Multifunctional Janus-Structured Polytetrafluoroethylene-Carbon Nanotube-Fe3O4/MXene Membranes for Enhanced EMI Shielding and Thermal Management
Corresponding Author: Guilong Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 136
Abstract
Herein, a novel Janus-structured multifunctional membrane with integrated electromagnetic interference (EMI) shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum-assisted filtration. Interestingly, within the polytetrafluoroethylene (PTFE)-carbon nanotube (CNT)-Fe3O4 layer (FCFe), CNT nanofibers interweave with PTFE fibers to form a stable “silk-like” structure that effectively captures Fe3O4 particles. By incorporating a highly conductive MXene layer, the FCFe/MXene (FCFe/M) membrane exhibits excellent electrical/thermal conductivity, mechanical properties, and flame retardancy. Impressively, benefiting from the rational regulation of component proportions and the design of a Janus structure, the FCFe/M membrane with a thickness of only 84.9 µm delivers outstanding EMI shielding effectiveness of 44.56 dB in the X-band, with a normalized specific SE reaching 10,421.3 dB cm2 g−1, which is attributed to the “absorption-reflection-reabsorption” mechanism. Furthermore, the membrane demonstrates low-voltage-driven Joule heating and fast-response photothermal performance. Under the stimulation of a 3 V voltage and an optical power density of 320 mW cm−2, the surface temperatures of the FCFe/M membranes can reach up to 140.4 and 145.7 °C, respectively. In brief, the FCFe/M membrane with anti-electromagnetic radiation and temperature regulation is an attractive candidate for the next generation of wearable electronics, EMI compatibility, visual heating, thermotherapy, and military and aerospace applications.
Highlights:
1 The Janus-type multifunctional ultra-flexible polytetrafluoroethylene-carbon nanotube-Fe3O4/MXene (FCFe/M) membranes were fabricated via a shear-induced in situ fibrillation technique followed by vacuum-assisted filtration.
2 Thanks to the strategic distribution of the MXene conductive reflection layer and the silk-like FCFe electromagnetic wave’s absorption layer, the membranes achieve robust electromagnetic interference shielding and effective antireflection through the absorption-reflection-reabsorption mechanism.
3 The membranes exhibit exceptional thermal management performance, including efficient heat dissipation and electrothermal/photothermal conversion capabilities, further enhancing their promising potential for applications in flexible wearable technologies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Wu, F. Ren, Z. Guo, J. Wang, Z. Zong et al., Hierarchical assembly of ternary MOF-derived sandwich composites for high-efficiency tunable electromagnetic wave absorption. Small 20, 2407599 (2024). https://doi.org/10.1002/smll.202407599
- M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16, 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
- Z. Guo, Y. Zhao, P. Luo, J. Wang, L. Pei et al., Asymmetric and mechanically enhanced MOF derived magnetic carbon-MXene/cellulose nanofiber films for electromagnetic interference shielding and electrothermal/photothermal conversion. Chem. Eng. J. 497, 155707 (2024). https://doi.org/10.1016/j.cej.2024.155707
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, 1908496 (2020). https://doi.org/10.1002/adma.201908496
- F. Hu, N. Gong, J. Zeng, P. Li, T. Wang et al., Aramid nanofiber-based artificial nacre-supported graphene/silver nanowire nanopapers for electromagnetic interference shielding and thermal management. Adv. Funct. Mater. 34, 2405016 (2024). https://doi.org/10.1002/adfm.202405016
- J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
