Designing a Sulfur Vacancy Redox Disruptor for Photothermoelectric and Cascade-Catalytic-Driven Cuproptosis–Ferroptosis–Apoptosis Therapy
Corresponding Author: Piaoping Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 321
Abstract
The therapeutic efficacy of cuproptosis, ferroptosis, and apoptosis is hindered by inadequate intracellular copper and iron levels, hypoxia, and elevated glutathione (GSH) expression in tumor cells. Thermoelectric technology is an emerging frontier in medical therapy that aims to achieve efficient thermal and electrical transport characteristics within a narrow thermal range for biological systems. Here, we systematically constructed biodegradable Cu2MnS3-x-PEG/glucose oxidase (MCPG) with sulfur vacancies (SV) using photothermoelectric catalysis (PTEC), photothermal-enhanced enzyme catalysis, and starvation therapy. This triggers GSH consumption and disrupts intracellular redox homeostasis, leading to immunogenic cell death. Under 1064 nm laser irradiation, MCPG enriched with SV, owing to doping, generates a local temperature gradient that activates PTEC and produces toxic reactive oxygen species (ROS). Hydroxyl radicals and oxygen are generated through peroxide and catalase-like processes. Increased oxygen levels alleviate tumor hypoxia, whereas hydrogen peroxide production from glycometabolism provides sufficient ROS for a cascade catalytic reaction, establishing a self-reinforcing positive mechanism. Density functional theory calculations demonstrated that vacancy defects effectively enhanced enzyme catalytic activity. Multimodal imaging-guided synergistic therapy not only damages tumor cells, but also elicits an antitumor immune response to inhibit tumor metastasis. This study offers novel insights into the cuproptosis/ferroptosis/apoptosis pathways of Cu-based PTEC nanozymes.
Highlights:
1 The glycometabolism and enzyme activity of Cu2MnS3-x-PEG/glucose oxidase (MCPG) achieve a cascade catalytic reaction, continuously replenishing the deficient H2O2 and O2 and inducing adequate reactive oxygen species supply.
2 Density functional theory calculations indicate that Mn doping facilitates the structural reconstruction and evolution of sulfur vacancies (SV) sites, leading to a remarkable increase in the catalytic activity of Cu2MnS3-x.
3 Under 1064 nm laser irradiation, MCPG with abundant SV drives charge carrier diffusion from hotter to cooler regions, thus creating a potential difference and activating the photothermoelectric catalysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Yang, Z. Zhao, B. Tian, M. Yang, Y. Dong et al., A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy. Nat. Commun. 15(1), 7499 (2024). https://doi.org/10.1038/s41467-024-51772-1
- H. Zhou, H. Inoue, M. Ujita, T. Yamada, Advancement of electrochemical thermoelectric conversion with molecular technology. Angew. Chem. Int. Ed. 62(2), e202213449 (2023). https://doi.org/10.1002/anie.202213449
- X. Ji, Z. Tang, H. Liu, Y. Kang, L. Chen et al., Nanoheterojunction-mediated thermoelectric strategy for cancer surgical adjuvant treatment and β-elemene combination therapy. Adv. Mater. 35(8), 2207391 (2023). https://doi.org/10.1002/adma.202207391
- L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008). https://doi.org/10.1126/science.1158899
- Y. He, S. Li, R. Chen, X. Liu, G.O. Odunmbaku et al., Ion-electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nano-Micro Lett. 15(1), 101 (2023). https://doi.org/10.1007/s40820-023-01077-7
- X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
- J. Tang, R. Zhu, Y.-H. Pai, Y. Zhao, C. Xu et al., Thermoelectric modulation of neat Ti3C2Tx MXenes by finely regulating the stacking of nanosheets. Nano-Micro Lett. 17(1), 93 (2024). https://doi.org/10.1007/s40820-024-01594-z
- X. Yuan, Y. Kang, J. Dong, R. Li, J. Ye et al., Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy. Nat. Commun. 14(1), 5140 (2023). https://doi.org/10.1038/s41467-023-40954-y
- P. Zang, Y. Du, C. Yu, D. Yang, S. Gai et al., Photothermal-actuated thermoelectric therapy by harnessing Janus-structured Ag–Ag2S nanops with enhanced antitumor efficacy. Chem. Mater. 35(18), 7770–7780 (2023). https://doi.org/10.1021/acs.chemmater.3c01637
