Synergistic Single-Atom and Clustered Cobalt Sites on N/S Co-Doped Defect Nano-Carbon for Efficient H2O2 Electrosynthesis
Corresponding Author: Xing Lu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 142
Abstract
Non-noble-based single atomic catalysts have exhibited significant potential in electrochemical production of H2O2 via two-electron oxygen reduction reactions (2e− ORR). However, constructing highly efficient and acid-resistant catalysts remains a challenge but significant. In this work, fullerene (C60) with abundant pentagonal inherent defects was employed as a carbon substrate to synthesize defect-rich nanocarbon electrocatalysts doped with NSCo single atoms and accompanied by metallic Co nanoparticles (CoSA/CoNP-NSDNC) for the first time. The electrochemical experiments demonstrate that the active sites of CoSA/CoNP-NSDNC are formed through the synergistic interaction between NSCo single atoms and Co nanoparticle clusters embedded within the carbon framework. The obtained CoSA/CoNP-NSDNC catalyst exhibits an onset potential as 0.72 V versus RHE and achieves up to 90% H2O2 selectivity over a wide potential range of 500 mV. Moreover, the as-obtained CoSA/CoNP-NSDNC configured as the cathode in a self-assembled flow cell under acidic conditions achieves a high H2O2 production rate of 4206.96 mmol gcat⁻1 h⁻1 with a Faraday efficiency of ∼ 95% and exhibit ultra fast degradation of organic pollutants. This work focuses on the synergistic effect of non-noble metal nanoparticles, metal single-atom sites, and topological defects on the 2e− ORR process, which provides a new direction for designing carbon-based catalysts for efficient H2O2 electrosynthesis.
Highlights:
1 Defect-rich nanocarbon catalyst (CoSA/CoNP-NSDNC) synthesized using NSCo single atoms and Co nanoparticle clusters on fullerene-derived carbon framework, enabling efficient H2O2 electrosynthesis.
2 The CoSA/CoNP-NSDNC catalyst exhibits high H2O2 selectivity (~ 90%) over a wide potential range with an onset potential of 0.72 V versus RHE, achieving Faraday efficiency close to 95% in acidic conditions.
3 Demonstrates potential for environmental applications, achieving high H2O2 production (4206.96 mmol g−1 h−1) in a flow cell setup, along with efficient degradation of organic pollutants in Fenton-like reactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.J. Sa, J.H. Kim, S.H. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
- D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
- C. Zhang, J. Zhang, J. Zhang, M. Song, X. Huang et al., Tuning coal into graphene-like nanocarbon for electrochemical H2O2 production with nearly 100% faraday efficiency. ACS Sustain. Chem. Eng. 9, 9369–9375 (2021). https://doi.org/10.1021/acssuschemeng.1c02357
- Y. Pang, K. Wang, H. Xie, Y. Sun, M.-M. Titirici et al., Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes. ACS Catal. 10, 7434–7442 (2020). https://doi.org/10.1021/acscatal.0c00584
- L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou et al., Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 10, 2000789 (2020). https://doi.org/10.1002/aenm.202000789
- C. Zhang, W. Liu, M. Song, J. Zhang, F. He et al., Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Appl. Catal. B Environ. 307, 121173 (2022). https://doi.org/10.1016/j.apcatb.2022.121173
- T.-P. Fellinger, F. Hasché, P. Strasser, M. Antonietti, Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012). https://doi.org/10.1021/ja300038p
- M. Melchionna, P. Fornasiero, M. Prato, The Rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 31, 1802920 (2019). https://doi.org/10.1002/adma.201802920
- Y. Wang, R. Shi, L. Shang, L. Peng, D. Chu et al., Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy 96, 107046 (2022). https://doi.org/10.1016/j.nanoen.2022.107046
- Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
- J.S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani et al., Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011). https://doi.org/10.1021/ja206477z
