Solar-Driven Redox Reactions with Metal Halide Perovskites Heterogeneous Structures
Corresponding Author: Xiyuan Feng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 49
Abstract
Metal halide perovskites (MHPs) with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability, severe charge-carrier recombination, and limited active sites. Heterojunctions have recently been widely constructed to improve light absorption, passivate surface for enhanced stability, and promote charge-carrier dynamics of MHPs. However, little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions. Here, recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted. The structure, synthesis, and photophysical properties of MHPs-based heterojunctions are first introduced, including basic principles, categories (such as Schottky junction, type-I, type-II, Z-scheme, and S-scheme junction), and synthesis strategies. MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories: H2 evolution, CO2 reduction, pollutant degradation, and organic synthesis. The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.
Highlights:
1 This paper reviews the fundamentals and research progress of metal halide perovskites (MHPs)-based heterojunctions for solar-driven redox reactions.
2 A comprehensive summary is presented for the construction of various MHPs-based heterojunctions (e.g., Schottky-junction, type-I/II, Z-scheme, and S-scheme).
3 The versatile use of MHPs-based heterojunctions in key photocatalytic redox reactions are summarized, including H2 evolution, CO2 reduction, pollutant degradation, and organic synthesis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Jia, Y. Zhang, J.C. Yu, Z. Guo, Asymmetric atomic dual-sites for photocatalytic CO2 reduction. