Laser-Induced Nanowire Percolation Interlocking for Ultrarobust Soft Electronics
Corresponding Author: Seung Hwan Ko
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 127
Abstract
Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties. However, weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability, necessitating the use of an insulating protective layer, which greatly limits their utility. Herein, we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer. In this method, the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix, resulting in mechanical interlocking through percolation. This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates, significantly enhancing its universality in diverse applications. Thereby, we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor. Furthermore, enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment, broadening its application into various electrochemical devices.
Highlights:
1 Laser-induced percolation interlocking technology enables the development of the robust, open-structured nanowire (NW) electrodes through the photothermal effect at the interface between NW and substrate.
2 The optimized NW electrode with enhanced mechanical and electrical properties can be used as reusable wearable electronics.
3 Stable functionalization of the percolation-interlocked NW electrode with various conducting polymers can be achieved, broadening the applicability as soft electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123, 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
- C. Jia, Z. Lin, Y. Huang, X. Duan, Nanowire electronics: from nanoscale to macroscale. Chem. Rev. 119, 9074–9135 (2019). https://doi.org/10.1021/acs.chemrev.9b00164
- X. Zhang, V.A. Öberg, J. Du, J. Liu, E.M.J. Johansson, Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11, 354–364 (2018). https://doi.org/10.1039/c7ee02772a
- P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
- J. Gao, J. Luo, L. Wang, X. Huang, H. Wang et al., Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190
- L. Lin, L. Wang, B. Li, J. Luo, X. Huang et al., Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385, 123391 (2020). https://doi.org/10.1016/j.cej.2019.123391
- W. Xiao, Y. Chen, G. Pan, J. Yan, J. Zhang et al., Hydrophobic, hemostatic and durable nanofiber composites with a screw-like surface architecture for multifunctional sensing electronics. Adv. Fiber Mater. 5, 2040–2054 (2023). https://doi.org/10.1007/s42765-023-00324-1
- K.K. Kim, M. Kim, K. Pyun, J. Kim, J. Min et al., A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023). https://doi.org/10.1038/s41928-022-00888-7
- S. Choi, J. Park, W. Hyun, J. Kim, J. Kim et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015). https://doi.org/10.1021/acsnano.5b02790
- S. Hong, H. Lee, J. Lee, J. Kwon, S. Han et al., Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 27, 4744–4751 (2015). https://doi.org/10.1002/adma.201500917
- K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15, 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
- D. Won, J. Kim, J. Choi, H. Kim, S. Han et al., Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8, eabo3209 (2022). https://doi.org/10.1126/sciadv.abo3209
- K. Wang, L.W. Yap, S. Gong, R. Wang, S.J. Wang et al., Nanowire-based soft wearable human–machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 31, 2008347 (2021). https://doi.org/10.1002/adfm.202008347
- R. Chen, A. Canales, P. Anikeeva, Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017). https://doi.org/10.1038/natrevmats.2016.93
- S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag–Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
- A. Wanekaya, W. Chen, N. Myung, A. Mulchandani, Nanowire-based electrochemical biosensors. Electroanalysis 18, 533–550 (2006). https://doi.org/10.1002/elan.200503449
- R.D. Crapnell, A. Hudson, C.W. Foster, K. Eersels, B.V. Grinsven et al., Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors 19(5), 1204 (2019). https://doi.org/10.3390/s19051204
- J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 23, 4171–4176 (2013). https://doi.org/10.1002/adfm.201203802
- Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5, 7927 (2012). https://doi.org/10.1039/c2ee21437g
- X. Xia, D. Chao, X. Qi, Q. Xiong, Y. Zhang et al., Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett. 13, 4562–4568 (2013). https://doi.org/10.1021/nl402741j
- L. Mai, X. Tian, X. Xu, L. Chang, L. Xu, Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114, 11828–11862 (2014). https://doi.org/10.1021/cr500177a
- Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun et al., Conjugated polymers for flexible energy harvesting and storage. Adv. Mater. 30, 1704261 (2018). https://doi.org/10.1002/adma.201704261
- H. Moon, H. Lee, J. Kwon, Y.D. Suh, D.K. Kim et al., Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 7, 41981 (2017). https://doi.org/10.1038/srep41981
- Y. Jung, K.R. Pyun, J. Min, H. Yoon, M. Lee et al., An Ag–Au-PANI core–shell nanowire network for visible-to-infrared data encryption and supercapacitor applications. J. Mater. Chem. A 11, 7264–7275 (2023). https://doi.org/10.1039/d3ta00426k