- Y.L. Wang, S. Gurses, N. Felvey, A. Boubnov, S.S. Mao et al., In situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production. ACS Catal. 9, 8453–8463 (2019). https://doi.org/10.1021/acscatal.9b01758
- S. Siahrostami, S.J. Villegas, A.H. Bagherzadeh Mostaghimi, S. Back, A.B. Farimani et al., A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 10, 7495–7511 (2020). https://doi.org/10.1021/acscatal.0c01641
- H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
- J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang et al., Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. Int. Ed. 58, 3859–3864 (2019). https://doi.org/10.1002/anie.201813805
- W. Shen, C. Zhang, X. Wang, Y. Huang, Z. Du et al., Sulfur-doped defective nanocarbons derived from fullerenes as electrocatalysts for efficient and selective H2O2 electroproduction. ACS Mater. Lett. 6, 17–26 (2024). https://doi.org/10.1021/acsmaterialslett.3c01036
- F. Hasché, M. Oezaslan, P. Strasser, T.-P. Fellinger, Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. J. Energy Chem. 25, 251–257 (2016). https://doi.org/10.1016/j.jechem.2016.01.024
- J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu et al., Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52, 307–314 (2018). https://doi.org/10.1016/j.nanoen.2018.08.003
- R. Xie, C. Cheng, R. Wang, J. Li, E. Zhao et al., Maximizing thiophene–sulfur functional groups in carbon catalysts for highly selective H2O2 electrosynthesis. ACS Catal. 14, 4471–4477 (2024). https://doi.org/10.1021/acscatal.4c00419
- W. Shen, C. Zhang, M. Alomar, Z. Du, Z. Yang et al., Fullerene-derived boron-doped defective nanocarbon for highly selective H2O2 electrosynthesis. Nano Res. 17, 1217–1224 (2024). https://doi.org/10.1007/s12274-023-5999-x
- C. Zhang, W. Shen, K. Guo, M. Xiong, J. Zhang et al., A pentagonal defect-rich metal-free carbon electrocatalyst for boosting acidic O2 reduction to H2O2 production. J. Am. Chem. Soc. 145, 11589–11598 (2023). https://doi.org/10.1021/jacs.3c00689
- J. Jin, X. Wang, Y. Hu, Z. Zhang, H. Liu et al., Precisely control relationship between sulfur vacancy and H absorption for boosting hydrogen evolution reaction. Nano-Micro Lett. 16, 63 (2024). https://doi.org/10.1007/s40820-023-01291-3
- S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
- J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
- C. Tang, L. Chen, H. Li, L. Li, Y. Jiao et al., Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021). https://doi.org/10.1021/jacs.1c03135
- M.-X. Chen, M. Zhu, D. Ming Zuo, D. Sheng-Qi Chu, D. Jing Zhang et al., Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanops. Angew. Chem. Int. Ed. 59, 1627–1633 (2020). https://doi.org/10.1002/anie.201912275
- Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang et al., Co nanop embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52, 485–493 (2018). https://doi.org/10.1016/j.nanoen.2018.08.005
- X. Wang, R. Huang, X. Mao, T. Liu, P. Guo et al., Coupling Ni single atomic sites with metallic aggregates at adjacent geometry on carbon support for efficient hydrogen peroxide electrosynthesis. Adv. Sci. 11, e2402240 (2024). https://doi.org/10.1002/advs.202402240
- J. Gao, X. Chu, H. Lu, H. Wang, X. Li et al., Efficient carbon-based electrocatalyst derived from biomass for hydrogen peroxide generation. Mater. Today Commun. 26, 102051 (2021). https://doi.org/10.1016/j.mtcomm.2021.102051
- L. Lu, V. Sahajwalla, C. Kong, D. Harris, Quantitative X-ray diffraction analysis and its application to various coals. Carbon 39, 1821–1833 (2001). https://doi.org/10.1016/S0008-6223(00)00318-3
- L. Han, Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9, 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
- A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005). https://doi.org/10.1016/j.carbon.2005.02.018
- T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565 (1995). https://doi.org/10.1016/0008-6223(95)00117-V
- S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang et al., Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 33, e2103133 (2021). https://doi.org/10.1002/adma.202103133
