Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules
Corresponding Author: Yangming Lin
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 125
Abstract
Metal-free carbon, as the most representative heterogeneous metal-free catalysts, have received considerable interests in electro- and thermo-catalytic reactions due to their impressive performance and sustainability. Over the past decade, well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms. However, active sites, key intermediate species, precise structure–activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods. In this Review, we summarize the extensive efforts on model catalysts since the 2000s, particularly in the past decade, to overcome the influences of material and structure limitations in metal-free carbon catalysis. Using both nanomolecule model and bulk model, the real contribution of each alien species, defect and edge configuration to a series of fundamentally important reactions, such as thermocatalytic reactions, electrocatalytic reactions, were systematically studied. Combined with in situ techniques, isotope labeling and size control, the detailed reaction mechanisms, the precise 2D structure–activity relationships and the rate-determining steps were revealed at a molecular level. Furthermore, the outlook of model carbon catalysis has also been proposed in this work.
Highlights:
1 Mechanistic understandings of metal-free carbon thermocatalysis and electrocatalysis from the viewpoint of model method are summarized.
2 Active sites and reaction mechanisms are discussed with a focus on in-situ techniques and 2D structure–activity relationships.
3 The real contribution of each alien species, defect and edge configuration to catalytic reactions are systematically highlighted at a molecular level.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.S. Su, G. Wen, S. Wu, F. Peng, R. Schlögl, Carbocatalysis in liquid-phase reactions. Angew. Chem. Int. Ed. 56(4), 936–964 (2017). https://doi.org/10.1002/anie.201600906
- D. Yu, E. Nagelli, F. Du, L. Dai, Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 1(14), 2165–2173 (2010). https://doi.org/10.1021/jz100533t
- X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
- H. Piao, G. Choi, X. Jin, S.-J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14(1), 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
- J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13(1), 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
- Y. Wu, P. Xiong, J. Wu, Z. Huang, J. Sun et al., Band engineering and morphology control of oxygen-incorporated graphitic carbon nitride porous nanosheets for highly efficient photocatalytic hydrogen evolution. Nano-Micro Lett. 13(1), 48 (2021). https://doi.org/10.1007/s40820-020-00571-6
- M. Yamamoto, S. Goto, R. Tang, K. Yamazaki, Three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. ChemRxiv (2023). https://doi.org/10.26434/chemrxiv-2023-1mgs8
- K. Srinivas, D. Liu, F. Ma, A. Chen, Z. Zhang et al., Defect-engineered mesoporous undoped carbon nanoribbons for benchmark oxygen reduction reaction. Small 19(34), e2301589 (2023). https://doi.org/10.1002/smll.202301589
- Y. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao et al., Linkage microenvironment of azoles-related covalent organic frameworks precisely regulates photocatalytic generation of hydrogen peroxide. Angew. Chem. Int. Ed. 62(36), e202309480 (2023). https://doi.org/10.1002/anie.202309480
- H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao et al., Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144, 215–225 (2018). https://doi.org/10.1016/j.watres.2018.07.025
- X. Yan, B. Wang, J. Ren, X. Long, D. Yang, An unsaturated bond strategy to regulate active centers of metal-free covalent organic frameworks for efficient oxygen reduction. Angew. Chem. Int. Ed. 61(46), e202209583 (2022). https://doi.org/10.1002/anie.202209583
- X. Long, D. Li, B. Wang, Z. Jiang, W. Xu et al., Heterocyclization strategy for construction of linear conjugated polymers: efficient metal-free electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 58(33), 11369–11373 (2019). https://doi.org/10.1002/anie.201905468
- Z. Zhao, B. Wang, Z. You, Q. Zhang, W. Song et al., Heterocyclic modulated electronic states of alkynyl-containing conjugated microporous polymers for efficient oxygen reduction. Small 19(17), e2207298 (2023). https://doi.org/10.1002/smll.202207298
