Laser Erasing and Rewriting of Flexible Copper Circuits
Corresponding Author: Peng Peng
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 184
Abstract
Integrating construction and reconstruction of highly conductive structures into one process is of great interest in developing and manufacturing of electronics, but it is quite challenging because these two involve contradictive additive and subtractive processes. In this work, we report an all-laser mask-less processing technology that integrates manufacturing, modifying, and restoring of highly conductive Cu structures. By traveling a focused laser, the Cu patterns can be fabricated on the flexible substrate, while these as-written patterns can be selectively erased by changing the laser to a defocused state. Subsequently, the fresh patterns with identical conductivity and stability can be rewritten by repeating the writing step. Further, this erasing–rewriting process is also capable of repairing failure patterns, such as oxidation and cracking. Owing to the high controllability of this writing–erasing–rewriting process and its excellent reproducibility for conductive structures, it opens a new avenue for rapid healing and prototyping of electronics.
Highlights:
1 An up-bottom laser erasing process utilizing electrochemical corrosion has been integrated into the bottom-up writing process.
2 The presented erased laser writing technology exhibits excellent reproducibility for sustainable manufacturing of flexible highly conductive Cu structure.
3 The suitability of the writing-erasing-rewriting process for repairing failure patterns and reconfiguring circuits has been demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015). https://doi.org/10.1002/advs.201500169
- A. Nathan, A. Ahnood, M.T. Cole, S. Lee, Y. Suzuki et al, in Flexible electronics: The next ubiquitous platform. Proceedings of the Ieee. 100 (Special Centennial Issue), 1486–1517 (2012). https://doi.org/10.1109/Jproc.2012.2190168
- B. Ghosh, M.K. Ghosh, P. Parhi, P.S. Mukherjee, B.K. Mishra, Waste printed circuit boards recycling: an extensive assessment of current status. J. Clean. Prod. 94, 5–19 (2015). https://doi.org/10.1016/j.jclepro.2015.02.024
- A. Kamyshny, S. Magdassi, Conductive nanomaterials for 2d and 3d printed flexible electronics. Chem. Soc. Rev. 48(6), 1712–1740 (2019). https://doi.org/10.1039/c8cs00738a
- Y.K. Li, X.W. Zhou, J.L. Chen, W. Guo, S. He et al., Laser-patterned copper electrodes for proximity and tactile sensors. Adv. Mater. Interfaces 7(4), 1901845 (2020). https://doi.org/10.1002/admi.201901845
- J.H. Park, S. Jeong, E.J. Lee, S.S. Lee, J.Y. Seok et al., Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem. Mater. 28(12), 4151–4159 (2016). https://doi.org/10.1021/acs.chemmater.6b00013
- K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10(1), 2582 (2019). https://doi.org/10.1038/s41467-019-10736-6
- T.G. Kim, H.J. Park, K. Woo, S. Jeong, Y. Choi et al., Enhanced oxidation-resistant Cu@Ni core-shell nanoparticles for printed flexible electrodes. ACS Appl. Mater. Interfaces 10(1), 1059–1066 (2018). https://doi.org/10.1021/acsami.7b14572
- X. Zhou, W. Guo, Y. Zhu, P. Peng, The laser writing of highly conductive and anti-oxidative copper structures in liquid. Nanoscale 12(2), 563–571 (2020). https://doi.org/10.1039/c9nr07248a
- R. Rahimi, S. Shams Es-Haghi, S. Chittiboyina, Z. Mutlu, S.A. Lelievre et al., Laser-enabled processing of stretchable electronics on a hydrolytically degradable hydrogel. Adv. Healthc. Mater. 7(16), e1800231 (2018). https://doi.org/10.1002/adhm.201800231
- X.W. Zhou, W. Guo, Y. Yao, R. Peng, P. Peng, Flexible nonenzymatic glucose sensing with one-step laser-fabricated Cu2O/Cu porous structure. Adv. Eng. Mater. 23(6), 2100192 (2021). https://doi.org/10.1002/adem.202100192
- D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
- X. Zhou, W. Guo, J. Fu, Y. Zhu, Y. Huang et al., Laser writing of cu/cu o integrated structure on flexible substrate for humidity sensing. Appl. Surface Sci. 494, 684–690 (2019). https://doi.org/10.1016/j.apsusc.2019.07.159
- S. Leppavuori, J. Remes, H. Moilanen, Utilisation of Cu(hfac) tmvs precursor gas in LCVD integrated circuit repair system. Appl. Surface Sci. 138, 123–129 (1999). https://doi.org/10.1016/S0169-4332(98)00418-8
- A. Işıldar, E.R. Rene, E.D. van Hullebusch, P.N.L. Lens, Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour. Conserv. Recycl. 135, 296–312 (2018). https://doi.org/10.1016/j.resconrec.2017.07.031
- P. Kiddee, R. Naidu, M.H. Wong, Electronic waste management approaches: an overview. Waste Manag. 33(5), 1237–1250 (2013). https://doi.org/10.1016/j.wasman.2013.01.006
- L. Rocchetti, A. Amato, F. Beolchini, Printed circuit board recycling: a patent review. J. Clean. Prod. 178, 814–832 (2018). https://doi.org/10.1016/j.jclepro.2018.01.076
- F. Neubrech, X. Duan, N. Liu, Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. 6(36), eabc2709 (2020). https://doi.org/10.1126/sciadv.abc2709
- T. Jwad, M. Walker, S. Dimov, Erasing and rewriting of titanium oxide color marks using laser-induced reduction/oxidation. Appl. Surface Sci. 458, 849–854 (2018). https://doi.org/10.1016/j.apsusc.2018.07.152
- N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud et al., Reversible and irreversible laser microinscription on silver-containing mesoporous titania films. Adv. Mater. 22(29), 3166–3170 (2010). https://doi.org/10.1002/adma.201000340
- Y. Lee, J. Kwon, J. Lim, W. Shin, S. Park et al., Digital laser micropainting for reprogrammable optoelectronic applications. Adv. Funct. Mater. 31(1), 2006854 (2020). https://doi.org/10.1002/adfm.202006854
- M. Tsukamoto, R. Nishii, Y. Muraki, T. Shinonaga, M. Yoshida et al., Rewriting of low electrical resistance lines on TiO2 film by writing and erasing with femtosecond and CW fiber lasers. Appl. Surface Sci. 313, 730–735 (2014). https://doi.org/10.1016/j.apsusc.2014.06.062
- J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27(29), 1701138 (2017). https://doi.org/10.1002/adfm.201701138
- S. Han, S. Hong, J. Yeo, D. Kim, B. Kang et al., Nanorecycling: Monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv. Mater. 27(41), 6397–6403 (2015). https://doi.org/10.1002/adma.201503244
- Z. Rasheva, L. Sorochynska, S. Grishchuk, K. Friedrich, Effect of the solvent type and polymerization conditions on the curing kinetics, thermal and viscoelastic performance of poly(amide-imide) resins. Express Polymer Lett. 9(3), 196–210 (2015). https://doi.org/10.3144/expresspolymlett.2015.21
- B. Ebin, O. Gencer, S. Gurmen, Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP). Inter. J. Mater. Res. 104(2), 199–206 (2013). https://doi.org/10.3139/146.110853
- A.V. Rosario, E.C. Pereira, The effect of composition variables on precursor degradation and their consequence on Nb2O5 film properties prepared by the pecchini method. J. Sol-Gel Sci. Technol. 38(3), 233–240 (2006). https://doi.org/10.1007/s10971-006-7997-3
- Y.T. Chung, M.M. Ba-Abbad, A.W. Mohammad, A. Benamor, Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalin. Water Treat. 57(17), 7801–7811 (2015). https://doi.org/10.1080/19443994.2015.1067168
- B. Kang, S. Han, J. Kim, S. Ko, M. Yang, One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 115(48), 23664–23670 (2011). https://doi.org/10.1021/jp205281a