- A. Zhang, Z. Jiang, S. Zhang, P. Lan, N. Miao et al., Coral-shaped Mn-CuS with hierarchical pores and crystalline defects for high-efficiency H2O2 production via electrocatalytic two-electron reduction. Appl. Catal. B Environ. 331, 122721 (2023). https://doi.org/10.1016/j.apcatb.2023.122721
- S. Dong, Y. Dong, Z. Zhao, J. Liu, S. Liu et al., Electron transport chain interference” strategy of amplified mild-photothermal therapy and defect-engineered multi-enzymatic activities for synergistic tumor-personalized suppression. J. Am. Chem. Soc. 145(17), 9488–9507 (2023). https://doi.org/10.1021/jacs.2c09608
- L. Liu, J. Wu, L. Wu, M. Ye, X. Liu et al., Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17(12), 1108–1114 (2018). https://doi.org/10.1038/s41563-018-0187-1
- Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang et al., High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat. Chem. 10(6), 638–643 (2018). https://doi.org/10.1038/s41557-018-0035-6
- M. Xu, G. Yang, H. Bi, J. Xu, S. Dong et al., An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanops and CuS integrated black phosphorus. Chem. Eng. J. 382, 122822 (2020). https://doi.org/10.1016/j.cej.2019.122822
- M. Xu, G. Yang, H. Bi, J. Xu, L. Feng et al., Combination of CuS and g-C3N4 QDs on upconversion nanops for targeted photothermal and photodynamic cancer therapy. Chem. Eng. J. 360, 866–878 (2019). https://doi.org/10.1016/j.cej.2018.12.052
- F. Du, H. Zhao, Y. Song, Z. Feng, K. Liu et al., Apoptosis-sensitizing tumor nanomedicine by regulating pyroptosis-associated inflammatory cell death. Adv. Funct. Mater. 34(44), 2406150 (2024). https://doi.org/10.1002/adfm.202406150
- L. Qiao, G. Zhu, T. Jiang, Y. Qian, Q. Sun et al., Self-destructive copper carriers induce pyroptosis and cuproptosis for efficient tumor immunotherapy against dormant and recurrent tumors. Adv. Mater. 36(8), 2308241 (2024). https://doi.org/10.1002/adma.202308241
- P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma et al., Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586), 1254–1261 (2022). https://doi.org/10.1126/science.abf0529
- L. Chen, J. Min, F. Wang, Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 7(1), 378 (2022). https://doi.org/10.1038/s41392-022-01229-y
- Y. Liu, R. Niu, H. Zhao, Y. Wang, S. Song et al., Single-site nanozymes with a highly conjugated coordination structure for antitumor immunotherapy via cuproptosis and cascade-enhanced T lymphocyte activity. J. Am. Chem. Soc. 146(6), 3675–3688 (2024). https://doi.org/10.1021/jacs.3c08622
- L. Steffens, E. Pettinato, T.M. Steiner, A. Mall, S. König et al., High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 592(7856), 784–788 (2021). https://doi.org/10.1038/s41586-021-03456-9
- J. Zhu, Y. You, W. Zhang, W. Wang, M. Jiang et al., Sensitizing cuproptosis by endogenous copper-triggered bioorthogonal nanoremodeler. Nano Today 55, 102196 (2024). https://doi.org/10.1016/j.nantod.2024.102196
- I. Martínez-Reyes, N.S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11(1), 102 (2020). https://doi.org/10.1038/s41467-019-13668-3
- V. Schulz, S. Basu, S.-A. Freibert, H. Webert, L. Boss et al., Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat. Chem. Biol. 19(2), 206–217 (2023). https://doi.org/10.1038/s41589-022-01159-4
- L. Sun, Y. Zhang, B. Yang, S. Sun, P. Zhang et al., Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat. Commun. 14, 6523 (2023). https://doi.org/10.1038/s41467-023-42025-8
- W. Shen, P. Pei, C. Zhang, J. Li, X. Han et al., A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy. ACS Nano 17(23), 23998–24011 (2023). https://doi.org/10.1021/acsnano.3c08875
- L. Chan, Y. Liu, M. Chen, Y. Su, J. Guo et al., Cuproptosis-driven enhancement of thermotherapy by sequentially response Cu2-xSe via copper chemical transition. Adv. Funct. Mater. 33(33), 2302054 (2023). https://doi.org/10.1002/adfm.202302054
- S. Li, Y. Yue, W. Wang, M. Han, X. Wan et al., Ultrasound-activated probiotics vesicles coating for titanium implant infections through bacterial cuproptosis-like death and immunoregulation. Adv. Mater. 36(44), 2405953 (2024). https://doi.org/10.1002/adma.202405953
- Y.-Y. Wang, S.-L. Li, X.-Y. Zhang, F.-L. Jiang, Q.-L. Guo et al., “Multi-in-one” yolk-shell structured nanoplatform inducing pyroptosis and antitumor immune response through cascade reactions. Small 20(30), 2400254 (2024). https://doi.org/10.1002/smll.202400254