- P.-C. Hsu, S. Wang, H. Wu, V.K. Narasimhan, D. Kong et al., Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 4, 2522 (2013). https://doi.org/10.1038/ncomms3522
- Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
- K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
- Z. Cai, C. Miao, C. Zhang, H. Luo, J. Wu et al., Bio-inspired hybrid laser direct writing of interfacial adhesion for universal functional coatings. Adv. Funct. Mater. 34, 2408354 (2024). https://doi.org/10.1002/adfm.202408354
- K. Xu, Z. Cai, H. Luo, Y. Lu, C. Ding et al., Toward integrated multifunctional laser-induced graphene-based skin-like flexible sensor systems. ACS Nano 18, 26435–26476 (2024). https://doi.org/10.1021/acsnano.4c09062
- Y. Kim, E. Hwang, C. Kai, K. Xu, H. Pan et al., Recent developments in selective laser processes for wearable devices. Bio Des. Manuf. 7, 517–547 (2024). https://doi.org/10.1007/s42242-024-00300-7
- Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2023). https://doi.org/10.1038/s41928-023-01091-y
- Y. Li, H. Zhou, H. Yang, K. Xu, Laser-induced highly stable conductive hydrogels for robust bioelectronics. Nano-Micro Lett. 17, 57 (2024). https://doi.org/10.1007/s40820-024-01519-w
- K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17, 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
- H. Roh, Y.J. Yoon, J.S. Park, D.H. Kang, S.M. Kwak et al., Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett. 14, 24 (2021). https://doi.org/10.1007/s40820-021-00778-1
- M. Esmaeili, E. Akbari, K. George, G. Rezvan, N. Taheri-Qazvini et al., Engineering nano/microscale chiral self-assembly in 3D printed constructs. Nano-Micro Lett. 16, 54 (2023). https://doi.org/10.1007/s40820-023-01286-0
- L. José Andrés, M.F. Menéndez, D. Gómez, A. Luisa Martínez, N. Bristow et al., Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology 26, 265201 (2015). https://doi.org/10.1088/0957-4484/26/26/265201
- W. He, X. Han, H. Jia, J. Cai, Y. Zhou et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7, 40103 (2017). https://doi.org/10.1038/srep40103
- H. Yoon, J. Choi, J. Kim, J. Kim, J. Min et al., Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv. Funct. Mater. 34, 2313504 (2024). https://doi.org/10.1002/adfm.202313504
- J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4, 6408–6414 (2012). https://doi.org/10.1039/C2NR31254A
- S. Han, S. Hong, J. Ham, J. Yeo, J. Lee et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014). https://doi.org/10.1002/adma.201400474
- M.B. Cortie, A.M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanops. Chem. Rev. 111, 3713–3735 (2011). https://doi.org/10.1021/cr1002529
- K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanops: the influence of size, shape, and dielectric environment. ChemInform (2003). https://doi.org/10.1002/chin.200316243
- E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012). https://doi.org/10.1038/nmat3238
- P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19, 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
- J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30, 1909171 (2020). https://doi.org/10.1002/adfm.201909171
- D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7, 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
- L. Zhang, B. Wang, X. Li, G. Xu, S. Dou et al., Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. J. Mater. Chem. C 7, 9878–9891 (2019). https://doi.org/10.1039/c9tc02126d
- J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
References
D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123, 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
C. Jia, Z. Lin, Y. Huang, X. Duan, Nanowire electronics: from nanoscale to macroscale. Chem. Rev. 119, 9074–9135 (2019). https://doi.org/10.1021/acs.chemrev.9b00164
X. Zhang, V.A. Öberg, J. Du, J. Liu, E.M.J. Johansson, Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11, 354–364 (2018). https://doi.org/10.1039/c7ee02772a
P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
J. Gao, J. Luo, L. Wang, X. Huang, H. Wang et al., Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190
L. Lin, L. Wang, B. Li, J. Luo, X. Huang et al., Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385, 123391 (2020). https://doi.org/10.1016/j.cej.2019.123391
W. Xiao, Y. Chen, G. Pan, J. Yan, J. Zhang et al., Hydrophobic, hemostatic and durable nanofiber composites with a screw-like surface architecture for multifunctional sensing electronics. Adv. Fiber Mater. 5, 2040–2054 (2023). https://doi.org/10.1007/s42765-023-00324-1
K.K. Kim, M. Kim, K. Pyun, J. Kim, J. Min et al., A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023). https://doi.org/10.1038/s41928-022-00888-7
S. Choi, J. Park, W. Hyun, J. Kim, J. Kim et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015). https://doi.org/10.1021/acsnano.5b02790
S. Hong, H. Lee, J. Lee, J. Kwon, S. Han et al., Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 27, 4744–4751 (2015). https://doi.org/10.1002/adma.201500917
K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15, 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
D. Won, J. Kim, J. Choi, H. Kim, S. Han et al., Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8, eabo3209 (2022). https://doi.org/10.1126/sciadv.abo3209