- S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core-shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, e1800634 (2018). https://doi.org/10.1002/smll.201800634
- K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by Kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15, 88 (2023). https://doi.org/10.1007/s40820-023-01062-0
- X. Shen, J.-K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
- Q. Zhang, Q. Wang, J. Cui, S. Zhao, G. Zhang et al., Structural design and preparation of Ti3C2Tx MXene/polymer composites for absorption-dominated electromagnetic interference shielding. Nanoscale Adv. 5, 3549–3574 (2023). https://doi.org/10.1039/D3NA00130J
- B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
- J.-M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome et al., Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 18, 792 (2008). https://doi.org/10.1039/b709864b
- L.-Q. Zhang, S.-G. Yang, L. Li, B. Yang, H.-D. Huang et al., Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 40156–40167 (2018). https://doi.org/10.1021/acsami.8b14738
- B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/d1ta00417d
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- Q. Wei, L. Li, Z. Deng, G. Wan, Y. Zhang et al., Scalable fabrication of nacre-structured graphene/polytetrafluoroethylene films for outstanding EMI shielding under extreme environment. Small 19, e2302082 (2023). https://doi.org/10.1002/smll.202302082
- Y.-Y. Wang, Z.-H. Zhou, C.-G. Zhou, W.-J. Sun, J.-F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 12, 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
- J. Xu, J. Fang, P. Zuo, Y. Wang, Q. Zhuang, Competitively assembled aramid-MXene Janus aerogel film exhibiting concurrently robust shielding and effective anti-reflection performance. Adv. Funct. Mater. 34, 2400732 (2024). https://doi.org/10.1002/adfm.202400732
- T. Kim, H.W. Do, K.J. Choi, S. Kim, M. Lee et al., Layered aluminum for electromagnetic wave absorber with near-zero reflection. Nano Lett. 21, 1132–1140 (2021). https://doi.org/10.1021/acs.nanolett.0c04593
- B. Xue, Y. Li, Z. Cheng, S. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14, 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
- J. Fang, C. Chen, H. Qi, J. Zhang, X. Hou et al., Flexible multilayered poly(vinylidene fluoride)/graphene-poly(vinylidene fluoride) films for efficient electromagnetic shielding. ACS Appl. Nano Mater. 6, 6858–6868 (2023). https://doi.org/10.1021/acsanm.3c00574
- M. Zhou, J. Wang, G. Wang, Y. Zhao, J. Tang et al., Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Compos. Part B Eng. 242, 110110 (2022). https://doi.org/10.1016/j.compositesb.2022.110110
- Y. Zhang, Z. Ma, K. Ruan, J. Gu, Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 15, 5601–5609 (2022). https://doi.org/10.1007/s12274-022-4358-7
- W. Li, Z. Song, Y. He, J. Zhang, Y. Bao et al., Natural sedimentation-assisted fabrication of Janus functional films for versatile applications in Joule heating, electromagnetic interference shielding and triboelectric nanogenerator. Chem. Eng. J. 455, 140606 (2023). https://doi.org/10.1016/j.cej.2022.140606
- P.-L. Wang, W. Zhang, Q. Yuan, T. Mai, M.-Y. Qi et al., 3D Janus structure MXene/cellulose nanofibers/Luffa aerogels with superb mechanical strength and high-efficiency desalination for solar-driven interfacial evaporation. J. Colloid Interface Sci. 645, 306–318 (2023). https://doi.org/10.1016/j.jcis.2023.04.081
- M. Zhou, Y. Hu, Z. Yan, H. Fu, Flexible MXene-based Janus film with superior heat dissipation capability for ultra-efficient electromagnetic interference shielding and Joule heating. Carbon 219, 118835 (2024). https://doi.org/10.1016/j.carbon.2024.118835
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