- K. Chen, A. Zhou, X. Zhou, Y. Liu, Y. Xu et al., An intelligent cell-derived nanorobot bridges synergistic crosstalk between sonodynamic therapy and cuproptosis to promote cancer treatment. Nano Lett. 23(7), 3038–3047 (2023). https://doi.org/10.1021/acs.nanolett.3c00434
- Q.-X. Huang, J.-L. Liang, Q.-W. Chen, X.-K. Jin, M.-T. Niu et al., Metal-organic framework nanoagent induces cuproptosis for effective immunotherapy of malignant glioblastoma. Nano Today 51, 101911 (2023). https://doi.org/10.1016/j.nantod.2023.101911
- J. Xie, Y. Yang, Y. Gao, J. He, Cuproptosis: mechanisms and links with cancers. Mol. Cancer 22(1), 46 (2023). https://doi.org/10.1186/s12943-023-01732-y
- X.-K. Jin, J.-L. Liang, S.-M. Zhang, Q.-X. Huang, S.-K. Zhang et al., Orchestrated copper-based nanoreactor for remodeling tumor microenvironment to amplify cuproptosis-mediated anti-tumor immunity in colorectal cancer. Mater. Today 68, 108–124 (2023). https://doi.org/10.1016/j.mattod.2023.06.024
- Y. Xu, S.-Y. Liu, L. Zeng, H. Ma, Y. Zhang et al., An enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv. Mater. 34(43), 2204733 (2022). https://doi.org/10.1002/adma.202204733
- C. Chen, M. Vázquez-González, M.P. O’Hagan, Y. Ouyang, Z. Wang et al., Enzyme-loaded hemin/G-quadruplex-modified ZIF-90 metal–organic framework nanops: bioreactor nanozymes for the cascaded oxidation of N-hydroxy-l-arginine and sensing applications. Small 18(11), 2104420 (2022). https://doi.org/10.1002/smll.202104420
- L.-H. Fu, Y. Wan, C. Qi, J. He, C. Li et al., Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 33(7), e2006892 (2021). https://doi.org/10.1002/adma.202006892
- M. Liu, H. Yu, L. Chen, T. Zhao, M. Fang et al., Spatially asymmetric cascade nanocatalysts for enhanced chemodynamic therapy. Nano Res. 16(7), 9642–9650 (2023). https://doi.org/10.1007/s12274-023-5486-4
- M. Chang, Z. Hou, M. Wang, D. Wen, C. Li et al., Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem. Int. Ed. 61(50), e202209245 (2022). https://doi.org/10.1002/anie.202209245
- M. Chang, Z. Hou, M. Wang, C. Yang, R. Wang et al., Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem. Int. Ed. 60(23), 12971–12979 (2021). https://doi.org/10.1002/anie.202101924
- T. Jia, Z. Wang, Q. Sun, S. Dong, J. Xu et al., Intelligent Fe–Mn layered double hydroxides nanosheets anchored with upconversion nanops for oxygen-elevated synergetic therapy and bioimaging. Small 16(46), 2001343 (2020). https://doi.org/10.1002/smll.202001343
- L. Yang, S. Dong, S. Gai, D. Yang, H. Ding et al., Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 16(1), 28 (2023). https://doi.org/10.1007/s40820-023-01224-0
- T. Futazuka, R. Ishikawa, N. Shibata, Y. Ikuhara, Grain boundary structural transformation induced by co-segregation of aliovalent dopants. Nat. Commun. 13(1), 5299 (2022). https://doi.org/10.1038/s41467-022-32935-4
- Y. Du, X. Zhao, F. He, H. Gong, J. Yang et al., A vacancy-engineering ferroelectric nanomedicine for cuproptosis/apoptosis co-activated immunotherapy. Adv. Mater. 36(30), e2403253 (2024). https://doi.org/10.1002/adma.202403253
- J. Qu, Y. Ge, B. Zu, Y. Li, X. Dou, Transition-metal-doped p-type ZnO nanop-based sensory array for instant discrimination of explosive vapors. Small 12(10), 1369–1377 (2016). https://doi.org/10.1002/smll.201503131
- X. Wei, Z. Li, H. Jang, M.G. Kim, S. Liu et al., Switching product selectivity in CO2 electroreduction via Cu−S bond length variation. Angew. Chem. Int. Ed. 63(39), e202409206 (2024). https://doi.org/10.1002/anie.202409206
- F. Alonso-Valenteen, S. Mikhael, H. Wang, J. Sims, M. Taguiam et al., Systemic HER3 ligand-mimicking nanobiops enter the brain and reduce intracranial tumour growth. Nat. Nanotechnol. 20(5), 683–696 (2025). https://doi.org/10.1038/s41565-025-01867-7
- P. Zhang, Y. Zhang, X. Ding, W. Shen, M. Li et al., A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy. Adv. Mater. 32(46), 2000013 (2020). https://doi.org/10.1002/adma.202000013
- X. Zhang, Y. Zhang, X. Lv, P. Zhang, C. Xiao et al., DNA-free guanosine-based polymer nanoreactors with multienzyme activities for ferroptosis-apoptosis combined antitumor therapy. ACS Nano 18(49), 33531–33544 (2024). https://doi.org/10.1021/acsnano.4c11275
- K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanops. Biomaterials 32(13), 3435–3446 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.021
