Chirality-Induced Suppression of Singlet Oxygen in Lithium–Oxygen Batteries with Extended Cycle Life
Corresponding Author: Dong Ha Kim
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 40
Abstract
Lithium–oxygen (Li–O2) batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage, utilizing ambient air as an energy source, eliminating the need for costly cathode materials, and offering the highest theoretical energy density (~ 3.5 kWh kg–1) among discussed candidates. Contributing to the poor cycle life of currently reported Li–O2 cells is singlet oxygen (1O2) formation, inducing parasitic reactions, degrading key components, and severely deteriorating cell performance. Here, we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets (Co3O4 NSs) as cathode materials to suppress 1O2 in Li–O2 batteries for the first time. Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O2 during discharge and charge, respectively, compared to conventional carbon paper-based cells, consistent with differential electrochemical mass spectrometry results, which indicate a near-theoretical charge-to-O2 ratio (2.04 e−/O2). Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level, enhancing Co 3d–O 2p hybridization, stabilizing reaction intermediates, and lowering activation barriers for Li2O2 formation and decomposition. These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li–O2 batteries, abridging the current gap to commercialization.
Highlights:
1 Chiral cobalt oxide nanosheets (Co3O4 NSs) suppress singlet oxygen (1O2) generation in Li–O2 batteries via the CISS effect.
2 Operando spectroscopy and density functional theory calculations confirm reduced parasitic reactions and enhanced oxygen electrochemistry.
3 This strategy improves energy efficiency and cycle life, offering a path toward stable, high-performance Li–O2 batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2011). https://doi.org/10.1038/nmat3191
- D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1(9), 16128 (2016). https://doi.org/10.1038/nenergy.2016.128
- A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report. Chem. Rev. 114(23), 11721–11750 (2014). https://doi.org/10.1021/cr500054y
- B. Kim, M.-C. Sung, G.-H. Lee, B. Hwang, S. Seo et al., Aligned ion conduction pathway of polyrotaxane-based electrolyte with dispersed hydrophobic chains for solid-state lithium-oxygen batteries. Nano-Micro Lett. 17(1), 31 (2024). https://doi.org/10.1007/s40820-024-01535-w
- Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell et al., Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6(3), 750 (2013). https://doi.org/10.1039/c3ee23966g
- Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed mott-schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li-O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
- X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium-oxygen batteries. Nano-Micro Lett. 16(1), 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
- M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 135(1), 494–500 (2013). https://doi.org/10.1021/ja310258x
- J. Hassoun, F. Croce, M. Armand, B. Scrosati, Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem. Int. Ed. 50(13), 2999–3002 (2011). https://doi.org/10.1002/anie.201006264
- M. Hong, H.R. Byon, Singlet oxygen in Lithium−Oxygen batteries. Batter. Supercaps. 4(2), 286–293 (2021). https://doi.org/10.1002/batt.202000210
- B.D. McCloskey, D.S. Bethune, R.M. Shelby, T. Mori, R. Scheffler et al., Limitations in rechargeability of Li-O2 batteries and possible origins. J. Phys. Chem. Lett. 3(20), 3043–3047 (2012). https://doi.org/10.1021/jz301359t