- Z. You, B. Wang, Z. Zhao, Q. Zhang, W. Song et al., Metal-free carbon-based covalent organic frameworks with heteroatom-free units boost efficient oxygen reduction. Adv. Mater. 35(7), e2209129 (2023). https://doi.org/10.1002/adma.202209129
- E. Troschke, M. Oschatz, I.K. Ilic, Schiff-bases for sustainable battery and supercapacitor electrodes. Exploration 1(3), 20210128 (2021). https://doi.org/10.1002/EXP.20210128
- F. He, Y. Wang, J. Liu, X. Yao, One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. Exploration 3, 20220164 (2023). https://doi.org/10.1002/EXP.20220164
- S. Zhao, X. Lu, L. Wang, J. Gale, R. Amal, Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 31(13), e1805367 (2019). https://doi.org/10.1002/adma.201805367
- L. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B 100(3–4), 403–412 (2010). https://doi.org/10.1016/j.apcatb.2010.08.023
- E.W. McFarland, H. Metiu, Catalysis by doped oxides. Chem. Rev. 113(6), 4391–4427 (2013). https://doi.org/10.1021/cr300418s
- J.J. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114(20), 10613–10653 (2014). https://doi.org/10.1021/cr5002436
- S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Carbocatalysis by graphene-based materials. Chem. Rev. 114(12), 6179–6212 (2014). https://doi.org/10.1021/cr4007347
- R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3d heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), e1805598 (2019). https://doi.org/10.1002/adma.201805598
- Z. Komeily-Nia, L.-T. Qu, J.-L. Li, Progress in the understanding and applications of the intrinsic reactivity of graphene-based materials. Small Sci. 1(2), 2000026 (2020). https://doi.org/10.1002/smsc.202000026
- F. Zoller, S. Haringer, D. Bohm, J. Luxa, Z. Sofer et al., Carbonaceous oxygen evolution reaction catalysts: From defect and doping-induced activity over hybrid compounds to ordered framework structures. Small 17(48), e2007484 (2021). https://doi.org/10.1002/smll.202007484
- K. Choi, S. Kim, Theoretical study of oxygen reduction reaction mechanism in metal-free carbon materials: defects, structural flexibility, and chemical reaction. ACS Nano 16(10), 16394–16401 (2022). https://doi.org/10.1021/acsnano.2c05607
- A.N. Eledath, A. Edathiparambil Poulose, A. Muthukrishnan, O-functionalization of n-doped reduced graphene oxide for topological defect-driven oxygen reduction. ACS Appl. Nano Mater. 5(8), 10528–10536 (2022). https://doi.org/10.1021/acsanm.2c01852
- R. Rabeya, S. Mahalingam, A. Manap, M. Satgunam, M. Akhtaruzzaman et al., Structural defects in graphene quantum dots: a review. Int. J. Quantum Chem. 122(12), e26900 (2022). https://doi.org/10.1002/qua.26900
- Z.H. Sun, X. Zhang, X.D. Yang, W.N. Shi, Y.Q. Huang et al., Identification of a pyrone-type species as the active site for the oxygen reduction reaction. Chem. Commun. 58(64), 8998–9001 (2022). https://doi.org/10.1039/d2cc03093d
- Y. Li, Y. Tong, F. Peng, Metal-free carbocatalysis for electrochemical oxygen reduction reaction: activity origin and mechanism. J. Energy Chem. 48, 308–321 (2020). https://doi.org/10.1016/j.jechem.2020.02.027
- S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang et al., Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 33(42), e2103133 (2021). https://doi.org/10.1002/adma.202103133
- G. Gan, S. Fan, X. Li, J. Wang, C. Bai et al., Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 11(22), 14284–14292 (2021). https://doi.org/10.1021/acscatal.1c03701
- A. Biswas, S. Kapse, R. Thapa, R.S. Dey, Oxygen functionalization-induced charging effect on boron active sites for high-yield electrocatalytic NH3 production. Nano-Micro Lett. 14(1), 214 (2022). https://doi.org/10.1007/s40820-022-00966-7
- J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Metal-free heteroatom-doped carbon-based catalysts for ORR: a critical assessment about the role of heteroatoms. Carbon 165, 434–454 (2020). https://doi.org/10.1016/j.carbon.2020.04.068
- X.-K. Kong, C.-L. Chen, Q.-W. Chen, Doped graphene for metal-free catalysis. Chem. Soc. Rev. 43(8), 2841–2857 (2014). https://doi.org/10.1039/C3CS60401B
- T. Koretsune, S. Saito, Electronic structure of boron-doped carbon nanotubes. Phys. Rev. B 77(16), 165417 (2008). https://doi.org/10.1103/PhysRevB.77.165417
- V. Likodimos, S. Glenis, C. Lin, Electronic properties of boron-doped multiwall carbon nanotubes studied by Esr and static magnetization. Phys. Rev. B 72(4), 045436 (2005). https://doi.org/10.1103/PhysRevB.72.045436