K. Wang, L.W. Yap, S. Gong, R. Wang, S.J. Wang et al., Nanowire-based soft wearable human–machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 31, 2008347 (2021). https://doi.org/10.1002/adfm.202008347
R. Chen, A. Canales, P. Anikeeva, Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017). https://doi.org/10.1038/natrevmats.2016.93
S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag–Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
A. Wanekaya, W. Chen, N. Myung, A. Mulchandani, Nanowire-based electrochemical biosensors. Electroanalysis 18, 533–550 (2006). https://doi.org/10.1002/elan.200503449
R.D. Crapnell, A. Hudson, C.W. Foster, K. Eersels, B.V. Grinsven et al., Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors 19(5), 1204 (2019). https://doi.org/10.3390/s19051204
J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 23, 4171–4176 (2013). https://doi.org/10.1002/adfm.201203802
Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5, 7927 (2012). https://doi.org/10.1039/c2ee21437g
X. Xia, D. Chao, X. Qi, Q. Xiong, Y. Zhang et al., Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett. 13, 4562–4568 (2013). https://doi.org/10.1021/nl402741j
L. Mai, X. Tian, X. Xu, L. Chang, L. Xu, Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114, 11828–11862 (2014). https://doi.org/10.1021/cr500177a
Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun et al., Conjugated polymers for flexible energy harvesting and storage. Adv. Mater. 30, 1704261 (2018). https://doi.org/10.1002/adma.201704261
H. Moon, H. Lee, J. Kwon, Y.D. Suh, D.K. Kim et al., Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 7, 41981 (2017). https://doi.org/10.1038/srep41981
Y. Jung, K.R. Pyun, J. Min, H. Yoon, M. Lee et al., An Ag–Au-PANI core–shell nanowire network for visible-to-infrared data encryption and supercapacitor applications. J. Mater. Chem. A 11, 7264–7275 (2023). https://doi.org/10.1039/d3ta00426k
P.-C. Hsu, S. Wang, H. Wu, V.K. Narasimhan, D. Kong et al., Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 4, 2522 (2013). https://doi.org/10.1038/ncomms3522
Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
Z. Cai, C. Miao, C. Zhang, H. Luo, J. Wu et al., Bio-inspired hybrid laser direct writing of interfacial adhesion for universal functional coatings. Adv. Funct. Mater. 34, 2408354 (2024). https://doi.org/10.1002/adfm.202408354
K. Xu, Z. Cai, H. Luo, Y. Lu, C. Ding et al., Toward integrated multifunctional laser-induced graphene-based skin-like flexible sensor systems. ACS Nano 18, 26435–26476 (2024). https://doi.org/10.1021/acsnano.4c09062
Y. Kim, E. Hwang, C. Kai, K. Xu, H. Pan et al., Recent developments in selective laser processes for wearable devices. Bio Des. Manuf. 7, 517–547 (2024). https://doi.org/10.1007/s42242-024-00300-7
Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2023). https://doi.org/10.1038/s41928-023-01091-y
Y. Li, H. Zhou, H. Yang, K. Xu, Laser-induced highly stable conductive hydrogels for robust bioelectronics. Nano-Micro Lett. 17, 57 (2024). https://doi.org/10.1007/s40820-024-01519-w
K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17, 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
H. Roh, Y.J. Yoon, J.S. Park, D.H. Kang, S.M. Kwak et al., Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett. 14, 24 (2021). https://doi.org/10.1007/s40820-021-00778-1
M. Esmaeili, E. Akbari, K. George, G. Rezvan, N. Taheri-Qazvini et al., Engineering nano/microscale chiral self-assembly in 3D printed constructs. Nano-Micro Lett. 16, 54 (2023). https://doi.org/10.1007/s40820-023-01286-0
L. José Andrés, M.F. Menéndez, D. Gómez, A. Luisa Martínez, N. Bristow et al., Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology 26, 265201 (2015). https://doi.org/10.1088/0957-4484/26/26/265201
W. He, X. Han, H. Jia, J. Cai, Y. Zhou et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7, 40103 (2017). https://doi.org/10.1038/srep40103
H. Yoon, J. Choi, J. Kim, J. Kim, J. Min et al., Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv. Funct. Mater. 34, 2313504 (2024). https://doi.org/10.1002/adfm.202313504
J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4, 6408–6414 (2012). https://doi.org/10.1039/C2NR31254A
S. Han, S. Hong, J. Ham, J. Yeo, J. Lee et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014). https://doi.org/10.1002/adma.201400474
M.B. Cortie, A.M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanops. Chem. Rev. 111, 3713–3735 (2011). https://doi.org/10.1021/cr1002529
K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanops: the influence of size, shape, and dielectric environment. ChemInform (2003). https://doi.org/10.1002/chin.200316243
E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012). https://doi.org/10.1038/nmat3238
P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19, 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30, 1909171 (2020). https://doi.org/10.1002/adfm.201909171
D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7, 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
L. Zhang, B. Wang, X. Li, G. Xu, S. Dou et al., Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. J. Mater. Chem. C 7, 9878–9891 (2019). https://doi.org/10.1039/c9tc02126d
J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823