- N. Mahne, B. Schafzahl, C. Leypold, M. Leypold, S. Grumm et al., Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017). https://doi.org/10.1038/nenergy.2017.36
- Y.K. Petit, C. Leypold, N. Mahne, E. Mourad, L. Schafzahl et al., DABCOnium: an efficient and high-voltage stable singlet oxygen quencher for metal–O2 cells. Angew. Chem. Int. Ed. 58(20), 6535–6539 (2019). https://doi.org/10.1002/anie.201901869
- W.-J. Kwak, S.A. Freunberger, H. Kim, J. Park, T.T. Nguyen et al., Mutual conservation of redox mediator and singlet oxygen quencher in lithium–oxygen batteries. ACS Catal. 9(11), 9914–9922 (2019). https://doi.org/10.1021/acscatal.9b01337
- H.-W. Lee, H. Kim, H.-G. Jung, Y.-K. Sun, W.-J. Kwak, Ambilaterality of redox mediators towards 1O2 in Li-O2 batteries: trap and quencher. Adv. Funct. Mater. 31(40), 2102442 (2021). https://doi.org/10.1002/adfm.202102442
- Z. Liang, Q. Zou, J. Xie, Y.-C. Lu, Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy Environ. Sci. 13(9), 2870–2877 (2020). https://doi.org/10.1039/d0ee01114b
- R. Naaman, Y. Paltiel, D.H. Waldeck, Chiral molecules and the spin selectivity effect. J. Phys. Chem. Lett. 11(9), 3660–3666 (2020). https://doi.org/10.1021/acs.jpclett.0c00474
- B. Göhler, V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne et al., Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331(6019), 894–897 (2011). https://doi.org/10.1126/science.1199339
- R. Naaman, Y. Paltiel, D.H. Waldeck, Chiral induced spin selectivity gives a new twist on spin-control in chemistry. Acc. Chem. Res. 53(11), 2659–2667 (2020). https://doi.org/10.1021/acs.accounts.0c00485
- H. Li, W. Wang, S. Xue, J. He, C. Liu et al., Superstructure-assisted single-atom catalysis on tungsten carbides for bifunctional oxygen reactions. J. Am. Chem. Soc. 146(13), 9124–9133 (2024). https://doi.org/10.1021/jacs.3c14354
- H. Li, S. Di, P. Niu, S. Wang, J. Wang et al., A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 15(4), 1601–1610 (2022). https://doi.org/10.1039/d1ee03194e
- G. Huang, Y. Huang, A. Ali, Z. Chen, P.K. Shen et al., Phase-controllable cobalt phosphide heterostructure for efficient electrocatalytic hydrogen evolution in water and seawater. Electron 2(3), e58 (2024). https://doi.org/10.1002/elt2.58
- G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
- L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73(19), 195107 (2006). https://doi.org/10.1103/physrevb.73.195107
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- R. Wong, C. Yang, A. Dutta, M. O, M. Hong et al., Critically examining the role of nanocatalysts in Li–O2 batteries: viability toward suppression of recharge overpotential, rechargeability, and cyclability. ACS Energy Lett. 3(3), 592–597 (2018). https://doi.org/10.1021/acsenergylett.8b00054
- Q.-C. Liu, J.-J. Xu, Z.-W. Chang, X.-B. Zhang, Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li–O2 battery. J. Mater. Chem. A 2(17), 6081–6085 (2014). https://doi.org/10.1039/C3TA14011C
- S.A. Cho, Y.J. Jang, H.-D. Lim, J.-E. Lee, Y.H. Jang et al., Hierarchical porous carbonized Co3O4 inverse opals via combined block copolymer and colloid templating as bifunctional electrocatalysts in Li–O2 battery. Adv. Energy Mater. 7(21), 1700391 (2017). https://doi.org/10.1002/aenm.201700391
- C.-W. Tung, Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan et al., Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015). https://doi.org/10.1038/ncomms9106
- A. Bergmann, T.E. Jones, E. Martinez Moreno, D. Teschner, P. Chernev et al., Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1(9), 711–719 (2018). https://doi.org/10.1038/s41929-018-0141-2
- K.B. Ghosh, W. Zhang, F. Tassinari, Y. Mastai, O. Lidor-Shalev et al., Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C 123(5), 3024–3031 (2019). https://doi.org/10.1021/acs.jpcc.8b12027
