yang, Z.Q. Liu et al., Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl. Mater. Interfaces 11(19), 17915–17924 (2019). https://doi.org/10.1021/acsami.9b06062
C. Yuan, B. Duan, L. Li, B. Xie, M. Huang et al., Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl. Mater. Interfaces 7(23), 13000–13006 (2015). https://doi.org/10.1021/acsami.5b03007
Y. Cui, Z. Qin, H. Wu, M. Li, Y. Hu et al., Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12(1), 1284 (2021). https://doi.org/10.1038/s41467-021-21531-7
T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15(1), 2 (2023). https://doi.org/10.1007/s40820-022-00972-9
X. Zuo, X. Zhang, L. Qu, J. Miao, Smart fibers and textiles for personal thermal management in emerging wearable applications. Adv. Mater. Technol. 8(1), 2201137 (2022). https://doi.org/10.1002/admt.202201137
J. Yang, K.Y. Chan, H. Venkatesan, E. Kim, M.H. Adegun et al., Superinsulating bnns/pva composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 14(1), 54 (2022). https://doi.org/10.1007/s40820-022-00797-6
D. Xu, Z. Chen, Y. Liu, C. Ge, C. Gao et al., Hump-inspired hierarchical fabric for personal thermal protection and thermal comfort management. Adv. Funct. Mater. 33(1), 2212626 (2023). https://doi.org/10.1002/adfm.202212626
J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
W. Dai, X.-J. Ren, Q. Yan, S. Wang, M. Yang et al., Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 15(1), 9 (2023). https://doi.org/10.1007/s40820-022-00979-2
X. Li, A. Vázquez-López, J.S. del Río Sáez, D.-Y. Wang, Recent advances on early-stage fire-warning systems: mechanism, performance, and perspective. Nano-Micro Lett. 14(1), 197 (2022). https://doi.org/10.1007/s40820-022-00938-x
C.F. Cao, B. Yu, Z.Y. Chen, Y.X. Qu, Y.T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14(1), 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
Y. Peng, W. Zhao, F. Ni, W. Yu, X. Liu, Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 15(12), 19490–19502 (2021). https://doi.org/10.1021/acsnano.1c06277
X. He, C. Fan, T. Xu, X. Zhang, Biospired Janus silk e-textiles with wet-thermal comfort for highly efficient biofluid monitoring. Nano Lett. 21(20), 8880–8887 (2021). https://doi.org/10.1021/acs.nanolett.1c03426
Let’s talk about… how long plasma treatment lasts? Knowledge s 2023 (2023).
B. Dai, K. Li, L. Shi, X. Wan, X. Liu et al., Bioinspired janus textile with conical micropores for human body moisture and thermal management. Adv. Mater. 31(41), 1904113 (2019). https://doi.org/10.1002/adma.201904113
M.A. Gebbie, W. Wei, A.M. Schrader, T.R. Cristiani, H.A. Dobbs et al., Tuning underwater adhesion with cation–π interactions. Nat. Chem. 9(5), 473–479 (2017). https://doi.org/10.1038/nchem.2720
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat951
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7(1), 13729 (2016). https://doi.org/10.1038/ncomms13729
J. Lee, Y. Jung, M. Lee, J.S. Hwang, J. Guo et al., Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz. 7(9), 1054–1064 (2022). https://doi.org/10.1039/D2NH00166G
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), 1802152 (2018). https://doi.org/10.1002/adma.201802152
B. Zhao, M. Hu, X. Ao, G. Pei, Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Sol. Energy 176(1), 248–255 (2018). https://doi.org/10.1016/j.solener.2018.10.043
Z. Zhan, M. ElKabbash, Z. Li, X. Li, J. Zhang et al., Enhancing thermoelectric output power via radiative cooling with nanoporous alumina. Nano Energy 65(1), 104060 (2019). https://doi.org/10.1016/j.nanoen.2019.104060
Y. Liu, S. Hou, X. Wang, L. Yin, Z. Wu et al., Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small 18(10), 2106875 (2022). https://doi.org/10.1002/smll.202106875
J. Liang, M. Huang, X. Zhang, C. Wan, Structural design for wearable self-powered thermoelectric modules with efficient temperature difference utilization and high normalized maximum power density. Appl. Energy 327(1), 120067 (2022). https://doi.org/10.1016/j.apenergy.2022.120067
S. Khan, J. Kim, K. Roh, G. Park, W. Kim, High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy 87(1), 106180 (2021). https://doi.org/10.1016/j.nanoen.2021.106180
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