- M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang et al., Divergent kinetic and thermodynamic hydration of a porous Cu(II) coordination polymer with exclusive CO₂ sorption selectivity. J. Am. Chem. Soc. 136(31), 10906–10909 (2014). https://doi.org/10.1021/ja506357n
- X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14(1), 22 (2021). https://doi.org/10.1007/s40820-021-00761-w
- S. Lei, J. Zhang, N.T. Blum, M. Li, D.Y. Zhang et al., In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy. Nat. Commun. 13(1), 1298 (2022). https://doi.org/10.1038/s41467-022-29082-1
- L. Li, Z. Lin, X. Xu, W. Wang, H. Chen et al., A pH/GSH/glucose responsive nanozyme for tumor cascade amplified starvation and chemodynamic theranostics. ACS Appl. Mater. Interfaces 15(35), 41224–41236 (2023). https://doi.org/10.1021/acsami.3c05412
- S. Cao, X. Xu, Q. Liu, H. Zhu, J. Wang et al., Superlong cycle-life sodium-ion batteries supported by electrode/active material interaction and heteroatom doping: Mechanism and application. J. Colloid Interface Sci. 674, 49–66 (2024). https://doi.org/10.1016/j.jcis.2024.06.145
- Y. Huang, B. Zhang, J. Li, Z. Zhou, S. Zheng et al., Unconventional doping effect leads to ultrahigh average thermoelectric power factor in Cu3SbSe4-based composites. Adv. Mater. 34(14), 2109952 (2022). https://doi.org/10.1002/adma.202109952
- S. Roychowdhury, T. Ghosh, R. Arora, U.V. Waghmare, K. Biswas, Stabilizing n-type cubic GeSe by entropy-driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew. Chem. Int. Ed. 57(46), 15167–15171 (2018). https://doi.org/10.1002/anie.201809841
- S. Wang, Y. Qiao, X. Liu, S. Zhu, Y. Zheng et al., Reduced graphene oxides modified Bi2Te3 nanosheets for rapid photo-thermoelectric catalytic therapy of bacteria-infected wounds. Adv. Funct. Mater. 33(3), 2210098 (2023). https://doi.org/10.1002/adfm.202210098
- T. Jia, J. Du, J. Yang, Y. Li, T.Y. Ohulchanskyy et al., Metalloporphyrin MOFs-based nanoagent enabling tumor microenvironment responsive sonodynamic therapy of intracranial glioma signaled by NIR-IIb luminescence imaging. Adv. Funct. Mater. 34(3), 2307816 (2024). https://doi.org/10.1002/adfm.202307816
- Y. Jiang, X. Zhao, J. Huang, J. Li, P.K. Upputuri et al., Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11(1), 1857 (2020). https://doi.org/10.1038/s41467-020-15730-x
- T. Liu, W. Liu, M. Zhang, W. Yu, F. Gao et al., Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano 12(12), 12181–12192 (2018). https://doi.org/10.1021/acsnano.8b05860
- A. Sheikh, P. Kesharwani, W.H. Almalki, S.S. Almujri, L. Dai et al., Understanding the novel approach of nanoferroptosis for cancer therapy. Nano-Micro Lett. 16(1), 188 (2024). https://doi.org/10.1007/s40820-024-01399-0
- Y. Li, J. Liu, Y. Chen, R.R. Weichselbaum, W. Lin, Nanops synergize ferroptosis and cuproptosis to potentiate cancer immunotherapy. Adv. Sci. 11(23), e2310309 (2024). https://doi.org/10.1002/advs.202310309
- S. Lu, Y. Li, Y. Yu, Glutathione-scavenging celastrol-Cu nanops induce self-amplified cuproptosis for augmented cancer immunotherapy. Adv. Mater. 36(35), 2404971 (2024). https://doi.org/10.1002/adma.202404971
- L. Wu, H. Lin, X. Cao, Q. Tong, F. Yang et al., Bioorthogonal Cu single-atom nanozyme for synergistic nanocatalytic therapy, photothermal therapy, cuproptosis and immunotherapy. Angew. Chem. Int. Ed. 63(27), e202405937 (2024). https://doi.org/10.1002/anie.202405937
- L. Xie, J. Li, G. Wang, W. Sang, M. Xu et al., Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J. Am. Chem. Soc. 144(2), 787–797 (2022). https://doi.org/10.1021/jacs.1c09753
- Y.-B. Liu, X.-Y. Chen, B.-X. Yu, Y. Cen, C.-Y. Huang et al., Chimeric peptide-engineered self-delivery nanomedicine for photodynamic-triggered breast cancer immunotherapy by macrophage polarization. Small 20(22), 2309994 (2024). https://doi.org/10.1002/smll.202309994
- X. Hu, M. Zhang, C. Quan, S. Ren, W. Chen et al., ROS-responsive and triple-synergistic mitochondria-targeted polymer micelles for efficient induction of ICD in tumor therapeutics. Bioact. Mater. 36, 490–507 (2024). https://doi.org/10.1016/j.bioactmat.2024.06.038
- Z. Huang, J. Song, S. Huang, S. Wang, C. Shen et al., Phase and defect engineering of MoSe2 nanosheets for enhanced NIR-II photothermal immunotherapy. Nano Lett. 24(25), 7764–7773 (2024). https://doi.org/10.1021/acs.nanolett.4c01879