- H. Lee, S. Ma, S. Oh, J. Tan, C.U. Lee et al., Chirality-induced spin selectivity of chiral 2D perovskite enabling efficient spin-dependent oxygen evolution reaction. Small 19(40), 2304166 (2023). https://doi.org/10.1002/smll.202304166
- H. Im, S. Ma, H. Lee, J. Park, Y.S. Park et al., Elucidating the chirality transfer mechanisms during enantioselective synthesis for the spin-controlled oxygen evolution reaction. Energy Environ. Sci. 16(3), 1187–1199 (2023). https://doi.org/10.1039/D2EE03853F
- K. Chae, N.A.R.C. Mohamad, J. Kim, D.-I. Won, Z. Lin et al., The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem. Soc. Rev. 53(18), 9029–9058 (2024). https://doi.org/10.1039/D3CS00316G
- J. Zhu, X. Ren, J. Liu, W. Zhang, Z. Wen, Unraveling the catalytic mechanism of Co3O4 for the oxygen evolution reaction in a Li–O2 battery. ACS Catal. 5(1), 73–81 (2015). https://doi.org/10.1021/cs5014442
- Z. Jiang, Y. Huang, Z. Zhu, S. Gao, Q. Lv et al., Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery. Proc. Natl. Acad. Sci. U. S. A. 119(34), e2202835119 (2022). https://doi.org/10.1073/pnas.2202835119
- J.-E. Kim, H.-W. Lee, W.-J. Kwak, Acceleration of singlet oxygen evolution by superoxide dismutase mimetics in lithium–oxygen batteries. Adv. Funct. Mater. 32(52), 2209012 (2022). https://doi.org/10.1002/adfm.202209012
- P.R. Ogilby, Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39(8), 3181–3209 (2010). https://doi.org/10.1039/b926014p
- V.S. Bryantsev, M. Blanco, Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J. Phys. Chem. Lett. 2(5), 379–383 (2011). https://doi.org/10.1021/jz1016526
- V.S. Bryantsev, F. Faglioni, Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li–air batteries. J. Phys. Chem. A 116(26), 7128–7138 (2012). https://doi.org/10.1021/jp301537w
- J. Wandt, P. Jakes, J. Granwehr, H.A. Gasteiger, R.-A. Eichel, Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55(24), 6892–6895 (2016). https://doi.org/10.1002/anie.201602142
- A.C. Luntz, B.D. McCloskey, Li–air batteries: Importance of singlet oxygen. Nat. Energy 2(5), 17056 (2017). https://doi.org/10.1038/nenergy.2017.56
- L. Ren, R. Zheng, D. Du, Y. Yan, M. He et al., Optimized orbital occupancy of transition metal in spinel Ni-Co oxides with heteroatom doping for aprotic Li-O2 battery. Chem. Eng. J. 430, 132977 (2022). https://doi.org/10.1016/j.cej.2021.132977
- Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu et al., Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 141(20), 8136–8145 (2019). https://doi.org/10.1021/jacs.8b13701
- W. Yu, T. Yoshii, A. Aziz, R. Tang, Z.-Z. Pan et al., Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries. Adv. Sci. 10(16), e2300268 (2023). https://doi.org/10.1002/advs.202300268
- X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y
References
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2011). https://doi.org/10.1038/nmat3191
D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1(9), 16128 (2016). https://doi.org/10.1038/nenergy.2016.128
A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report. Chem. Rev. 114(23), 11721–11750 (2014). https://doi.org/10.1021/cr500054y
B. Kim, M.-C. Sung, G.-H. Lee, B. Hwang, S. Seo et al., Aligned ion conduction pathway of polyrotaxane-based electrolyte with dispersed hydrophobic chains for solid-state lithium-oxygen batteries. Nano-Micro Lett. 17(1), 31 (2024). https://doi.org/10.1007/s40820-024-01535-w
Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell et al., Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6(3), 750 (2013). https://doi.org/10.1039/c3ee23966g
Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed mott-schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li-O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium-oxygen batteries. Nano-Micro Lett. 16(1), 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 135(1), 494–500 (2013). https://doi.org/10.1021/ja310258x
J. Hassoun, F. Croce, M. Armand, B. Scrosati, Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem. Int. Ed. 50(13), 2999–3002 (2011). https://doi.org/10.1002/anie.201006264
M. Hong, H.R. Byon, Singlet oxygen in Lithium−Oxygen batteries. Batter. Supercaps. 4(2), 286–293 (2021). https://doi.org/10.1002/batt.202000210
B.D. McCloskey, D.S. Bethune, R.M. Shelby, T. Mori, R. Scheffler et al., Limitations in rechargeability of Li-O2 batteries and possible origins. J. Phys. Chem. Lett. 3(20), 3043–3047 (2012). https://doi.org/10.1021/jz301359t
N. Mahne, B. Schafzahl, C. Leypold, M. Leypold, S. Grumm et al., Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017). https://doi.org/10.1038/nenergy.2017.36
Y.K. Petit, C. Leypold, N. Mahne, E. Mourad, L. Schafzahl et al., DABCOnium: an efficient and high-voltage stable singlet oxygen quencher for metal–O2 cells. Angew. Chem. Int. Ed. 58(20), 6535–6539 (2019). https://doi.org/10.1002/anie.201901869
W.-J. Kwak, S.A. Freunberger, H. Kim, J. Park, T.T. Nguyen et al., Mutual conservation of redox mediator and singlet oxygen quencher in lithium–oxygen batteries. ACS Catal. 9(11), 9914–9922 (2019). https://doi.org/10.1021/acscatal.9b01337
H.-W. Lee, H. Kim, H.-G. Jung, Y.-K. Sun, W.-J. Kwak, Ambilaterality of redox mediators towards 1O2 in Li-O2 batteries: trap and quencher. Adv. Funct. Mater. 31(40), 2102442 (2021). https://doi.org/10.1002/adfm.202102442
Z. Liang, Q. Zou, J. Xie, Y.-C. Lu, Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy Environ. Sci. 13(9), 2870–2877 (2020). https://doi.org/10.1039/d0ee01114b
R. Naaman, Y. Paltiel, D.H. Waldeck, Chiral molecules and the spin selectivity effect. J. Phys. Chem. Lett. 11(9), 3660–3666 (2020). https://doi.org/10.1021/acs.jpclett.0c00474
B. Göhler, V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne et al., Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331(6019), 894–897 (2011). https://doi.org/10.1126/science.1199339
R. Naaman, Y. Paltiel, D.H. Waldeck, Chiral induced spin selectivity gives a new twist on spin-control in chemistry. Acc. Chem. Res. 53(11), 2659–2667 (2020). https://doi.org/10.1021/acs.accounts.0c00485
H. Li, W. Wang, S. Xue, J. He, C. Liu et al., Superstructure-assisted single-atom catalysis on tungsten carbides for bifunctional oxygen reactions. J. Am. Chem. Soc. 146(13), 9124–9133 (2024). https://doi.org/10.1021/jacs.3c14354
H. Li, S. Di, P. Niu, S. Wang, J. Wang et al., A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 15(4), 1601–1610 (2022). https://doi.org/10.1039/d1ee03194e
G. Huang, Y. Huang, A. Ali, Z. Chen, P.K. Shen et al., Phase-controllable cobalt phosphide heterostructure for efficient electrocatalytic hydrogen evolution in water and seawater. Electron 2(3), e58 (2024). https://doi.org/10.1002/elt2.58
G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73(19), 195107 (2006). https://doi.org/10.1103/physrevb.73.195107
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
R. Wong, C. Yang, A. Dutta, M. O, M. Hong et al., Critically examining the role of nanocatalysts in Li–O2 batteries: viability toward suppression of recharge overpotential, rechargeability, and cyclability. ACS Energy Lett. 3(3), 592–597 (2018). https://doi.org/10.1021/acsenergylett.8b00054
Q.-C. Liu, J.-J. Xu, Z.-W. Chang, X.-B. Zhang, Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li–O2 battery. J. Mater. Chem. A 2(17), 6081–6085 (2014). https://doi.org/10.1039/C3TA14011C