J. Fei, D. Han, J. Ge, X. Wang, S.W. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
L. Zhan, Z. Han, Q. Shao, M.L. Etheridge, T. Hays et al., Rapid joule heating improves vitrification based cryopreservation. Nat. Commun. 13(1), 6017 (2022). https://doi.org/10.1038/s41467-022-33546-9
V. Balakrishnan, T. Dinh, H.-P. Phan, D.V. Dao, N.-T. Nguyen, A generalized analytical model for joule heating of segmented wires. J. Heat Transf. 140(7), 072001 (2018). https://doi.org/10.1115/1.4038829
H. Kim, H. Lee, I. Ha, J. Jung, P. Won et al., Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater. 28(32), 1801847 (2018). https://doi.org/10.1002/adfm.201801847
C. Cho, W. Shin, M. Kim, J. Bang, P. Won et al., Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and metallic nanowire backbone. Small 18(37), 2202841 (2022). https://doi.org/10.1002/smll.202202841
J. Byun, Y. Lee, J. Yoon, B. Lee, E. Oh et al., Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot. 3(18), eaas9020 (2018). https://doi.org/10.1126/scirobotics.aas9020
J. Oh, S. Kim, S. Lee, S. Jeong, S.H. Ko et al., A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31(39), 2007772 (2021). https://doi.org/10.1002/adfm.202007772
D.T. Papanastasiou, A. Schultheiss, D. Muñoz-Rojas, C. Celle, A. Carella et al., Transparent heaters: a review. Adv. Funct. Mater. 30(21), 1910225 (2020). https://doi.org/10.1002/adfm.201910225
S. Hong, H. Lee, J. Lee, J. Kwon, S. Han et al., Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 27(32), 4744–4751 (2015). https://doi.org/10.1002/adma.201500917
S.Y. Lee, J.Y. Hwang, Transparent heater with meshed amorphous oxide/metal/amorphous oxide for electric vehicle applications. Sci. Rep. 10(1), 9697 (2020). https://doi.org/10.1038/s41598-020-66514-8
J. Jang, N.S. Parmar, W.K. Choi, J.W. Choi, Rapid defrost transparent thin-film heater with flexibility and chemical stability. ACS Appl. Mater. Interfaces 12(34), 38406–38414 (2020). https://doi.org/10.1021/acsami.0c10852
L. Veeramuthu, B.Y. Chen, C.Y. Tsai, F.C. Liang, M. Venkatesan et al., Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire. RSC Adv. 9(61), 35786–35796 (2019). https://doi.org/10.1039/c9ra06508c
A.K. Agarwal, L. Dong, D.J. Beebe, H. Jiang, Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab Chip 7(3), 310–315 (2007). https://doi.org/10.1039/B617767K
R. Van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585(7824), 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
Y. Okamoto, H. Ryoson, K. Fujimoto, K. Honjo, T. Ohba et al., Hotspot liquid microfluidic cooling: comparing the efficiency between horizontal flow and vertical flow. J. Phys. Conf. Ser. 773(1), 012066 (2016). https://doi.org/10.1088/1742-6596/773/1/012066
P. Kotagama, A. Phadnis, K.C. Manning, K. Rykaczewski, Rational design of soft, thermally conductive composite liquid-cooled tubes for enhanced personal, robotics, and wearable electronics cooling. Adv. Mater. Technol. 4(7), 1800690 (2019). https://doi.org/10.1002/admt.201800690
F. Schindler-Saefkow, O. Wittler, D. May, B. Michel, Thermal management in a 3d-PCB-package with water cooling. Electron. Systemintegr. Technol. Conf. 1, 107–110 (2006). https://doi.org/10.1109/ESTC.2006.279986
V. Franco, J. Blázquez, J. Ipus, J. Law, L. Moreno-Ramírez et al., Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93(1), 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005
S. Jacobs, J. Auringer, A. Boeder, J. Chell, L. Komorowski et al., The performance of a large-scale rotary magnetic refrigerator. Int. J. Refrig. 37(1), 84–91 (2014). https://doi.org/10.1016/j.ijrefrig.2013.09.025
M.H. Tsui, D.T. Dryer, A.A. El-Gendy, E.E. Carpenter, Enhanced near room temperature magnetocaloric effect in La0.6Ca0.4MnO3 for magnetic refrigeration application. RSC Adv. 7(74), 46589–46593 (2017). https://doi.org/10.1039/C7RA06619H
X. Tan, P. Chai, C.M. Thompson, M. Shatruk, Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements. J. Am. Chem. Soc. 135(25), 9553–9557 (2013). https://doi.org/10.1021/ja404107p
V. Franco, J. Blázquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annu. Rev. Mater. Res. 42(1), 305–342 (2012). https://doi.org/10.1146/annurev-matsci-062910-100356
N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash et al., Review on magnetocaloric effect and materials. J. Supercond. Nov. Magn. 31(1), 1971–1979 (2018). https://doi.org/10.1007/s10948-018-4666-z