- G. Chen, J. Liu, Q. Li, P. Guan, X. Yu et al., A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 12, 2614–2622 (2019). https://doi.org/10.1007/s12274-019-2496-3
- Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma et al., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 135, 1201–1204 (2013). https://doi.org/10.1021/ja310566z
- W. Liu, C. Zhang, J. Zhang, X. Huang, M. Song et al., Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B Environ. 310, 121312 (2022). https://doi.org/10.1016/j.apcatb.2022.121312
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
- H. Xu, X.-H. Lv, H.-Y. Wang, J.-Y. Ye, J. Yuan et al., Impact of pore structure on two-electron oxygen reduction reaction in nitrogen-doped carbon materials: rotating ring-disk electrode vs. flow cell. ChemSusChem 15, e202102587 (2022). https://doi.org/10.1002/cssc.202102587
- J. Park, Y. Nabae, T. Hayakawa, M.-A. Kakimoto, Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014). https://doi.org/10.1021/cs5008206
- Y. Liu, P. Xie Quan, X. Fan, D. Hua Wang, D. Shuo Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
- Q. Ly, B.V. Merinov, H. Xiao, W.A. Goddard III., T.H. Yu, The oxygen reduction reaction on graphene from quantum mechanics: comparing armchair and zigzag carbon edges. J. Phys. Chem. C 121, 24408–24417 (2017). https://doi.org/10.1021/acs.jpcc.7b07405
References
Y.J. Sa, J.H. Kim, S.H. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
C. Zhang, J. Zhang, J. Zhang, M. Song, X. Huang et al., Tuning coal into graphene-like nanocarbon for electrochemical H2O2 production with nearly 100% faraday efficiency. ACS Sustain. Chem. Eng. 9, 9369–9375 (2021). https://doi.org/10.1021/acssuschemeng.1c02357
Y. Pang, K. Wang, H. Xie, Y. Sun, M.-M. Titirici et al., Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes. ACS Catal. 10, 7434–7442 (2020). https://doi.org/10.1021/acscatal.0c00584
L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou et al., Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 10, 2000789 (2020). https://doi.org/10.1002/aenm.202000789
C. Zhang, W. Liu, M. Song, J. Zhang, F. He et al., Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Appl. Catal. B Environ. 307, 121173 (2022). https://doi.org/10.1016/j.apcatb.2022.121173
T.-P. Fellinger, F. Hasché, P. Strasser, M. Antonietti, Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012). https://doi.org/10.1021/ja300038p
M. Melchionna, P. Fornasiero, M. Prato, The Rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 31, 1802920 (2019). https://doi.org/10.1002/adma.201802920
Y. Wang, R. Shi, L. Shang, L. Peng, D. Chu et al., Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy 96, 107046 (2022). https://doi.org/10.1016/j.nanoen.2022.107046
Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
J.S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani et al., Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011). https://doi.org/10.1021/ja206477z
Y.L. Wang, S. Gurses, N. Felvey, A. Boubnov, S.S. Mao et al., In situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production. ACS Catal. 9, 8453–8463 (2019). https://doi.org/10.1021/acscatal.9b01758
S. Siahrostami, S.J. Villegas, A.H. Bagherzadeh Mostaghimi, S. Back, A.B. Farimani et al., A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 10, 7495–7511 (2020). https://doi.org/10.1021/acscatal.0c01641
H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang et al., Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. Int. Ed. 58, 3859–3864 (2019). https://doi.org/10.1002/anie.201813805
W. Shen, C. Zhang, X. Wang, Y. Huang, Z. Du et al., Sulfur-doped defective nanocarbons derived from fullerenes as electrocatalysts for efficient and selective H2O2 electroproduction. ACS Mater. Lett. 6, 17–26 (2024). https://doi.org/10.1021/acsmaterialslett.3c01036
F. Hasché, M. Oezaslan, P. Strasser, T.-P. Fellinger, Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. J. Energy Chem. 25, 251–257 (2016). https://doi.org/10.1016/j.jechem.2016.01.024
J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu et al., Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52, 307–314 (2018). https://doi.org/10.1016/j.nanoen.2018.08.003