- J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl et al., Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 322(5898), 73–77 (2008). https://doi.org/10.1126/science.1161916
- W. Xia, C. Jin, S. Kundu, M. Muhler, A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 47(3), 919–922 (2009). https://doi.org/10.1016/j.carbon.2008.12.026
- S. Wu, L. Yu, G. Wen, Z. Xie, Y. Lin, Recent progress of carbon-based metal-free materials in thermal-driven catalysis. J. Energy Chem. 58, 318–335 (2021). https://doi.org/10.1016/j.jechem.2020.10.011
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
- W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng et al., Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 1570–1574 (2014). https://doi.org/10.1002/anie.201307319
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin n doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the Orr, OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
- Q. Lv, W. Si, J. He, L. Sun, C. Zhang et al., Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 9, 3376 (2018). https://doi.org/10.1038/s41467-018-05878-y
- H. Xu, J. Yang, R. Ge, J. Zhang, Y. Li et al., Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: optimization strategies and mechanistic analysis. J. Energy Chem. 71, 234–265 (2022). https://doi.org/10.1016/j.jechem.2022.03.022
- J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, On the deactivation of n-doped carbon materials active sites during oxygen reduction reaction. Carbon 189, 548–560 (2022). https://doi.org/10.1016/j.carbon.2021.12.086
- S. Park, J. Kim, K. Kwon, A review on biomass-derived n-doped carbons as electrocatalysts in electrochemical energy applications. Chem. Eng. J. 446, 137116 (2022). https://doi.org/10.1016/j.cej.2022.137116
- Y. Shen, Y. Li, G. Yang, Q. Zhang, H. Liang et al., Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J. Energy Chem. 44, 106–114 (2020). https://doi.org/10.1016/j.jechem.2019.09.019
- H.B. Yang, J. Miao, S.-F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in n-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
- L. Chen, Y. Hernandez, X. Feng, K. Müllen, From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 5(31), 7640–7654 (2012). https://doi.org/10.1002/anie.201201084
- L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 3819 (2018). https://doi.org/10.1038/s41467-018-06279-x
- R. Panico, W. Powell, J.-C. Richer, A Guide to IUPAC Nomenclature of Organic Compounds: Recommendations 1993 (Blackwell Scientific Publications, Oxford, 1993)
- E.M. Adkins, J.H. Miller, Towards a taxonomy of topology for polynuclear aromatic hydrocarbons: linking electronic and molecular structure. Phys. Chem. Chem. Phys. 19(41), 28458–28469 (2017). https://doi.org/10.1039/c7cp06048c
- L. Zhi, K. Müllen, A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472–1484 (2008). https://doi.org/10.1039/B717585J
- P. Puschnig, D. Lüftner, Simulation of angle-resolved photoemission spectra by approximating the final state by a plane wave: from graphene to polycyclic aromatic hydrocarbon molecules. J. Electron Spectros. Relat. Phenom. 200, 193–208 (2015). https://doi.org/10.1016/j.elspec.2015.06.003
- C. Hu, L. Dai, Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 31(7), 1804672 (2019). https://doi.org/10.1002/adma.201804672
- M. Pykal, P. Jurečka, F. Karlický, M. Otyepka, Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 18(9), 6351–6372 (2016). https://doi.org/10.1039/C5CP03599F
- Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan et al., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2(8), 688–695 (2019). https://doi.org/10.1038/s41929-019-0297-4
- H. Wu, C. Su, R. Tandiana, C. Liu, C. Qiu et al., Graphene-oxide-catalyzed direct CH−CH-type cross-coupling: the intrinsic catalytic activities of zigzag edges. Angew. Chem. Int. Ed. 57, 10848 (2018). https://doi.org/10.1002/anie.201802548
- S. Fujii, T. Enoki, Nanographene and graphene edges: electronic structure and nanofabrication. Acc. Chem. Res. 46(10), 2202–2210 (2013). https://doi.org/10.1021/ar300120y
- M. Li, B. Yin, C. Gao, J. Guo, C. Zhao et al., Graphene: preparation, tailoring, and modification. Exploration 3, 20210233 (2023). https://doi.org/10.1002/EXP.20210233
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136(11), 4394–4403 (2014). https://doi.org/10.1021/ja500432h
- S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu et al., Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 144(7), 3250–3258 (2022). https://doi.org/10.1021/jacs.1c13374