- Z. Guo, C. Bian, P. Luo, T. Wu, J. Wang et al., Integrated construction of 0D/1D/2D NiMn-LDH@CNT/MXene with multidimensionally hierarchical architecture towards boosting electromagnetic wave absorption. Appl. Surf. Sci. 679, 161238 (2025). https://doi.org/10.1016/j.apsusc.2024.161238
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- P. Song, Z. Cai, J. Li, M. He, H. Qiu et al., Construction of rGO-MXene@FeNi/epoxy composites with regular honeycomb structures for high-efficiency electromagnetic interference shielding. J. Mater. Sci. Technol. 217, 311–320 (2025). https://doi.org/10.1016/j.jmst.2024.08.022
- N. Liu, Q. Li, H. Wan, L. Chang, H. Wang et al., High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 13, 5551 (2022). https://doi.org/10.1038/s41467-022-33280-2
- Y. Shi, Y. Hu, J. Shen, S. Guo, Optimized microporous structure of ePTFE membranes by controlling the p size of PTFE fine powders for achieving high oil-water separation performances. J. Membr. Sci. 629, 119294 (2021). https://doi.org/10.1016/j.memsci.2021.119294
- F. Wang, H. Zhu, H. Zhang, H. Tang, J. Chen et al., An elastic microporous material with tunable optical property. Mater. Lett. 164, 376–379 (2016). https://doi.org/10.1016/j.matlet.2015.10.158
- A. Huang, F. Liu, Z. Cui, H. Wang, X. Song et al., Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering. Compos. Sci. Technol. 214, 108980 (2021). https://doi.org/10.1016/j.compscitech.2021.108980
- R. Shao, G. Wang, J. Chai, G. Wang, G. Zhao, Flexible, reliable, and lightweight multiwalled carbon nanotube/polytetrafluoroethylene membranes with dual-nanofibrous structure for outstanding EMI shielding and multifunctional applications. Small 20, e2308992 (2024). https://doi.org/10.1002/smll.202308992
- Z. Cui, E. Drioli, Y.M. Lee, Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 39, 164–198 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.008
- Y. Yang, L. Shao, J. Wang, Z. Ji, T. Zhang et al., An asymmetric layer structure enables robust multifunctional wearable bacterial cellulose composite film with excellent electrothermal/photothermal and EMI shielding performance. Small 20, 2308514 (2024). https://doi.org/10.1002/smll.202308514
- T. Zhou, Y. Yao, R. Xiang, Y. Wu, Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation. J. Membr. Sci. 453, 402–408 (2014). https://doi.org/10.1016/j.memsci.2013.11.027
- J. Chai, G. Wang, A. Zhang, X. Li, Z. Xu et al., Robust polytetrafluoroethylene (PTFE) nanofibrous membrane achieved by shear-induced in situ fibrillation for fast oil/water separation and solid removal in harsh solvents. Chem. Eng. J. 461, 141971 (2023). https://doi.org/10.1016/j.cej.2023.141971
- I. Ochoa, S.G. Hatzikiriakos, Paste extrusion of polytetrafluoroethylene (PTFE): surface tension and viscosity effects. Powder Technol. 153, 108–118 (2005). https://doi.org/10.1016/j.powtec.2005.02.007
- C. Liu, Y. Ma, Y. Xie, J. Zou, H. Wu et al., Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 15, 4516–4526 (2023). https://doi.org/10.1021/acsami.2c20101
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17, 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- Y. Zhao, C. Deng, B. Yan, Q. Yang, Y. Gu et al., One-step method for fabricating Janus aramid nanofiber/MXene nanocomposite films with improved joule heating and thermal camouflage properties. ACS Appl. Mater. Interfaces 15, 55150–55162 (2023). https://doi.org/10.1021/acsami.3c13722
- J. Bai, W. Gu, Y. Bai, Y. Li, L. Yang et al., Multifunctional flexible sensor based on PU-TA@MXene Janus architecture for selective direction recognition. Adv. Mater. 35, 2302847 (2023). https://doi.org/10.1002/adma.202302847
- C. Ma, W.-T. Cao, W. Zhang, M.-G. Ma, W.-M. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
- Y. Bin, B. Tawiah, L.Q. Wang, A.C. Yin Yuen, Z.C. Zhang et al., Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110–119 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.026