- L.D. Zarzar, B.S. Swartzentruber, B.F. Donovan, P.E. Hopkins, B. Kaehr, Using laser-induced thermal voxels to pattern diverse materials at the solid-liquid interface. ACS Appl. Mater. Interfaces 8(33), 21134–21139 (2016). https://doi.org/10.1021/acsami.6b06625
- M.D. Susman, Y. Feldman, A. Vaskevich, I. Rubinstein, Chemical deposition of Cu(2)O nanocrystals with precise morphology control. ACS Nano 8(1), 162–174 (2014). https://doi.org/10.1021/nn405891g
- Y. Yu, L. Zhang, J. Wang, Z. Yang, M. Long et al., Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation. Nanoscale Res. Lett. 7(1), 347 (2012). https://doi.org/10.1186/1556-276X-7-347
- S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma et al., Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
- R. Křikavová, J. Vančo, Z. Trávníček, R. Buchtík, Z. Dvořák, Copper(ii) quinolinonato-7-carboxamido complexes as potent antitumor agents with broad spectra and selective effects. RSC Adv. 6(5), 3899–3909 (2016). https://doi.org/10.1039/c5ra22141b
- F. Cocco, B. Elsener, M. Fantauzzi, D. Atzei, A. Rossi, Nanosized surface films on brass alloys by XPS and XAES. RSC Adv. 6(37), 31277–31289 (2016). https://doi.org/10.1039/c5ra23135c
- J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra et al., Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58(6), 2262–2270 (2010). https://doi.org/10.1016/j.actamat.2009.12.013
- O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley et al., Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93(8), 083108 (2008). https://doi.org/10.1063/1.2969409
- L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422–426 (2004). https://doi.org/10.1126/science.1092905
- A. Zarrouk, B. Hammouti, A. Dafali, F. Bentiss, Inhibitive properties and adsorption of purpald as a corrosion inhibitor for copper in nitric acid medium. Ind. Eng. Chem. Res. 52(7), 2560–2568 (2013). https://doi.org/10.1021/ie301465k
- H.M.J.M. Wedershoven, C.W.J. Berendsen, J.C.H. Zeegers, A.A. Darhuber, Infrared-laser-induced thermocapillary deformation and destabilization of thin liquid films on moving substrates. Phys. Rev. Appl. 3(2), 024005 (2015). https://doi.org/10.1103/PhysRevApplied.3.024005
- Y. Wan, X.M. Wang, H. Sun, Y.B. Li, K. Zhang et al., Corrosion behavior of copper at elevated temperature. Int. J. Electrochem. Sci. 7(9), 7902–7914 (2012)
- G.D. Khattak, A. Mekki, M.A. Gondal, Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by xps studies. Appl. Surface Sci. 256(11), 3630–3635 (2010). https://doi.org/10.1016/j.apsusc.2009.12.167
- K.F. Khaled, M.A. Amin, Dry and wet lab studies for some benzotriazole derivatives as possible corrosion inhibitors for copper in 1.0m HnO3. Corros. Sci. 51(9), 2098–2106 (2009). https://doi.org/10.1016/j.corsci.2009.05.038
- E. Cano, C.L. Torres, J.M. Bastidas, An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity. Mater. Corros. 52(9), 667–676 (2001)
- C.-M. Chen, J.-Q. Huang, Q. Zhang, W.-Z. Gong, Q.-H. Yang et al., Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50(2), 659–667 (2012). https://doi.org/10.1016/j.carbon.2011.09.022
- Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang et al., Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 10(1), 3851 (2019). https://doi.org/10.1038/s41467-019-11599-7
- P. Jinturkar, Y.C. Guan, K.N. Han, Dissolution and corrosion inhibition of copper, zinc, and their alloys. Corrosion 54(2), 106–114 (1998). https://doi.org/10.5006/1.3284833
- A. Galtayries, A. Mongiatti, P. Marcus, C. Chiavari, in Surface Characterisation of Corrosion Inhibitors on Bronzes for Artistic Casting. ed. by (2007), pp. 335–351