- S. Lu, C. Cheng, Y. Shi, Z. Zhang, B. Zhang, Unveiling structure transformation and activity origin of the heteroatom-doped carbons for hydrogen evolution. Proc. Natl. Acad. Sci. 120(20), e2300549120 (2023). https://doi.org/10.1073/pnas.2300549120
- H. Li, F. Pan, C. Qin, T. Wang, K.J. Chen, Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis. Adv. Energy Mater. 13(28), 2301378 (2023). https://doi.org/10.1002/aenm.202301378
- Z. Wang, M. Cheng, Y. Liu, Z. Wu, H. Gu et al., Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem. Int. Ed. 62(22), e202301483 (2023). https://doi.org/10.1002/anie.202301483
- B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd edn. (CRC Press, 2011). https://doi.org/10.1201/b10777
- E.K. Rideal, W.M. Wright, Clxxxiv—low temperature oxidation at charcoal surfaces. Part I. The behaviour of charcoal in the absence of promoters. J. Chem. Soc. Trans. 127, 1347 (1925). https://doi.org/10.1039/CT9252701347
- X. Guo, W. Qi, W. Liu, P. Yan, F. Li et al., Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS Catal. 7(2), 1424–1427 (2017). https://doi.org/10.1021/acscatal.6b02936
- D.S. Su, S. Perathoner, G. Centi, Nanocarbons for the development of advanced catalysts. Chem. Rev. 113(8), 5782–5816 (2013). https://doi.org/10.1021/cr300367d
- Y. Lin, X. Sun, D.S. Su, G. Centi, S. Perathoner, Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem. Soc. Rev. 47, 8438–8473 (2018). https://doi.org/10.1039/C8CS00684A
- J.L. Figueiredo, M.F. Pereira, M.M. Freitas, J.J. Órfão, Characterization of active sites on carbon catalysts. Ind. Eng. Chem. Res. 46(12), 4110–4115 (2007). https://doi.org/10.1021/ie061071v
- J. Zhang, X. Wang, Q. Su, L. Zhi, A. Thomas et al., Metal-free phenanthrenequinone cyclotrimer as an effective heterogeneous catalyst. J. Am. Chem. Soc. 131(32), 11296–11297 (2009). https://doi.org/10.1021/ja9046735
- Y. Lin, Z. Liu, Y. Niu, B. Zhang, Q. Lu et al., Highly efficient metal-free nitrogen-doped nanocarbons with unexpected active sites for aerobic catalytic reactions. ACS Nano 13(12), 13995–14004 (2019). https://doi.org/10.1021/acsnano.9b05856
- A.D. Zdetsis, E.N. Economou, A pedestrian approach to the aromaticity of graphene and nanographene: Significance of huckel’s (4n+2)π electron rule. J. Phys. Chem. C 119(29), 16991–17003 (2015). https://doi.org/10.1021/acs.jpcc.5b04311
- J. Zhang, D. Su, A. Zhang, D. Wang, R. Schlögl et al., Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis. Angew. Chem. Int. Ed. 46(38), 7319–7323 (2007). https://doi.org/10.1002/anie.200702466
- X. Guo, W. Qi, W. Liu, C. Liang, A. Zheng et al., Conjugated polymers with defined chemical structure as model carbon catalysts for nitro reduction. RSC Adv. 6(101), 99570–99576 (2016). https://doi.org/10.1039/C6RA18201A
- E. Louis, E. San-Fabián, G. Chiappe, J.A. Vergés, Electron enrichment of zigzag edges in armchair–oriented graphene nano–ribbons increases their stability and induces pinning of the fermi level. Carbon 154, 211–218 (2019). https://doi.org/10.1016/j.carbon.2019.07.102
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
- Y. Lin, Z. Liu, L. Yu, G.-R. Zhang, H. Tan et al., Overall oxygen electrocatalysis on nitrogen-modified carbon catalysts: Identification of active sites and in situ observation of reactive intermediates. Angew. Chem. Int. Ed. 60(6), 3299–3306 (2021). https://doi.org/10.1002/anie.202012615
- K. Takeyasu, M. Furukawa, Y. Shimoyama, S.K. Singh, J. Nakamura, Role of pyridinic nitrogen in the mechanism of the oxygen reduction reaction on carbon electrocatalysts. Angew. Chem. Int. Ed. 60(10), 5121–5124 (2021). https://doi.org/10.1002/anie.202014323
- R. Shibuya, T. Kondo, J. Nakamura, Bottom-up design of nitrogen-containing carbon catalysts for the oxygen reduction reaction. ChemCatChem 10(9), 2019–2023 (2018). https://doi.org/10.1002/cctc.201701928
- R.J. Kahan, W. Hirunpinyopas, J. Cid, M.J. Ingleson, R.A. Dryfe, Well-defined boron/nitrogen-doped polycyclic aromatic hydrocarbons are active electrocatalysts for the oxygen reduction reaction. Chem. Mater. 31(6), 1891–1898 (2019). https://doi.org/10.1002/cctc.201701928
- M. Wang, B. Wang, W. Song, X. Wang, X. Peng et al., Oxygen reduction activity of B←N-Containing organic molecule affected by asymmetric regulation. Small 18(3), 2105524 (2022). https://doi.org/10.1002/smll.202105524
- D. Li, B. Wang, X. Long, W. Xu, Y. Xia et al., Controlled asymmetric charge distribution of active centers in conjugated polymers for oxygen reduction. Angew. Chem. Int. Ed. 60(51), 26483–26488 (2021). https://doi.org/10.1002/anie.202109057