- F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11, 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
- Y. Sun, R. Ding, S.Y. Hong, J. Lee, Y.-K. Seo et al., MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 410, 128348 (2021). https://doi.org/10.1016/j.cej.2020.128348
- L. Wang, X. Li, Y. Qian, W. Li, T. Xiong et al., MXene-layered double hydroxide reinforced epoxy nanocomposite with enhanced electromagnetic wave absorption, thermal conductivity, and flame retardancy in electronic packaging. Small 20, e2304311 (2024). https://doi.org/10.1002/smll.202304311
- F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, e2311135 (2024). https://doi.org/10.1002/adma.202311135
- A. Chae, G. Murali, S.-Y. Lee, J. Gwak, S.J. Kim et al., Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 33, 2213382 (2023). https://doi.org/10.1002/adfm.202213382
- J. Yang, Y. Chen, X. Yan, X. Liao, H. Wang et al., Construction of in situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 240, 110093 (2023). https://doi.org/10.1016/j.compscitech.2023.110093
- D. Zhang, R. Yin, Y. Zheng, Q. Li, H. Liu et al., Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 438, 135587 (2022). https://doi.org/10.1016/j.cej.2022.135587
- T. Zuo, C. Xie, W. Wang, D. Yu, Ti3C2Tx MXene-ferroferric oxide/carbon nanotubes/waterborne polyurethane-based asymmetric composite aerogels for absorption-dominated electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 4716–4725 (2023). https://doi.org/10.1021/acsanm.3c00204
- B. Fan, L. Xing, K. Yang, Y. Yang, F. Zhou et al., Salt-templated graphene nanosheet foams filled in silicon rubber toward prominent EMI shielding effectiveness and high thermal conductivity. Carbon 207, 317–327 (2023). https://doi.org/10.1016/j.carbon.2023.03.022
- Z. Cai, Y. Ma, M. Yun, M. Wang, Z. Tong et al., Multifunctional MXene/holey graphene films for electromagnetic interference shielding, Joule heating, and photothermal conversion. Compos. Part B Eng. 251, 110477 (2023). https://doi.org/10.1016/j.compositesb.2022.110477
- T. Mai, W.-Y. Guo, P.-L. Wang, L. Chen, M.-Y. Qi et al., Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 464, 142517 (2023). https://doi.org/10.1016/j.cej.2023.142517
- D. Hye Moon Lee, D. Si-Young Choi, A. Jung, P. Seung Hwan Ko, Highly conductive aluminum textile and paper for flexible and wearable electronics. Angew. Chem. Int. Ed. 52, 7718–7723 (2013). https://doi.org/10.1002/anie.201301941
- J. He, Z. Ma, S. Liu, X. Qie, W. Zhang et al., Unleashing multifunctionality: Janus-structured flexible CNT-based composite film with enduring superhydrophobicity and excellent electromagnetic interference shielding. Chem. Eng. J. 480, 148046 (2024). https://doi.org/10.1016/j.cej.2023.148046
- B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16, 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
- Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
- X. Zhou, P. Min, Y. Liu, M. Jin, Z.-Z. Yu et al., Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 385, 1205–1210 (2024). https://doi.org/10.1126/science.adp6581
- P. He, M.-S. Cao, W.-Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021). https://doi.org/10.1007/s40820-021-00645-z
- W. Lu, Y. Zhou, H. Xu, Dual-gradient MXene/AgNWs/Hollow-Fe3O4/CNF composite films for thermal management and electromagnetic shielding applications. Compos. Commun. 51, 102077 (2024). https://doi.org/10.1016/j.coco.2024.102077
- M. Tan, D. Chen, Y. Cheng, H. Sun, G. Chen et al., Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater. 32, 2202057 (2022). https://doi.org/10.1002/adfm.202202057
- X. Li, X. Sheng, Y. Fang, X. Hu, S. Gong et al., Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 33, 2212776 (2023). https://doi.org/10.1002/adfm.202212776