- A. Sarkar, V. Novohradsky, M. Maji, T. Babu, L. Markova et al., Multitargeting prodrugs that release oxaliplatin, doxorubicin and gemcitabine are potent inhibitors of tumor growth and effective inducers of immunogenic cell death. Angew. Chem. Int. Ed. 62(42), e202310774 (2023). https://doi.org/10.1002/anie.202310774
- M. Xu, R. Zhao, B. Liu, F. Geng, X. Wu et al., Ultrasmall copper-based nanoplatforms for NIR-II light-triggered photothermal/photodynamic and amplified nanozyme catalytic therapy of hypoxic tumor. Chem. Eng. J. 491, 151776 (2024). https://doi.org/10.1016/j.cej.2024.151776
- Q. Bai, M. Wang, J. Liu, X. Sun, P. Yang et al., Porous molybdenum nitride nanosphere as carrier-free and efficient nitric oxide donor for synergistic nitric oxide and chemo/sonodynamic therapy. ACS Nano 17(20), 20098–20111 (2023). https://doi.org/10.1021/acsnano.3c05790
- M. Wang, F. Xue, L. An, D. Wu, S. Sha et al., Photoacoustic-imaging-guided photothermal regulation of calcium influx for enhanced immunogenic cell death. Adv. Funct. Mater. 34(19), 2311853 (2024). https://doi.org/10.1002/adfm.202311853
- M. Zhang, X. Jin, M. Gao, Y. Zhang, B.Z. Tang, A self-reporting fluorescent salicylaldehyde–chlorambucil conjugate as a type-II ICD inducer for cancer vaccines. Adv. Mater. 34(36), 2205701 (2022). https://doi.org/10.1002/adma.202205701
References
L. Yang, Z. Zhao, B. Tian, M. Yang, Y. Dong et al., A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy. Nat. Commun. 15(1), 7499 (2024). https://doi.org/10.1038/s41467-024-51772-1
H. Zhou, H. Inoue, M. Ujita, T. Yamada, Advancement of electrochemical thermoelectric conversion with molecular technology. Angew. Chem. Int. Ed. 62(2), e202213449 (2023). https://doi.org/10.1002/anie.202213449
X. Ji, Z. Tang, H. Liu, Y. Kang, L. Chen et al., Nanoheterojunction-mediated thermoelectric strategy for cancer surgical adjuvant treatment and β-elemene combination therapy. Adv. Mater. 35(8), 2207391 (2023). https://doi.org/10.1002/adma.202207391
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008). https://doi.org/10.1126/science.1158899
Y. He, S. Li, R. Chen, X. Liu, G.O. Odunmbaku et al., Ion-electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nano-Micro Lett. 15(1), 101 (2023). https://doi.org/10.1007/s40820-023-01077-7
X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
J. Tang, R. Zhu, Y.-H. Pai, Y. Zhao, C. Xu et al., Thermoelectric modulation of neat Ti3C2Tx MXenes by finely regulating the stacking of nanosheets. Nano-Micro Lett. 17(1), 93 (2024). https://doi.org/10.1007/s40820-024-01594-z
X. Yuan, Y. Kang, J. Dong, R. Li, J. Ye et al., Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy. Nat. Commun. 14(1), 5140 (2023). https://doi.org/10.1038/s41467-023-40954-y
P. Zang, Y. Du, C. Yu, D. Yang, S. Gai et al., Photothermal-actuated thermoelectric therapy by harnessing Janus-structured Ag–Ag2S nanops with enhanced antitumor efficacy. Chem. Mater. 35(18), 7770–7780 (2023). https://doi.org/10.1021/acs.chemmater.3c01637
A. Zhang, Z. Jiang, S. Zhang, P. Lan, N. Miao et al., Coral-shaped Mn-CuS with hierarchical pores and crystalline defects for high-efficiency H2O2 production via electrocatalytic two-electron reduction. Appl. Catal. B Environ. 331, 122721 (2023). https://doi.org/10.1016/j.apcatb.2023.122721
S. Dong, Y. Dong, Z. Zhao, J. Liu, S. Liu et al., Electron transport chain interference” strategy of amplified mild-photothermal therapy and defect-engineered multi-enzymatic activities for synergistic tumor-personalized suppression. J. Am. Chem. Soc. 145(17), 9488–9507 (2023). https://doi.org/10.1021/jacs.2c09608
L. Liu, J. Wu, L. Wu, M. Ye, X. Liu et al., Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17(12), 1108–1114 (2018). https://doi.org/10.1038/s41563-018-0187-1
Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang et al., High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat. Chem. 10(6), 638–643 (2018). https://doi.org/10.1038/s41557-018-0035-6
M. Xu, G. Yang, H. Bi, J. Xu, S. Dong et al., An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanops and CuS integrated black phosphorus. Chem. Eng. J. 382, 122822 (2020). https://doi.org/10.1016/j.cej.2019.122822
M. Xu, G. Yang, H. Bi, J. Xu, L. Feng et al., Combination of CuS and g-C3N4 QDs on upconversion nanops for targeted photothermal and photodynamic cancer therapy. Chem. Eng. J. 360, 866–878 (2019). https://doi.org/10.1016/j.cej.2018.12.052