S.A. Cho, Y.J. Jang, H.-D. Lim, J.-E. Lee, Y.H. Jang et al., Hierarchical porous carbonized Co3O4 inverse opals via combined block copolymer and colloid templating as bifunctional electrocatalysts in Li–O2 battery. Adv. Energy Mater. 7(21), 1700391 (2017). https://doi.org/10.1002/aenm.201700391
C.-W. Tung, Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan et al., Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015). https://doi.org/10.1038/ncomms9106
A. Bergmann, T.E. Jones, E. Martinez Moreno, D. Teschner, P. Chernev et al., Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1(9), 711–719 (2018). https://doi.org/10.1038/s41929-018-0141-2
K.B. Ghosh, W. Zhang, F. Tassinari, Y. Mastai, O. Lidor-Shalev et al., Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C 123(5), 3024–3031 (2019). https://doi.org/10.1021/acs.jpcc.8b12027
H. Lee, S. Ma, S. Oh, J. Tan, C.U. Lee et al., Chirality-induced spin selectivity of chiral 2D perovskite enabling efficient spin-dependent oxygen evolution reaction. Small 19(40), 2304166 (2023). https://doi.org/10.1002/smll.202304166
H. Im, S. Ma, H. Lee, J. Park, Y.S. Park et al., Elucidating the chirality transfer mechanisms during enantioselective synthesis for the spin-controlled oxygen evolution reaction. Energy Environ. Sci. 16(3), 1187–1199 (2023). https://doi.org/10.1039/D2EE03853F
K. Chae, N.A.R.C. Mohamad, J. Kim, D.-I. Won, Z. Lin et al., The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem. Soc. Rev. 53(18), 9029–9058 (2024). https://doi.org/10.1039/D3CS00316G
J. Zhu, X. Ren, J. Liu, W. Zhang, Z. Wen, Unraveling the catalytic mechanism of Co3O4 for the oxygen evolution reaction in a Li–O2 battery. ACS Catal. 5(1), 73–81 (2015). https://doi.org/10.1021/cs5014442
Z. Jiang, Y. Huang, Z. Zhu, S. Gao, Q. Lv et al., Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery. Proc. Natl. Acad. Sci. U. S. A. 119(34), e2202835119 (2022). https://doi.org/10.1073/pnas.2202835119
J.-E. Kim, H.-W. Lee, W.-J. Kwak, Acceleration of singlet oxygen evolution by superoxide dismutase mimetics in lithium–oxygen batteries. Adv. Funct. Mater. 32(52), 2209012 (2022). https://doi.org/10.1002/adfm.202209012
P.R. Ogilby, Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39(8), 3181–3209 (2010). https://doi.org/10.1039/b926014p
V.S. Bryantsev, M. Blanco, Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J. Phys. Chem. Lett. 2(5), 379–383 (2011). https://doi.org/10.1021/jz1016526
V.S. Bryantsev, F. Faglioni, Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li–air batteries. J. Phys. Chem. A 116(26), 7128–7138 (2012). https://doi.org/10.1021/jp301537w
J. Wandt, P. Jakes, J. Granwehr, H.A. Gasteiger, R.-A. Eichel, Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55(24), 6892–6895 (2016). https://doi.org/10.1002/anie.201602142
A.C. Luntz, B.D. McCloskey, Li–air batteries: Importance of singlet oxygen. Nat. Energy 2(5), 17056 (2017). https://doi.org/10.1038/nenergy.2017.56
L. Ren, R. Zheng, D. Du, Y. Yan, M. He et al., Optimized orbital occupancy of transition metal in spinel Ni-Co oxides with heteroatom doping for aprotic Li-O2 battery. Chem. Eng. J. 430, 132977 (2022). https://doi.org/10.1016/j.cej.2021.132977
Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu et al., Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 141(20), 8136–8145 (2019). https://doi.org/10.1021/jacs.8b13701
W. Yu, T. Yoshii, A. Aziz, R. Tang, Z.-Z. Pan et al., Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries. Adv. Sci. 10(16), e2300268 (2023). https://doi.org/10.1002/advs.202300268
X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y