- H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
- Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1(2), 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
- G.-F. Han, F. Li, W. Zou, M. Karamad, J.-P. Jeon et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11(1), 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
- L. Yu, L. Tang, W. Guo, C. Li, D. Shin et al., Disclosing the natures of carbon edges with gradient nanocarbons for electrochemical hydrogen peroxide production. Matter 5(6), 1909–1923 (2022). https://doi.org/10.1016/j.matt.2022.04.010
- Y. Lin, K.-H. Wu, Q. Lu, Q. Gu, L. Zhang et al., Electrocatalytic water oxidation at quinone-on-carbon: a model system study. J. Am. Chem. Soc. 140(44), 14717–14724 (2018). https://doi.org/10.1021/jacs.8b07627
- Z. Gu, Y. Chen, Z. Wei, L. Qian, A.M. Al-Enizi et al., Precise tuning of heteroatom positions in polycyclic aromatic hydrocarbons for electrocatalytic nitrogen fixation. J. Colloid Interface Sci. 580, 623–629 (2020). https://doi.org/10.1016/j.jcis.2020.07.046
References
D.S. Su, G. Wen, S. Wu, F. Peng, R. Schlögl, Carbocatalysis in liquid-phase reactions. Angew. Chem. Int. Ed. 56(4), 936–964 (2017). https://doi.org/10.1002/anie.201600906
D. Yu, E. Nagelli, F. Du, L. Dai, Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 1(14), 2165–2173 (2010). https://doi.org/10.1021/jz100533t
X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
H. Piao, G. Choi, X. Jin, S.-J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14(1), 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13(1), 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
Y. Wu, P. Xiong, J. Wu, Z. Huang, J. Sun et al., Band engineering and morphology control of oxygen-incorporated graphitic carbon nitride porous nanosheets for highly efficient photocatalytic hydrogen evolution. Nano-Micro Lett. 13(1), 48 (2021). https://doi.org/10.1007/s40820-020-00571-6
M. Yamamoto, S. Goto, R. Tang, K. Yamazaki, Three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. ChemRxiv (2023). https://doi.org/10.26434/chemrxiv-2023-1mgs8
K. Srinivas, D. Liu, F. Ma, A. Chen, Z. Zhang et al., Defect-engineered mesoporous undoped carbon nanoribbons for benchmark oxygen reduction reaction. Small 19(34), e2301589 (2023). https://doi.org/10.1002/smll.202301589
Y. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao et al., Linkage microenvironment of azoles-related covalent organic frameworks precisely regulates photocatalytic generation of hydrogen peroxide. Angew. Chem. Int. Ed. 62(36), e202309480 (2023). https://doi.org/10.1002/anie.202309480
H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao et al., Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144, 215–225 (2018). https://doi.org/10.1016/j.watres.2018.07.025
X. Yan, B. Wang, J. Ren, X. Long, D. Yang, An unsaturated bond strategy to regulate active centers of metal-free covalent organic frameworks for efficient oxygen reduction. Angew. Chem. Int. Ed. 61(46), e202209583 (2022). https://doi.org/10.1002/anie.202209583
X. Long, D. Li, B. Wang, Z. Jiang, W. Xu et al., Heterocyclization strategy for construction of linear conjugated polymers: efficient metal-free electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 58(33), 11369–11373 (2019). https://doi.org/10.1002/anie.201905468
Z. Zhao, B. Wang, Z. You, Q. Zhang, W. Song et al., Heterocyclic modulated electronic states of alkynyl-containing conjugated microporous polymers for efficient oxygen reduction. Small 19(17), e2207298 (2023). https://doi.org/10.1002/smll.202207298
Z. You, B. Wang, Z. Zhao, Q. Zhang, W. Song et al., Metal-free carbon-based covalent organic frameworks with heteroatom-free units boost efficient oxygen reduction. Adv. Mater. 35(7), e2209129 (2023). https://doi.org/10.1002/adma.202209129
E. Troschke, M. Oschatz, I.K. Ilic, Schiff-bases for sustainable battery and supercapacitor electrodes. Exploration 1(3), 20210128 (2021). https://doi.org/10.1002/EXP.20210128
F. He, Y. Wang, J. Liu, X. Yao, One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. Exploration 3, 20220164 (2023). https://doi.org/10.1002/EXP.20220164
S. Zhao, X. Lu, L. Wang, J. Gale, R. Amal, Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 31(13), e1805367 (2019). https://doi.org/10.1002/adma.201805367
L. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B 100(3–4), 403–412 (2010). https://doi.org/10.1016/j.apcatb.2010.08.023