- Y. Cheng, H. Zhang, R. Wang, X. Wang, H. Zhai et al., Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl. Mater. Interfaces 8, 32925–32933 (2016). https://doi.org/10.1021/acsami.6b09293
- D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712
- R. Cheng, Y. Wu, B. Wang, J. Zeng, J. Li et al., Fireproof ultrastrong all-natural cellulose nanofiber/montmorillonite-supported MXene nanocomposites with electromagnetic interference shielding and thermal management multifunctional applications. J. Mater. Chem. A 11, 18323–18335 (2023). https://doi.org/10.1039/D3TA03798C
- Y. Gao, J. Lin, X. Chen, Z. Tang, G. Qin et al., Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 19, e2303113 (2023). https://doi.org/10.1002/smll.202303113
- J. Xiong, R. Ding, Z. Liu, H. Zheng, P. Li et al., High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management. Chem. Eng. J. 474, 145972 (2023). https://doi.org/10.1016/j.cej.2023.145972
- M. Sang, G. Liu, S. Liu, Y. Wu, S. Xuan et al., Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property. Chem. Eng. J. 414, 128883 (2021). https://doi.org/10.1016/j.cej.2021.128883
- Y. Li, B. Zhou, Y. Shen, C. He, B. Wang et al., Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. Compos. Part B Eng. 217, 108902 (2021). https://doi.org/10.1016/j.compositesb.2021.108902
- J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13, 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
References
T. Wu, F. Ren, Z. Guo, J. Wang, Z. Zong et al., Hierarchical assembly of ternary MOF-derived sandwich composites for high-efficiency tunable electromagnetic wave absorption. Small 20, 2407599 (2024). https://doi.org/10.1002/smll.202407599
M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16, 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
Z. Guo, Y. Zhao, P. Luo, J. Wang, L. Pei et al., Asymmetric and mechanically enhanced MOF derived magnetic carbon-MXene/cellulose nanofiber films for electromagnetic interference shielding and electrothermal/photothermal conversion. Chem. Eng. J. 497, 155707 (2024). https://doi.org/10.1016/j.cej.2024.155707
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, 1908496 (2020). https://doi.org/10.1002/adma.201908496
F. Hu, N. Gong, J. Zeng, P. Li, T. Wang et al., Aramid nanofiber-based artificial nacre-supported graphene/silver nanowire nanopapers for electromagnetic interference shielding and thermal management. Adv. Funct. Mater. 34, 2405016 (2024). https://doi.org/10.1002/adfm.202405016
J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core-shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, e1800634 (2018). https://doi.org/10.1002/smll.201800634
K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by Kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15, 88 (2023). https://doi.org/10.1007/s40820-023-01062-0
X. Shen, J.-K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
Q. Zhang, Q. Wang, J. Cui, S. Zhao, G. Zhang et al., Structural design and preparation of Ti3C2Tx MXene/polymer composites for absorption-dominated electromagnetic interference shielding. Nanoscale Adv. 5, 3549–3574 (2023). https://doi.org/10.1039/D3NA00130J
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
J.-M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome et al., Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 18, 792 (2008). https://doi.org/10.1039/b709864b
L.-Q. Zhang, S.-G. Yang, L. Li, B. Yang, H.-D. Huang et al., Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 40156–40167 (2018). https://doi.org/10.1021/acsami.8b14738
B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/d1ta00417d
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
Q. Wei, L. Li, Z. Deng, G. Wan, Y. Zhang et al., Scalable fabrication of nacre-structured graphene/polytetrafluoroethylene films for outstanding EMI shielding under extreme environment. Small 19, e2302082 (2023). https://doi.org/10.1002/smll.202302082