F. Du, H. Zhao, Y. Song, Z. Feng, K. Liu et al., Apoptosis-sensitizing tumor nanomedicine by regulating pyroptosis-associated inflammatory cell death. Adv. Funct. Mater. 34(44), 2406150 (2024). https://doi.org/10.1002/adfm.202406150
L. Qiao, G. Zhu, T. Jiang, Y. Qian, Q. Sun et al., Self-destructive copper carriers induce pyroptosis and cuproptosis for efficient tumor immunotherapy against dormant and recurrent tumors. Adv. Mater. 36(8), 2308241 (2024). https://doi.org/10.1002/adma.202308241
P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma et al., Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586), 1254–1261 (2022). https://doi.org/10.1126/science.abf0529
L. Chen, J. Min, F. Wang, Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 7(1), 378 (2022). https://doi.org/10.1038/s41392-022-01229-y
Y. Liu, R. Niu, H. Zhao, Y. Wang, S. Song et al., Single-site nanozymes with a highly conjugated coordination structure for antitumor immunotherapy via cuproptosis and cascade-enhanced T lymphocyte activity. J. Am. Chem. Soc. 146(6), 3675–3688 (2024). https://doi.org/10.1021/jacs.3c08622
L. Steffens, E. Pettinato, T.M. Steiner, A. Mall, S. König et al., High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 592(7856), 784–788 (2021). https://doi.org/10.1038/s41586-021-03456-9
J. Zhu, Y. You, W. Zhang, W. Wang, M. Jiang et al., Sensitizing cuproptosis by endogenous copper-triggered bioorthogonal nanoremodeler. Nano Today 55, 102196 (2024). https://doi.org/10.1016/j.nantod.2024.102196
I. Martínez-Reyes, N.S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11(1), 102 (2020). https://doi.org/10.1038/s41467-019-13668-3
V. Schulz, S. Basu, S.-A. Freibert, H. Webert, L. Boss et al., Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat. Chem. Biol. 19(2), 206–217 (2023). https://doi.org/10.1038/s41589-022-01159-4
L. Sun, Y. Zhang, B. Yang, S. Sun, P. Zhang et al., Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat. Commun. 14, 6523 (2023). https://doi.org/10.1038/s41467-023-42025-8
W. Shen, P. Pei, C. Zhang, J. Li, X. Han et al., A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy. ACS Nano 17(23), 23998–24011 (2023). https://doi.org/10.1021/acsnano.3c08875
L. Chan, Y. Liu, M. Chen, Y. Su, J. Guo et al., Cuproptosis-driven enhancement of thermotherapy by sequentially response Cu2-xSe via copper chemical transition. Adv. Funct. Mater. 33(33), 2302054 (2023). https://doi.org/10.1002/adfm.202302054
S. Li, Y. Yue, W. Wang, M. Han, X. Wan et al., Ultrasound-activated probiotics vesicles coating for titanium implant infections through bacterial cuproptosis-like death and immunoregulation. Adv. Mater. 36(44), 2405953 (2024). https://doi.org/10.1002/adma.202405953
Y.-Y. Wang, S.-L. Li, X.-Y. Zhang, F.-L. Jiang, Q.-L. Guo et al., “Multi-in-one” yolk-shell structured nanoplatform inducing pyroptosis and antitumor immune response through cascade reactions. Small 20(30), 2400254 (2024). https://doi.org/10.1002/smll.202400254
K. Chen, A. Zhou, X. Zhou, Y. Liu, Y. Xu et al., An intelligent cell-derived nanorobot bridges synergistic crosstalk between sonodynamic therapy and cuproptosis to promote cancer treatment. Nano Lett. 23(7), 3038–3047 (2023). https://doi.org/10.1021/acs.nanolett.3c00434
Q.-X. Huang, J.-L. Liang, Q.-W. Chen, X.-K. Jin, M.-T. Niu et al., Metal-organic framework nanoagent induces cuproptosis for effective immunotherapy of malignant glioblastoma. Nano Today 51, 101911 (2023). https://doi.org/10.1016/j.nantod.2023.101911
J. Xie, Y. Yang, Y. Gao, J. He, Cuproptosis: mechanisms and links with cancers. Mol. Cancer 22(1), 46 (2023). https://doi.org/10.1186/s12943-023-01732-y
X.-K. Jin, J.-L. Liang, S.-M. Zhang, Q.-X. Huang, S.-K. Zhang et al., Orchestrated copper-based nanoreactor for remodeling tumor microenvironment to amplify cuproptosis-mediated anti-tumor immunity in colorectal cancer. Mater. Today 68, 108–124 (2023). https://doi.org/10.1016/j.mattod.2023.06.024
Y. Xu, S.-Y. Liu, L. Zeng, H. Ma, Y. Zhang et al., An enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv. Mater. 34(43), 2204733 (2022). https://doi.org/10.1002/adma.202204733