C. Zimm, A. Jastrab, A. Sternberg, V. Pecharsky, K. Gschneidner et al., Description and performance of a near-room temperature magnetic refrigerator. Adv. Cryog. Eng. (1998). https://doi.org/10.1007/978-1-4757-9047-4_222
A. Biswas, A.K. Pathak, N.A. Zarkevich, X. Liu, Y. Mudryk et al., Designed materials with the giant magnetocaloric effect near room temperature. Acta Mater. 180(1), 341–348 (2019). https://doi.org/10.1016/j.actamat.2019.09.023
K. Laajimi, M. Khlifi, E. Hlil, K. Taibi, M. Gazzah et al., Room temperature magnetocaloric effect and critical behavior in La0.67Ca 0.23Sr 0.1Mn 0.98Ni 0.02O3 oxide. J. Mater. Sci.-Mater. Electron. 30(1), 11868–11877 (2019). https://doi.org/10.1007/s10854-019-01510-x
M.K. Hamad, E. Martinez-Teran, Y. Maswadeh, R. Hamad, E. Al-Nahari et al., Room temperature magnetocaloric effect in CrTe1-xSbx alloys. J. Magn. Magn. Mater. 514(1), 167171 (2020). https://doi.org/10.1016/j.jmmm.2020.167171
V.M. Andrade, N.B. Barroca, A.L. Pires, J.H. Belo, A.M. Pereira et al., Freestanding and flexible composites of magnetocaloric Gd5(Si, Ge)4 microps embedded in thermoplastic poly (methyl methacrylate) matrix. Mater. Des. 186(1), 108354 (2020). https://doi.org/10.1016/j.matdes.2019.108354
A. Waske, M.E. Gruner, T. Gottschall, O. Gutfleisch, Magnetocaloric materials for refrigeration near room temperature. MRS Bull. 43(4), 269–273 (2018). https://doi.org/10.1557/mrs.2018.69
Z. Li, J. Shen, K. Li, X. Gao, X. Guo et al., Assessment of three different gadolinium-based regenerators in a rotary-type magnetic refrigerator. Appl. Therm. Eng. 153(1), 159–167 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.100
H. Zeng, J. Zhang, C. Kuang, M. Yue, Magnetic entropy change in bulk nanocrystalline Gd metals. Appl. Nanosci. 1(1), 51–57 (2011). https://doi.org/10.1007/s13204-011-0007-2
B.-L. Liu, Q.-F. Xu, L.-S. Long, L.-S. Zheng, Magnetocaloric effect of two Gd-based frameworks. Inorganics 10(7), 91 (2022). https://doi.org/10.3390/inorganics10070091
H. Zhu, C. Xiao, H. Cheng, F. Grote, X. Zhang et al., Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nat. commun. 5(1), 3960 (2014). https://doi.org/10.1038/ncomms4960
M.G. Schroeder, E. Brehob, A flexible numerical model of a multistage active magnetocaloric regenerator. Int. J. Refrig. 65(1), 250–257 (2016). https://doi.org/10.1016/j.ijrefrig.2016.01.023
M. Falsaperna, P.J. Saines, Development of magnetocaloric coordination polymers for low temperature cooling. Dalton Trans. 51(9), 3394–3410 (2022). https://doi.org/10.1039/D1DT04073A
S.G. Lu, Q. Zhang, Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21(19), 1983–1987 (2009). https://doi.org/10.1002/adma.200802902
X.S. Qian, H.J. Ye, Y.T. Zhang, H. Gu, X. Li et al., Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater. 24(9), 1300–1305 (2014). https://doi.org/10.1002/adfm.201302386
X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzalez-Alonso, S. Kar-Narayan et al., Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25(9), 1360–1365 (2013). https://doi.org/10.1002/adma.201203823
J. Shi, D. Han, Z. Li, L. Yang, S.-G. Lu et al., Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3(5), 1200–1225 (2019). https://doi.org/10.1016/j.joule.2019.03.021
J. Lee, D. Kim, H. Sul, S.H. Ko, Thermo-haptic materials and devices for wearable virtual and augmented reality. Adv. Funct. Mater. 31(39), 2007376 (2021). https://doi.org/10.1002/adfm.202007376
Q.M. Zhang, V.V. Bharti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372), 2101–2104 (1998). https://doi.org/10.1126/Science280.5372.2101
X. Li, X.-S. Qian, S.G. Lu, J. Cheng, Z. Fang et al., Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99(5), 052907 (2011). https://doi.org/10.1063/1.3624533
X. Chen, W. Xu, B. Lu, T. Zhang, Q. Wang et al., Towards electrocaloric heat pump—a relaxor ferroelectric polymer exhibiting large electrocaloric response at low electric field. Appl. Phys. Lett. 113(11), 113902 (2018). https://doi.org/10.1063/1.5048599
X.-Z. Chen, X. Li, X.-S. Qian, S. Wu, S.-G. Lu et al., A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer 54(9), 2373–2381 (2013). https://doi.org/10.1016/j.polymer.2013.02.041