- W. Jia, E. Reitz, H. Sun, B. Li, H. Zhang et al., From Cu2(OH)3Cl to nanostructured sisal-like Cu(OH)2 and CuO: synthesis and characterization. J. Appl. Phys. 105(6), 064917 (2009). https://doi.org/10.1063/1.3097286
- L.Q. Wu, Y.C. Li, S.Q. Li, Z.Z. Li, G.D. Tang et al., Method for estimating ionicities of oxides using o1s photoelectron spectra. AIP Adv. 5(9), 097210 (2015). https://doi.org/10.1063/1.4931996
- J.G. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016). https://doi.org/10.1016/j.nanoen.2016.09.017
- P. Yang, G. Wang, Z. Gao, H. Chen, Y. Wang et al., Uniform and conformal carbon nanofilms produced based on molecular layer deposition. Materials 6(12), 5602–5612 (2013). https://doi.org/10.3390/ma6125602
- J. Yeo, S. Hong, G. Kim, H. Lee, Y.D. Suh et al., Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9(6), 6059–6068 (2015). https://doi.org/10.1021/acsnano.5b01125
References
X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015). https://doi.org/10.1002/advs.201500169
A. Nathan, A. Ahnood, M.T. Cole, S. Lee, Y. Suzuki et al, in Flexible electronics: The next ubiquitous platform. Proceedings of the Ieee. 100 (Special Centennial Issue), 1486–1517 (2012). https://doi.org/10.1109/Jproc.2012.2190168
B. Ghosh, M.K. Ghosh, P. Parhi, P.S. Mukherjee, B.K. Mishra, Waste printed circuit boards recycling: an extensive assessment of current status. J. Clean. Prod. 94, 5–19 (2015). https://doi.org/10.1016/j.jclepro.2015.02.024
A. Kamyshny, S. Magdassi, Conductive nanomaterials for 2d and 3d printed flexible electronics. Chem. Soc. Rev. 48(6), 1712–1740 (2019). https://doi.org/10.1039/c8cs00738a
Y.K. Li, X.W. Zhou, J.L. Chen, W. Guo, S. He et al., Laser-patterned copper electrodes for proximity and tactile sensors. Adv. Mater. Interfaces 7(4), 1901845 (2020). https://doi.org/10.1002/admi.201901845
J.H. Park, S. Jeong, E.J. Lee, S.S. Lee, J.Y. Seok et al., Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem. Mater. 28(12), 4151–4159 (2016). https://doi.org/10.1021/acs.chemmater.6b00013
K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10(1), 2582 (2019). https://doi.org/10.1038/s41467-019-10736-6
T.G. Kim, H.J. Park, K. Woo, S. Jeong, Y. Choi et al., Enhanced oxidation-resistant Cu@Ni core-shell nanoparticles for printed flexible electrodes. ACS Appl. Mater. Interfaces 10(1), 1059–1066 (2018). https://doi.org/10.1021/acsami.7b14572
X. Zhou, W. Guo, Y. Zhu, P. Peng, The laser writing of highly conductive and anti-oxidative copper structures in liquid. Nanoscale 12(2), 563–571 (2020). https://doi.org/10.1039/c9nr07248a
R. Rahimi, S. Shams Es-Haghi, S. Chittiboyina, Z. Mutlu, S.A. Lelievre et al., Laser-enabled processing of stretchable electronics on a hydrolytically degradable hydrogel. Adv. Healthc. Mater. 7(16), e1800231 (2018). https://doi.org/10.1002/adhm.201800231
X.W. Zhou, W. Guo, Y. Yao, R. Peng, P. Peng, Flexible nonenzymatic glucose sensing with one-step laser-fabricated Cu2O/Cu porous structure. Adv. Eng. Mater. 23(6), 2100192 (2021). https://doi.org/10.1002/adem.202100192
D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
X. Zhou, W. Guo, J. Fu, Y. Zhu, Y. Huang et al., Laser writing of cu/cu o integrated structure on flexible substrate for humidity sensing. Appl. Surface Sci. 494, 684–690 (2019). https://doi.org/10.1016/j.apsusc.2019.07.159
S. Leppavuori, J. Remes, H. Moilanen, Utilisation of Cu(hfac) tmvs precursor gas in LCVD integrated circuit repair system. Appl. Surface Sci. 138, 123–129 (1999). https://doi.org/10.1016/S0169-4332(98)00418-8
A. Işıldar, E.R. Rene, E.D. van Hullebusch, P.N.L. Lens, Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour. Conserv. Recycl. 135, 296–312 (2018). https://doi.org/10.1016/j.resconrec.2017.07.031