Y.-Y. Wang, Z.-H. Zhou, C.-G. Zhou, W.-J. Sun, J.-F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 12, 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
J. Xu, J. Fang, P. Zuo, Y. Wang, Q. Zhuang, Competitively assembled aramid-MXene Janus aerogel film exhibiting concurrently robust shielding and effective anti-reflection performance. Adv. Funct. Mater. 34, 2400732 (2024). https://doi.org/10.1002/adfm.202400732
T. Kim, H.W. Do, K.J. Choi, S. Kim, M. Lee et al., Layered aluminum for electromagnetic wave absorber with near-zero reflection. Nano Lett. 21, 1132–1140 (2021). https://doi.org/10.1021/acs.nanolett.0c04593
B. Xue, Y. Li, Z. Cheng, S. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14, 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
J. Fang, C. Chen, H. Qi, J. Zhang, X. Hou et al., Flexible multilayered poly(vinylidene fluoride)/graphene-poly(vinylidene fluoride) films for efficient electromagnetic shielding. ACS Appl. Nano Mater. 6, 6858–6868 (2023). https://doi.org/10.1021/acsanm.3c00574
M. Zhou, J. Wang, G. Wang, Y. Zhao, J. Tang et al., Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Compos. Part B Eng. 242, 110110 (2022). https://doi.org/10.1016/j.compositesb.2022.110110
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 15, 5601–5609 (2022). https://doi.org/10.1007/s12274-022-4358-7
W. Li, Z. Song, Y. He, J. Zhang, Y. Bao et al., Natural sedimentation-assisted fabrication of Janus functional films for versatile applications in Joule heating, electromagnetic interference shielding and triboelectric nanogenerator. Chem. Eng. J. 455, 140606 (2023). https://doi.org/10.1016/j.cej.2022.140606
P.-L. Wang, W. Zhang, Q. Yuan, T. Mai, M.-Y. Qi et al., 3D Janus structure MXene/cellulose nanofibers/Luffa aerogels with superb mechanical strength and high-efficiency desalination for solar-driven interfacial evaporation. J. Colloid Interface Sci. 645, 306–318 (2023). https://doi.org/10.1016/j.jcis.2023.04.081
M. Zhou, Y. Hu, Z. Yan, H. Fu, Flexible MXene-based Janus film with superior heat dissipation capability for ultra-efficient electromagnetic interference shielding and Joule heating. Carbon 219, 118835 (2024). https://doi.org/10.1016/j.carbon.2024.118835
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
Z. Guo, C. Bian, P. Luo, T. Wu, J. Wang et al., Integrated construction of 0D/1D/2D NiMn-LDH@CNT/MXene with multidimensionally hierarchical architecture towards boosting electromagnetic wave absorption. Appl. Surf. Sci. 679, 161238 (2025). https://doi.org/10.1016/j.apsusc.2024.161238
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
P. Song, Z. Cai, J. Li, M. He, H. Qiu et al., Construction of rGO-MXene@FeNi/epoxy composites with regular honeycomb structures for high-efficiency electromagnetic interference shielding. J. Mater. Sci. Technol. 217, 311–320 (2025). https://doi.org/10.1016/j.jmst.2024.08.022
N. Liu, Q. Li, H. Wan, L. Chang, H. Wang et al., High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 13, 5551 (2022). https://doi.org/10.1038/s41467-022-33280-2
Y. Shi, Y. Hu, J. Shen, S. Guo, Optimized microporous structure of ePTFE membranes by controlling the p size of PTFE fine powders for achieving high oil-water separation performances. J. Membr. Sci. 629, 119294 (2021). https://doi.org/10.1016/j.memsci.2021.119294
F. Wang, H. Zhu, H. Zhang, H. Tang, J. Chen et al., An elastic microporous material with tunable optical property. Mater. Lett. 164, 376–379 (2016). https://doi.org/10.1016/j.matlet.2015.10.158
A. Huang, F. Liu, Z. Cui, H. Wang, X. Song et al., Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering. Compos. Sci. Technol. 214, 108980 (2021). https://doi.org/10.1016/j.compscitech.2021.108980