E.W. McFarland, H. Metiu, Catalysis by doped oxides. Chem. Rev. 113(6), 4391–4427 (2013). https://doi.org/10.1021/cr300418s
J.J. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114(20), 10613–10653 (2014). https://doi.org/10.1021/cr5002436
S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Carbocatalysis by graphene-based materials. Chem. Rev. 114(12), 6179–6212 (2014). https://doi.org/10.1021/cr4007347
R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3d heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), e1805598 (2019). https://doi.org/10.1002/adma.201805598
Z. Komeily-Nia, L.-T. Qu, J.-L. Li, Progress in the understanding and applications of the intrinsic reactivity of graphene-based materials. Small Sci. 1(2), 2000026 (2020). https://doi.org/10.1002/smsc.202000026
F. Zoller, S. Haringer, D. Bohm, J. Luxa, Z. Sofer et al., Carbonaceous oxygen evolution reaction catalysts: From defect and doping-induced activity over hybrid compounds to ordered framework structures. Small 17(48), e2007484 (2021). https://doi.org/10.1002/smll.202007484
K. Choi, S. Kim, Theoretical study of oxygen reduction reaction mechanism in metal-free carbon materials: defects, structural flexibility, and chemical reaction. ACS Nano 16(10), 16394–16401 (2022). https://doi.org/10.1021/acsnano.2c05607
A.N. Eledath, A. Edathiparambil Poulose, A. Muthukrishnan, O-functionalization of n-doped reduced graphene oxide for topological defect-driven oxygen reduction. ACS Appl. Nano Mater. 5(8), 10528–10536 (2022). https://doi.org/10.1021/acsanm.2c01852
R. Rabeya, S. Mahalingam, A. Manap, M. Satgunam, M. Akhtaruzzaman et al., Structural defects in graphene quantum dots: a review. Int. J. Quantum Chem. 122(12), e26900 (2022). https://doi.org/10.1002/qua.26900
Z.H. Sun, X. Zhang, X.D. Yang, W.N. Shi, Y.Q. Huang et al., Identification of a pyrone-type species as the active site for the oxygen reduction reaction. Chem. Commun. 58(64), 8998–9001 (2022). https://doi.org/10.1039/d2cc03093d
Y. Li, Y. Tong, F. Peng, Metal-free carbocatalysis for electrochemical oxygen reduction reaction: activity origin and mechanism. J. Energy Chem. 48, 308–321 (2020). https://doi.org/10.1016/j.jechem.2020.02.027
S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang et al., Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 33(42), e2103133 (2021). https://doi.org/10.1002/adma.202103133
G. Gan, S. Fan, X. Li, J. Wang, C. Bai et al., Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 11(22), 14284–14292 (2021). https://doi.org/10.1021/acscatal.1c03701
A. Biswas, S. Kapse, R. Thapa, R.S. Dey, Oxygen functionalization-induced charging effect on boron active sites for high-yield electrocatalytic NH3 production. Nano-Micro Lett. 14(1), 214 (2022). https://doi.org/10.1007/s40820-022-00966-7
J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Metal-free heteroatom-doped carbon-based catalysts for ORR: a critical assessment about the role of heteroatoms. Carbon 165, 434–454 (2020). https://doi.org/10.1016/j.carbon.2020.04.068
X.-K. Kong, C.-L. Chen, Q.-W. Chen, Doped graphene for metal-free catalysis. Chem. Soc. Rev. 43(8), 2841–2857 (2014). https://doi.org/10.1039/C3CS60401B
T. Koretsune, S. Saito, Electronic structure of boron-doped carbon nanotubes. Phys. Rev. B 77(16), 165417 (2008). https://doi.org/10.1103/PhysRevB.77.165417
V. Likodimos, S. Glenis, C. Lin, Electronic properties of boron-doped multiwall carbon nanotubes studied by Esr and static magnetization. Phys. Rev. B 72(4), 045436 (2005). https://doi.org/10.1103/PhysRevB.72.045436
J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl et al., Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 322(5898), 73–77 (2008). https://doi.org/10.1126/science.1161916
W. Xia, C. Jin, S. Kundu, M. Muhler, A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 47(3), 919–922 (2009). https://doi.org/10.1016/j.carbon.2008.12.026
S. Wu, L. Yu, G. Wen, Z. Xie, Y. Lin, Recent progress of carbon-based metal-free materials in thermal-driven catalysis. J. Energy Chem. 58, 318–335 (2021). https://doi.org/10.1016/j.jechem.2020.10.011
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng et al., Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 1570–1574 (2014). https://doi.org/10.1002/anie.201307319
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin n doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the Orr, OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
Q. Lv, W. Si, J. He, L. Sun, C. Zhang et al., Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 9, 3376 (2018). https://doi.org/10.1038/s41467-018-05878-y