P. Kiddee, R. Naidu, M.H. Wong, Electronic waste management approaches: an overview. Waste Manag. 33(5), 1237–1250 (2013). https://doi.org/10.1016/j.wasman.2013.01.006
L. Rocchetti, A. Amato, F. Beolchini, Printed circuit board recycling: a patent review. J. Clean. Prod. 178, 814–832 (2018). https://doi.org/10.1016/j.jclepro.2018.01.076
F. Neubrech, X. Duan, N. Liu, Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. 6(36), eabc2709 (2020). https://doi.org/10.1126/sciadv.abc2709
T. Jwad, M. Walker, S. Dimov, Erasing and rewriting of titanium oxide color marks using laser-induced reduction/oxidation. Appl. Surface Sci. 458, 849–854 (2018). https://doi.org/10.1016/j.apsusc.2018.07.152
N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud et al., Reversible and irreversible laser microinscription on silver-containing mesoporous titania films. Adv. Mater. 22(29), 3166–3170 (2010). https://doi.org/10.1002/adma.201000340
Y. Lee, J. Kwon, J. Lim, W. Shin, S. Park et al., Digital laser micropainting for reprogrammable optoelectronic applications. Adv. Funct. Mater. 31(1), 2006854 (2020). https://doi.org/10.1002/adfm.202006854
M. Tsukamoto, R. Nishii, Y. Muraki, T. Shinonaga, M. Yoshida et al., Rewriting of low electrical resistance lines on TiO2 film by writing and erasing with femtosecond and CW fiber lasers. Appl. Surface Sci. 313, 730–735 (2014). https://doi.org/10.1016/j.apsusc.2014.06.062
J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27(29), 1701138 (2017). https://doi.org/10.1002/adfm.201701138
S. Han, S. Hong, J. Yeo, D. Kim, B. Kang et al., Nanorecycling: Monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv. Mater. 27(41), 6397–6403 (2015). https://doi.org/10.1002/adma.201503244
Z. Rasheva, L. Sorochynska, S. Grishchuk, K. Friedrich, Effect of the solvent type and polymerization conditions on the curing kinetics, thermal and viscoelastic performance of poly(amide-imide) resins. Express Polymer Lett. 9(3), 196–210 (2015). https://doi.org/10.3144/expresspolymlett.2015.21
B. Ebin, O. Gencer, S. Gurmen, Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP). Inter. J. Mater. Res. 104(2), 199–206 (2013). https://doi.org/10.3139/146.110853
A.V. Rosario, E.C. Pereira, The effect of composition variables on precursor degradation and their consequence on Nb2O5 film properties prepared by the pecchini method. J. Sol-Gel Sci. Technol. 38(3), 233–240 (2006). https://doi.org/10.1007/s10971-006-7997-3
Y.T. Chung, M.M. Ba-Abbad, A.W. Mohammad, A. Benamor, Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalin. Water Treat. 57(17), 7801–7811 (2015). https://doi.org/10.1080/19443994.2015.1067168
B. Kang, S. Han, J. Kim, S. Ko, M. Yang, One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 115(48), 23664–23670 (2011). https://doi.org/10.1021/jp205281a
L.D. Zarzar, B.S. Swartzentruber, B.F. Donovan, P.E. Hopkins, B. Kaehr, Using laser-induced thermal voxels to pattern diverse materials at the solid-liquid interface. ACS Appl. Mater. Interfaces 8(33), 21134–21139 (2016). https://doi.org/10.1021/acsami.6b06625
M.D. Susman, Y. Feldman, A. Vaskevich, I. Rubinstein, Chemical deposition of Cu(2)O nanocrystals with precise morphology control. ACS Nano 8(1), 162–174 (2014). https://doi.org/10.1021/nn405891g
Y. Yu, L. Zhang, J. Wang, Z. Yang, M. Long et al., Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation. Nanoscale Res. Lett. 7(1), 347 (2012). https://doi.org/10.1186/1556-276X-7-347
S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma et al., Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