G. Zhang, B. Fan, P. Zhao, Z. Hu, Y. Liu et al., Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Appl. Energ. Mater. 1(3), 1344–1354 (2018). https://doi.org/10.1021/acsaem.8b00052
X. Qian, H.J. Ye, T. Yang, W.Z. Shao, L. Zhen et al., Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Adv. Funct. Mater. 25(32), 5134–5139 (2015). https://doi.org/10.1002/adfm.201501840
L. Yang, X. Qian, C. Koo, Y. Hou, T. Zhang et al., Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy 22(1), 461–467 (2016). https://doi.org/10.1016/j.nanoen.2016.02.026
S. Hirasawa, T. Kawanami, K. Shirai, Efficient cooling system using electrocaloric effect. J. Electron. Cool. Therm. Control. 6(2), 78–87 (2016). https://doi.org/10.4236/jectc.2016.62007
R. Ma, Z. Zhang, K. Tong, D. Huber, R. Kornbluh et al., Highly efficient electrocaloric cooling with electrostatic actuation. Science 357(6356), 1130–1134 (2017). https://doi.org/10.1126/science.aan5980
N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi et al., A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6(7), 264–287 (2020). https://doi.org/10.1016/j.egyr.2019.12.011
W. Jin, L. Liu, T. Yang, H. Shen, J. Zhu et al., Exploring peltier effect in organic thermoelectric films. Nat. Commun. 9(1), 3586 (2018). https://doi.org/10.1038/s41467-018-05999-4
J.R. Suárez, B.M. Delgado, M.O. Abril, Study of the thomson effect on the performance of thermoelectric modules with application to the energy recovery. J. Phys. Conf. Ser. 1708(1), 012022 (2020). https://doi.org/10.1088/1742-6596/1708/1/012022
J. Lee, Y. Yoon, H. Park, J. Choi, Y. Jung et al., Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv. Intell. Syst. 4(7), 2100271 (2022). https://doi.org/10.1002/aisy.202100271
Y. Yoon, H. Park, J. Lee, J. Choi, Y. Jung et al., Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chem. Eng. J. 451, 138794 (2023). https://doi.org/10.1016/j.cej.2022.138794
M.H. Malakooti, N. Kazem, J. Yan, C. Pan, E.J. Markvicka et al., Liquid metal supercooling for low-temperature thermoelectric wearables. Adv. Funct. Mater. 29(45), 1906098 (2019). https://doi.org/10.1002/adfm.201906098
M. Zadan, M.H. Malakooti, C. Majidi, Soft and stretchable thermoelectric generators enabled by liquid metal elastomer composites. ACS Appl. Mater. Interfaces 12(15), 17921–17928 (2020). https://doi.org/10.1021/acsami.9b19837
S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5(5), aaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
C.S. Kim, O.K. Oh, H. Choi, Y.J. Kim, G.S. Lee et al., Variable rigidity module with a flexible thermoelectric device for bidirectional temperature control. Soft Robot 8(6), 662–672 (2021). https://doi.org/10.1089/soro.2020.0080
I.T. Witting, T.C. Chasapis, F. Ricci, M. Peters, N.A. Heinz et al., The thermoelectric properties of bismuth telluride. Adv. Electron. Mater. 5(6), 1800904 (2019). https://doi.org/10.1002/aelm.201800904
Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13(1), 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
S. Lin, L. Zhang, W. Zeng, D. Shi, S. Liu et al., Flexible thermoelectric generator with high seebeck coefficients made from polymer composites and heat-sink fabrics. Commun. Mater. 3(1), 44 (2022). https://doi.org/10.1038/s43246-022-00263-1
G. Lee, C.S. Kim, S. Kim, Y.J. Kim, H. Choi et al., Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy 179(1), 12–18 (2019). https://doi.org/10.1016/j.energy.2019.05.018
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5g base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
Y. Zhang, J. Gao, S. Zhu, J. Li, H. Lai et al., Wearable thermoelectric cooler based on a two-layer hydrogel/nickel foam heatsink with two-axis flexibility. ACS Appl. Mater. Interfaces 14(13), 15317–15323 (2022). https://doi.org/10.1021/acsami.2c01777
S. Zhu, L. Miao, Y. Peng, J. Gao, H. Lai et al., Persistently self-powered wearable thermoelectric generator enabled by phase-change inorganics as the heat sink. Mater. Today Phys. 32(1), 101011 (2023). https://doi.org/10.1016/j.mtphys.2023.101011
N. Wojtas, E. Schwyter, W. Glatz, S. Kühne, W. Escher et al., Power enhancement of micro thermoelectric generators by microfluidic heat transfer packaging. Sens. Actuator A-Phys. 188(1), 389–395 (2012). https://doi.org/10.1016/j.sna.2011.12.043