R. Shao, G. Wang, J. Chai, G. Wang, G. Zhao, Flexible, reliable, and lightweight multiwalled carbon nanotube/polytetrafluoroethylene membranes with dual-nanofibrous structure for outstanding EMI shielding and multifunctional applications. Small 20, e2308992 (2024). https://doi.org/10.1002/smll.202308992
Z. Cui, E. Drioli, Y.M. Lee, Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 39, 164–198 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.008
Y. Yang, L. Shao, J. Wang, Z. Ji, T. Zhang et al., An asymmetric layer structure enables robust multifunctional wearable bacterial cellulose composite film with excellent electrothermal/photothermal and EMI shielding performance. Small 20, 2308514 (2024). https://doi.org/10.1002/smll.202308514
T. Zhou, Y. Yao, R. Xiang, Y. Wu, Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation. J. Membr. Sci. 453, 402–408 (2014). https://doi.org/10.1016/j.memsci.2013.11.027
J. Chai, G. Wang, A. Zhang, X. Li, Z. Xu et al., Robust polytetrafluoroethylene (PTFE) nanofibrous membrane achieved by shear-induced in situ fibrillation for fast oil/water separation and solid removal in harsh solvents. Chem. Eng. J. 461, 141971 (2023). https://doi.org/10.1016/j.cej.2023.141971
I. Ochoa, S.G. Hatzikiriakos, Paste extrusion of polytetrafluoroethylene (PTFE): surface tension and viscosity effects. Powder Technol. 153, 108–118 (2005). https://doi.org/10.1016/j.powtec.2005.02.007
C. Liu, Y. Ma, Y. Xie, J. Zou, H. Wu et al., Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 15, 4516–4526 (2023). https://doi.org/10.1021/acsami.2c20101
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17, 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
Y. Zhao, C. Deng, B. Yan, Q. Yang, Y. Gu et al., One-step method for fabricating Janus aramid nanofiber/MXene nanocomposite films with improved joule heating and thermal camouflage properties. ACS Appl. Mater. Interfaces 15, 55150–55162 (2023). https://doi.org/10.1021/acsami.3c13722
J. Bai, W. Gu, Y. Bai, Y. Li, L. Yang et al., Multifunctional flexible sensor based on PU-TA@MXene Janus architecture for selective direction recognition. Adv. Mater. 35, 2302847 (2023). https://doi.org/10.1002/adma.202302847
C. Ma, W.-T. Cao, W. Zhang, M.-G. Ma, W.-M. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
Y. Bin, B. Tawiah, L.Q. Wang, A.C. Yin Yuen, Z.C. Zhang et al., Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110–119 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.026
F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11, 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
Y. Sun, R. Ding, S.Y. Hong, J. Lee, Y.-K. Seo et al., MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 410, 128348 (2021). https://doi.org/10.1016/j.cej.2020.128348
L. Wang, X. Li, Y. Qian, W. Li, T. Xiong et al., MXene-layered double hydroxide reinforced epoxy nanocomposite with enhanced electromagnetic wave absorption, thermal conductivity, and flame retardancy in electronic packaging. Small 20, e2304311 (2024). https://doi.org/10.1002/smll.202304311
F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, e2311135 (2024). https://doi.org/10.1002/adma.202311135
A. Chae, G. Murali, S.-Y. Lee, J. Gwak, S.J. Kim et al., Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 33, 2213382 (2023). https://doi.org/10.1002/adfm.202213382
J. Yang, Y. Chen, X. Yan, X. Liao, H. Wang et al., Construction of in situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 240, 110093 (2023). https://doi.org/10.1016/j.compscitech.2023.110093
D. Zhang, R. Yin, Y. Zheng, Q. Li, H. Liu et al., Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 438, 135587 (2022). https://doi.org/10.1016/j.cej.2022.135587