R. Křikavová, J. Vančo, Z. Trávníček, R. Buchtík, Z. Dvořák, Copper(ii) quinolinonato-7-carboxamido complexes as potent antitumor agents with broad spectra and selective effects. RSC Adv. 6(5), 3899–3909 (2016). https://doi.org/10.1039/c5ra22141b
F. Cocco, B. Elsener, M. Fantauzzi, D. Atzei, A. Rossi, Nanosized surface films on brass alloys by XPS and XAES. RSC Adv. 6(37), 31277–31289 (2016). https://doi.org/10.1039/c5ra23135c
J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra et al., Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58(6), 2262–2270 (2010). https://doi.org/10.1016/j.actamat.2009.12.013
O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley et al., Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93(8), 083108 (2008). https://doi.org/10.1063/1.2969409
L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422–426 (2004). https://doi.org/10.1126/science.1092905
A. Zarrouk, B. Hammouti, A. Dafali, F. Bentiss, Inhibitive properties and adsorption of purpald as a corrosion inhibitor for copper in nitric acid medium. Ind. Eng. Chem. Res. 52(7), 2560–2568 (2013). https://doi.org/10.1021/ie301465k
H.M.J.M. Wedershoven, C.W.J. Berendsen, J.C.H. Zeegers, A.A. Darhuber, Infrared-laser-induced thermocapillary deformation and destabilization of thin liquid films on moving substrates. Phys. Rev. Appl. 3(2), 024005 (2015). https://doi.org/10.1103/PhysRevApplied.3.024005
Y. Wan, X.M. Wang, H. Sun, Y.B. Li, K. Zhang et al., Corrosion behavior of copper at elevated temperature. Int. J. Electrochem. Sci. 7(9), 7902–7914 (2012)
G.D. Khattak, A. Mekki, M.A. Gondal, Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by xps studies. Appl. Surface Sci. 256(11), 3630–3635 (2010). https://doi.org/10.1016/j.apsusc.2009.12.167
K.F. Khaled, M.A. Amin, Dry and wet lab studies for some benzotriazole derivatives as possible corrosion inhibitors for copper in 1.0m HnO3. Corros. Sci. 51(9), 2098–2106 (2009). https://doi.org/10.1016/j.corsci.2009.05.038
E. Cano, C.L. Torres, J.M. Bastidas, An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity. Mater. Corros. 52(9), 667–676 (2001)
C.-M. Chen, J.-Q. Huang, Q. Zhang, W.-Z. Gong, Q.-H. Yang et al., Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50(2), 659–667 (2012). https://doi.org/10.1016/j.carbon.2011.09.022
Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang et al., Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 10(1), 3851 (2019). https://doi.org/10.1038/s41467-019-11599-7
P. Jinturkar, Y.C. Guan, K.N. Han, Dissolution and corrosion inhibition of copper, zinc, and their alloys. Corrosion 54(2), 106–114 (1998). https://doi.org/10.5006/1.3284833
A. Galtayries, A. Mongiatti, P. Marcus, C. Chiavari, in Surface Characterisation of Corrosion Inhibitors on Bronzes for Artistic Casting. ed. by (2007), pp. 335–351
W. Jia, E. Reitz, H. Sun, B. Li, H. Zhang et al., From Cu2(OH)3Cl to nanostructured sisal-like Cu(OH)2 and CuO: synthesis and characterization. J. Appl. Phys. 105(6), 064917 (2009). https://doi.org/10.1063/1.3097286
L.Q. Wu, Y.C. Li, S.Q. Li, Z.Z. Li, G.D. Tang et al., Method for estimating ionicities of oxides using o1s photoelectron spectra. AIP Adv. 5(9), 097210 (2015). https://doi.org/10.1063/1.4931996
J.G. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016). https://doi.org/10.1016/j.nanoen.2016.09.017
P. Yang, G. Wang, Z. Gao, H. Chen, Y. Wang et al., Uniform and conformal carbon nanofilms produced based on molecular layer deposition. Materials 6(12), 5602–5612 (2013). https://doi.org/10.3390/ma6125602
J. Yeo, S. Hong, G. Kim, H. Lee, Y.D. Suh et al., Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9(6), 6059–6068 (2015). https://doi.org/10.1021/acsnano.5b01125