R. Xie, C. Cheng, R. Wang, J. Li, E. Zhao et al., Maximizing thiophene–sulfur functional groups in carbon catalysts for highly selective H2O2 electrosynthesis. ACS Catal. 14, 4471–4477 (2024). https://doi.org/10.1021/acscatal.4c00419
W. Shen, C. Zhang, M. Alomar, Z. Du, Z. Yang et al., Fullerene-derived boron-doped defective nanocarbon for highly selective H2O2 electrosynthesis. Nano Res. 17, 1217–1224 (2024). https://doi.org/10.1007/s12274-023-5999-x
C. Zhang, W. Shen, K. Guo, M. Xiong, J. Zhang et al., A pentagonal defect-rich metal-free carbon electrocatalyst for boosting acidic O2 reduction to H2O2 production. J. Am. Chem. Soc. 145, 11589–11598 (2023). https://doi.org/10.1021/jacs.3c00689
J. Jin, X. Wang, Y. Hu, Z. Zhang, H. Liu et al., Precisely control relationship between sulfur vacancy and H absorption for boosting hydrogen evolution reaction. Nano-Micro Lett. 16, 63 (2024). https://doi.org/10.1007/s40820-023-01291-3
S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
C. Tang, L. Chen, H. Li, L. Li, Y. Jiao et al., Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021). https://doi.org/10.1021/jacs.1c03135
M.-X. Chen, M. Zhu, D. Ming Zuo, D. Sheng-Qi Chu, D. Jing Zhang et al., Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanops. Angew. Chem. Int. Ed. 59, 1627–1633 (2020). https://doi.org/10.1002/anie.201912275
Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang et al., Co nanop embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52, 485–493 (2018). https://doi.org/10.1016/j.nanoen.2018.08.005
X. Wang, R. Huang, X. Mao, T. Liu, P. Guo et al., Coupling Ni single atomic sites with metallic aggregates at adjacent geometry on carbon support for efficient hydrogen peroxide electrosynthesis. Adv. Sci. 11, e2402240 (2024). https://doi.org/10.1002/advs.202402240
J. Gao, X. Chu, H. Lu, H. Wang, X. Li et al., Efficient carbon-based electrocatalyst derived from biomass for hydrogen peroxide generation. Mater. Today Commun. 26, 102051 (2021). https://doi.org/10.1016/j.mtcomm.2021.102051
L. Lu, V. Sahajwalla, C. Kong, D. Harris, Quantitative X-ray diffraction analysis and its application to various coals. Carbon 39, 1821–1833 (2001). https://doi.org/10.1016/S0008-6223(00)00318-3
L. Han, Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9, 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005). https://doi.org/10.1016/j.carbon.2005.02.018
T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565 (1995). https://doi.org/10.1016/0008-6223(95)00117-V
S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang et al., Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 33, e2103133 (2021). https://doi.org/10.1002/adma.202103133
G. Chen, J. Liu, Q. Li, P. Guan, X. Yu et al., A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 12, 2614–2622 (2019). https://doi.org/10.1007/s12274-019-2496-3
Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma et al., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 135, 1201–1204 (2013). https://doi.org/10.1021/ja310566z
W. Liu, C. Zhang, J. Zhang, X. Huang, M. Song et al., Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B Environ. 310, 121312 (2022). https://doi.org/10.1016/j.apcatb.2022.121312
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
H. Xu, X.-H. Lv, H.-Y. Wang, J.-Y. Ye, J. Yuan et al., Impact of pore structure on two-electron oxygen reduction reaction in nitrogen-doped carbon materials: rotating ring-disk electrode vs. flow cell. ChemSusChem 15, e202102587 (2022). https://doi.org/10.1002/cssc.202102587
J. Park, Y. Nabae, T. Hayakawa, M.-A. Kakimoto, Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014). https://doi.org/10.1021/cs5008206
Y. Liu, P. Xie Quan, X. Fan, D. Hua Wang, D. Shuo Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
Q. Ly, B.V. Merinov, H. Xiao, W.A. Goddard III., T.H. Yu, The oxygen reduction reaction on graphene from quantum mechanics: comparing armchair and zigzag carbon edges. J. Phys. Chem. C 121, 24408–24417 (2017). https://doi.org/10.1021/acs.jpcc.7b07405