T. Zuo, C. Xie, W. Wang, D. Yu, Ti3C2Tx MXene-ferroferric oxide/carbon nanotubes/waterborne polyurethane-based asymmetric composite aerogels for absorption-dominated electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 4716–4725 (2023). https://doi.org/10.1021/acsanm.3c00204
B. Fan, L. Xing, K. Yang, Y. Yang, F. Zhou et al., Salt-templated graphene nanosheet foams filled in silicon rubber toward prominent EMI shielding effectiveness and high thermal conductivity. Carbon 207, 317–327 (2023). https://doi.org/10.1016/j.carbon.2023.03.022
Z. Cai, Y. Ma, M. Yun, M. Wang, Z. Tong et al., Multifunctional MXene/holey graphene films for electromagnetic interference shielding, Joule heating, and photothermal conversion. Compos. Part B Eng. 251, 110477 (2023). https://doi.org/10.1016/j.compositesb.2022.110477
T. Mai, W.-Y. Guo, P.-L. Wang, L. Chen, M.-Y. Qi et al., Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 464, 142517 (2023). https://doi.org/10.1016/j.cej.2023.142517
D. Hye Moon Lee, D. Si-Young Choi, A. Jung, P. Seung Hwan Ko, Highly conductive aluminum textile and paper for flexible and wearable electronics. Angew. Chem. Int. Ed. 52, 7718–7723 (2013). https://doi.org/10.1002/anie.201301941
J. He, Z. Ma, S. Liu, X. Qie, W. Zhang et al., Unleashing multifunctionality: Janus-structured flexible CNT-based composite film with enduring superhydrophobicity and excellent electromagnetic interference shielding. Chem. Eng. J. 480, 148046 (2024). https://doi.org/10.1016/j.cej.2023.148046
B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16, 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
X. Zhou, P. Min, Y. Liu, M. Jin, Z.-Z. Yu et al., Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 385, 1205–1210 (2024). https://doi.org/10.1126/science.adp6581
P. He, M.-S. Cao, W.-Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021). https://doi.org/10.1007/s40820-021-00645-z
W. Lu, Y. Zhou, H. Xu, Dual-gradient MXene/AgNWs/Hollow-Fe3O4/CNF composite films for thermal management and electromagnetic shielding applications. Compos. Commun. 51, 102077 (2024). https://doi.org/10.1016/j.coco.2024.102077
M. Tan, D. Chen, Y. Cheng, H. Sun, G. Chen et al., Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater. 32, 2202057 (2022). https://doi.org/10.1002/adfm.202202057
X. Li, X. Sheng, Y. Fang, X. Hu, S. Gong et al., Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 33, 2212776 (2023). https://doi.org/10.1002/adfm.202212776
Y. Cheng, H. Zhang, R. Wang, X. Wang, H. Zhai et al., Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl. Mater. Interfaces 8, 32925–32933 (2016). https://doi.org/10.1021/acsami.6b09293
D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712
R. Cheng, Y. Wu, B. Wang, J. Zeng, J. Li et al., Fireproof ultrastrong all-natural cellulose nanofiber/montmorillonite-supported MXene nanocomposites with electromagnetic interference shielding and thermal management multifunctional applications. J. Mater. Chem. A 11, 18323–18335 (2023). https://doi.org/10.1039/D3TA03798C
Y. Gao, J. Lin, X. Chen, Z. Tang, G. Qin et al., Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 19, e2303113 (2023). https://doi.org/10.1002/smll.202303113
J. Xiong, R. Ding, Z. Liu, H. Zheng, P. Li et al., High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management. Chem. Eng. J. 474, 145972 (2023). https://doi.org/10.1016/j.cej.2023.145972
M. Sang, G. Liu, S. Liu, Y. Wu, S. Xuan et al., Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property. Chem. Eng. J. 414, 128883 (2021). https://doi.org/10.1016/j.cej.2021.128883
Y. Li, B. Zhou, Y. Shen, C. He, B. Wang et al., Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. Compos. Part B Eng. 217, 108902 (2021). https://doi.org/10.1016/j.compositesb.2021.108902
J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13, 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890