C. Chen, M. Vázquez-González, M.P. O’Hagan, Y. Ouyang, Z. Wang et al., Enzyme-loaded hemin/G-quadruplex-modified ZIF-90 metal–organic framework nanops: bioreactor nanozymes for the cascaded oxidation of N-hydroxy-l-arginine and sensing applications. Small 18(11), 2104420 (2022). https://doi.org/10.1002/smll.202104420
L.-H. Fu, Y. Wan, C. Qi, J. He, C. Li et al., Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 33(7), e2006892 (2021). https://doi.org/10.1002/adma.202006892
M. Liu, H. Yu, L. Chen, T. Zhao, M. Fang et al., Spatially asymmetric cascade nanocatalysts for enhanced chemodynamic therapy. Nano Res. 16(7), 9642–9650 (2023). https://doi.org/10.1007/s12274-023-5486-4
M. Chang, Z. Hou, M. Wang, D. Wen, C. Li et al., Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem. Int. Ed. 61(50), e202209245 (2022). https://doi.org/10.1002/anie.202209245
M. Chang, Z. Hou, M. Wang, C. Yang, R. Wang et al., Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem. Int. Ed. 60(23), 12971–12979 (2021). https://doi.org/10.1002/anie.202101924
T. Jia, Z. Wang, Q. Sun, S. Dong, J. Xu et al., Intelligent Fe–Mn layered double hydroxides nanosheets anchored with upconversion nanops for oxygen-elevated synergetic therapy and bioimaging. Small 16(46), 2001343 (2020). https://doi.org/10.1002/smll.202001343
L. Yang, S. Dong, S. Gai, D. Yang, H. Ding et al., Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 16(1), 28 (2023). https://doi.org/10.1007/s40820-023-01224-0
T. Futazuka, R. Ishikawa, N. Shibata, Y. Ikuhara, Grain boundary structural transformation induced by co-segregation of aliovalent dopants. Nat. Commun. 13(1), 5299 (2022). https://doi.org/10.1038/s41467-022-32935-4
Y. Du, X. Zhao, F. He, H. Gong, J. Yang et al., A vacancy-engineering ferroelectric nanomedicine for cuproptosis/apoptosis co-activated immunotherapy. Adv. Mater. 36(30), e2403253 (2024). https://doi.org/10.1002/adma.202403253
J. Qu, Y. Ge, B. Zu, Y. Li, X. Dou, Transition-metal-doped p-type ZnO nanop-based sensory array for instant discrimination of explosive vapors. Small 12(10), 1369–1377 (2016). https://doi.org/10.1002/smll.201503131
X. Wei, Z. Li, H. Jang, M.G. Kim, S. Liu et al., Switching product selectivity in CO2 electroreduction via Cu−S bond length variation. Angew. Chem. Int. Ed. 63(39), e202409206 (2024). https://doi.org/10.1002/anie.202409206
F. Alonso-Valenteen, S. Mikhael, H. Wang, J. Sims, M. Taguiam et al., Systemic HER3 ligand-mimicking nanobiops enter the brain and reduce intracranial tumour growth. Nat. Nanotechnol. 20(5), 683–696 (2025). https://doi.org/10.1038/s41565-025-01867-7
P. Zhang, Y. Zhang, X. Ding, W. Shen, M. Li et al., A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy. Adv. Mater. 32(46), 2000013 (2020). https://doi.org/10.1002/adma.202000013
X. Zhang, Y. Zhang, X. Lv, P. Zhang, C. Xiao et al., DNA-free guanosine-based polymer nanoreactors with multienzyme activities for ferroptosis-apoptosis combined antitumor therapy. ACS Nano 18(49), 33531–33544 (2024). https://doi.org/10.1021/acsnano.4c11275
K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanops. Biomaterials 32(13), 3435–3446 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.021
M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang et al., Divergent kinetic and thermodynamic hydration of a porous Cu(II) coordination polymer with exclusive CO₂ sorption selectivity. J. Am. Chem. Soc. 136(31), 10906–10909 (2014). https://doi.org/10.1021/ja506357n
X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14(1), 22 (2021). https://doi.org/10.1007/s40820-021-00761-w
S. Lei, J. Zhang, N.T. Blum, M. Li, D.Y. Zhang et al., In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy. Nat. Commun. 13(1), 1298 (2022). https://doi.org/10.1038/s41467-022-29082-1
L. Li, Z. Lin, X. Xu, W. Wang, H. Chen et al., A pH/GSH/glucose responsive nanozyme for tumor cascade amplified starvation and chemodynamic theranostics. ACS Appl. Mater. Interfaces 15(35), 41224–41236 (2023). https://doi.org/10.1021/acsami.3c05412
S. Cao, X. Xu, Q. Liu, H. Zhu, J. Wang et al., Superlong cycle-life sodium-ion batteries supported by electrode/active material interaction and heteroatom doping: Mechanism and application. J. Colloid Interface Sci. 674, 49–66 (2024). https://doi.org/10.1016/j.jcis.2024.06.145
Y. Huang, B. Zhang, J. Li, Z. Zhou, S. Zheng et al., Unconventional doping effect leads to ultrahigh average thermoelectric power factor in Cu3SbSe4-based composites. Adv. Mater. 34(14), 2109952 (2022). https://doi.org/10.1002/adma.202109952