H. Xu, J. Yang, R. Ge, J. Zhang, Y. Li et al., Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: optimization strategies and mechanistic analysis. J. Energy Chem. 71, 234–265 (2022). https://doi.org/10.1016/j.jechem.2022.03.022
J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, On the deactivation of n-doped carbon materials active sites during oxygen reduction reaction. Carbon 189, 548–560 (2022). https://doi.org/10.1016/j.carbon.2021.12.086
S. Park, J. Kim, K. Kwon, A review on biomass-derived n-doped carbons as electrocatalysts in electrochemical energy applications. Chem. Eng. J. 446, 137116 (2022). https://doi.org/10.1016/j.cej.2022.137116
Y. Shen, Y. Li, G. Yang, Q. Zhang, H. Liang et al., Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J. Energy Chem. 44, 106–114 (2020). https://doi.org/10.1016/j.jechem.2019.09.019
H.B. Yang, J. Miao, S.-F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in n-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
L. Chen, Y. Hernandez, X. Feng, K. Müllen, From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 5(31), 7640–7654 (2012). https://doi.org/10.1002/anie.201201084
L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 3819 (2018). https://doi.org/10.1038/s41467-018-06279-x
R. Panico, W. Powell, J.-C. Richer, A Guide to IUPAC Nomenclature of Organic Compounds: Recommendations 1993 (Blackwell Scientific Publications, Oxford, 1993)
E.M. Adkins, J.H. Miller, Towards a taxonomy of topology for polynuclear aromatic hydrocarbons: linking electronic and molecular structure. Phys. Chem. Chem. Phys. 19(41), 28458–28469 (2017). https://doi.org/10.1039/c7cp06048c
L. Zhi, K. Müllen, A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472–1484 (2008). https://doi.org/10.1039/B717585J
P. Puschnig, D. Lüftner, Simulation of angle-resolved photoemission spectra by approximating the final state by a plane wave: from graphene to polycyclic aromatic hydrocarbon molecules. J. Electron Spectros. Relat. Phenom. 200, 193–208 (2015). https://doi.org/10.1016/j.elspec.2015.06.003
C. Hu, L. Dai, Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 31(7), 1804672 (2019). https://doi.org/10.1002/adma.201804672
M. Pykal, P. Jurečka, F. Karlický, M. Otyepka, Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 18(9), 6351–6372 (2016). https://doi.org/10.1039/C5CP03599F
Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan et al., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2(8), 688–695 (2019). https://doi.org/10.1038/s41929-019-0297-4
H. Wu, C. Su, R. Tandiana, C. Liu, C. Qiu et al., Graphene-oxide-catalyzed direct CH−CH-type cross-coupling: the intrinsic catalytic activities of zigzag edges. Angew. Chem. Int. Ed. 57, 10848 (2018). https://doi.org/10.1002/anie.201802548
S. Fujii, T. Enoki, Nanographene and graphene edges: electronic structure and nanofabrication. Acc. Chem. Res. 46(10), 2202–2210 (2013). https://doi.org/10.1021/ar300120y
M. Li, B. Yin, C. Gao, J. Guo, C. Zhao et al., Graphene: preparation, tailoring, and modification. Exploration 3, 20210233 (2023). https://doi.org/10.1002/EXP.20210233
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136(11), 4394–4403 (2014). https://doi.org/10.1021/ja500432h
S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu et al., Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 144(7), 3250–3258 (2022). https://doi.org/10.1021/jacs.1c13374
S. Lu, C. Cheng, Y. Shi, Z. Zhang, B. Zhang, Unveiling structure transformation and activity origin of the heteroatom-doped carbons for hydrogen evolution. Proc. Natl. Acad. Sci. 120(20), e2300549120 (2023). https://doi.org/10.1073/pnas.2300549120
H. Li, F. Pan, C. Qin, T. Wang, K.J. Chen, Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis. Adv. Energy Mater. 13(28), 2301378 (2023). https://doi.org/10.1002/aenm.202301378
Z. Wang, M. Cheng, Y. Liu, Z. Wu, H. Gu et al., Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem. Int. Ed. 62(22), e202301483 (2023). https://doi.org/10.1002/anie.202301483
B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd edn. (CRC Press, 2011). https://doi.org/10.1201/b10777
E.K. Rideal, W.M. Wright, Clxxxiv—low temperature oxidation at charcoal surfaces. Part I. The behaviour of charcoal in the absence of promoters. J. Chem. Soc. Trans. 127, 1347 (1925). https://doi.org/10.1039/CT9252701347
X. Guo, W. Qi, W. Liu, P. Yan, F. Li et al., Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS Catal. 7(2), 1424–1427 (2017). https://doi.org/10.1021/acscatal.6b02936