S. Roychowdhury, T. Ghosh, R. Arora, U.V. Waghmare, K. Biswas, Stabilizing n-type cubic GeSe by entropy-driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew. Chem. Int. Ed. 57(46), 15167–15171 (2018). https://doi.org/10.1002/anie.201809841
S. Wang, Y. Qiao, X. Liu, S. Zhu, Y. Zheng et al., Reduced graphene oxides modified Bi2Te3 nanosheets for rapid photo-thermoelectric catalytic therapy of bacteria-infected wounds. Adv. Funct. Mater. 33(3), 2210098 (2023). https://doi.org/10.1002/adfm.202210098
T. Jia, J. Du, J. Yang, Y. Li, T.Y. Ohulchanskyy et al., Metalloporphyrin MOFs-based nanoagent enabling tumor microenvironment responsive sonodynamic therapy of intracranial glioma signaled by NIR-IIb luminescence imaging. Adv. Funct. Mater. 34(3), 2307816 (2024). https://doi.org/10.1002/adfm.202307816
Y. Jiang, X. Zhao, J. Huang, J. Li, P.K. Upputuri et al., Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11(1), 1857 (2020). https://doi.org/10.1038/s41467-020-15730-x
T. Liu, W. Liu, M. Zhang, W. Yu, F. Gao et al., Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano 12(12), 12181–12192 (2018). https://doi.org/10.1021/acsnano.8b05860
A. Sheikh, P. Kesharwani, W.H. Almalki, S.S. Almujri, L. Dai et al., Understanding the novel approach of nanoferroptosis for cancer therapy. Nano-Micro Lett. 16(1), 188 (2024). https://doi.org/10.1007/s40820-024-01399-0
Y. Li, J. Liu, Y. Chen, R.R. Weichselbaum, W. Lin, Nanops synergize ferroptosis and cuproptosis to potentiate cancer immunotherapy. Adv. Sci. 11(23), e2310309 (2024). https://doi.org/10.1002/advs.202310309
S. Lu, Y. Li, Y. Yu, Glutathione-scavenging celastrol-Cu nanops induce self-amplified cuproptosis for augmented cancer immunotherapy. Adv. Mater. 36(35), 2404971 (2024). https://doi.org/10.1002/adma.202404971
L. Wu, H. Lin, X. Cao, Q. Tong, F. Yang et al., Bioorthogonal Cu single-atom nanozyme for synergistic nanocatalytic therapy, photothermal therapy, cuproptosis and immunotherapy. Angew. Chem. Int. Ed. 63(27), e202405937 (2024). https://doi.org/10.1002/anie.202405937
L. Xie, J. Li, G. Wang, W. Sang, M. Xu et al., Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J. Am. Chem. Soc. 144(2), 787–797 (2022). https://doi.org/10.1021/jacs.1c09753
Y.-B. Liu, X.-Y. Chen, B.-X. Yu, Y. Cen, C.-Y. Huang et al., Chimeric peptide-engineered self-delivery nanomedicine for photodynamic-triggered breast cancer immunotherapy by macrophage polarization. Small 20(22), 2309994 (2024). https://doi.org/10.1002/smll.202309994
X. Hu, M. Zhang, C. Quan, S. Ren, W. Chen et al., ROS-responsive and triple-synergistic mitochondria-targeted polymer micelles for efficient induction of ICD in tumor therapeutics. Bioact. Mater. 36, 490–507 (2024). https://doi.org/10.1016/j.bioactmat.2024.06.038
Z. Huang, J. Song, S. Huang, S. Wang, C. Shen et al., Phase and defect engineering of MoSe2 nanosheets for enhanced NIR-II photothermal immunotherapy. Nano Lett. 24(25), 7764–7773 (2024). https://doi.org/10.1021/acs.nanolett.4c01879
A. Sarkar, V. Novohradsky, M. Maji, T. Babu, L. Markova et al., Multitargeting prodrugs that release oxaliplatin, doxorubicin and gemcitabine are potent inhibitors of tumor growth and effective inducers of immunogenic cell death. Angew. Chem. Int. Ed. 62(42), e202310774 (2023). https://doi.org/10.1002/anie.202310774
M. Xu, R. Zhao, B. Liu, F. Geng, X. Wu et al., Ultrasmall copper-based nanoplatforms for NIR-II light-triggered photothermal/photodynamic and amplified nanozyme catalytic therapy of hypoxic tumor. Chem. Eng. J. 491, 151776 (2024). https://doi.org/10.1016/j.cej.2024.151776
Q. Bai, M. Wang, J. Liu, X. Sun, P. Yang et al., Porous molybdenum nitride nanosphere as carrier-free and efficient nitric oxide donor for synergistic nitric oxide and chemo/sonodynamic therapy. ACS Nano 17(20), 20098–20111 (2023). https://doi.org/10.1021/acsnano.3c05790
M. Wang, F. Xue, L. An, D. Wu, S. Sha et al., Photoacoustic-imaging-guided photothermal regulation of calcium influx for enhanced immunogenic cell death. Adv. Funct. Mater. 34(19), 2311853 (2024). https://doi.org/10.1002/adfm.202311853
M. Zhang, X. Jin, M. Gao, Y. Zhang, B.Z. Tang, A self-reporting fluorescent salicylaldehyde–chlorambucil conjugate as a type-II ICD inducer for cancer vaccines. Adv. Mater. 34(36), 2205701 (2022). https://doi.org/10.1002/adma.202205701