D.S. Su, S. Perathoner, G. Centi, Nanocarbons for the development of advanced catalysts. Chem. Rev. 113(8), 5782–5816 (2013). https://doi.org/10.1021/cr300367d
Y. Lin, X. Sun, D.S. Su, G. Centi, S. Perathoner, Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem. Soc. Rev. 47, 8438–8473 (2018). https://doi.org/10.1039/C8CS00684A
J.L. Figueiredo, M.F. Pereira, M.M. Freitas, J.J. Órfão, Characterization of active sites on carbon catalysts. Ind. Eng. Chem. Res. 46(12), 4110–4115 (2007). https://doi.org/10.1021/ie061071v
J. Zhang, X. Wang, Q. Su, L. Zhi, A. Thomas et al., Metal-free phenanthrenequinone cyclotrimer as an effective heterogeneous catalyst. J. Am. Chem. Soc. 131(32), 11296–11297 (2009). https://doi.org/10.1021/ja9046735
Y. Lin, Z. Liu, Y. Niu, B. Zhang, Q. Lu et al., Highly efficient metal-free nitrogen-doped nanocarbons with unexpected active sites for aerobic catalytic reactions. ACS Nano 13(12), 13995–14004 (2019). https://doi.org/10.1021/acsnano.9b05856
A.D. Zdetsis, E.N. Economou, A pedestrian approach to the aromaticity of graphene and nanographene: Significance of huckel’s (4n+2)π electron rule. J. Phys. Chem. C 119(29), 16991–17003 (2015). https://doi.org/10.1021/acs.jpcc.5b04311
J. Zhang, D. Su, A. Zhang, D. Wang, R. Schlögl et al., Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis. Angew. Chem. Int. Ed. 46(38), 7319–7323 (2007). https://doi.org/10.1002/anie.200702466
X. Guo, W. Qi, W. Liu, C. Liang, A. Zheng et al., Conjugated polymers with defined chemical structure as model carbon catalysts for nitro reduction. RSC Adv. 6(101), 99570–99576 (2016). https://doi.org/10.1039/C6RA18201A
E. Louis, E. San-Fabián, G. Chiappe, J.A. Vergés, Electron enrichment of zigzag edges in armchair–oriented graphene nano–ribbons increases their stability and induces pinning of the fermi level. Carbon 154, 211–218 (2019). https://doi.org/10.1016/j.carbon.2019.07.102
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
Y. Lin, Z. Liu, L. Yu, G.-R. Zhang, H. Tan et al., Overall oxygen electrocatalysis on nitrogen-modified carbon catalysts: Identification of active sites and in situ observation of reactive intermediates. Angew. Chem. Int. Ed. 60(6), 3299–3306 (2021). https://doi.org/10.1002/anie.202012615
K. Takeyasu, M. Furukawa, Y. Shimoyama, S.K. Singh, J. Nakamura, Role of pyridinic nitrogen in the mechanism of the oxygen reduction reaction on carbon electrocatalysts. Angew. Chem. Int. Ed. 60(10), 5121–5124 (2021). https://doi.org/10.1002/anie.202014323
R. Shibuya, T. Kondo, J. Nakamura, Bottom-up design of nitrogen-containing carbon catalysts for the oxygen reduction reaction. ChemCatChem 10(9), 2019–2023 (2018). https://doi.org/10.1002/cctc.201701928
R.J. Kahan, W. Hirunpinyopas, J. Cid, M.J. Ingleson, R.A. Dryfe, Well-defined boron/nitrogen-doped polycyclic aromatic hydrocarbons are active electrocatalysts for the oxygen reduction reaction. Chem. Mater. 31(6), 1891–1898 (2019). https://doi.org/10.1002/cctc.201701928
M. Wang, B. Wang, W. Song, X. Wang, X. Peng et al., Oxygen reduction activity of B←N-Containing organic molecule affected by asymmetric regulation. Small 18(3), 2105524 (2022). https://doi.org/10.1002/smll.202105524
D. Li, B. Wang, X. Long, W. Xu, Y. Xia et al., Controlled asymmetric charge distribution of active centers in conjugated polymers for oxygen reduction. Angew. Chem. Int. Ed. 60(51), 26483–26488 (2021). https://doi.org/10.1002/anie.202109057
H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1(2), 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
G.-F. Han, F. Li, W. Zou, M. Karamad, J.-P. Jeon et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11(1), 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
L. Yu, L. Tang, W. Guo, C. Li, D. Shin et al., Disclosing the natures of carbon edges with gradient nanocarbons for electrochemical hydrogen peroxide production. Matter 5(6), 1909–1923 (2022). https://doi.org/10.1016/j.matt.2022.04.010
Y. Lin, K.-H. Wu, Q. Lu, Q. Gu, L. Zhang et al., Electrocatalytic water oxidation at quinone-on-carbon: a model system study. J. Am. Chem. Soc. 140(44), 14717–14724 (2018). https://doi.org/10.1021/jacs.8b07627
Z. Gu, Y. Chen, Z. Wei, L. Qian, A.M. Al-Enizi et al., Precise tuning of heteroatom positions in polycyclic aromatic hydrocarbons for electrocatalytic nitrogen fixation. J. Colloid Interface Sci. 580, 623–629 (2020). https://doi.org/10.1016/j.jcis.2020.07.046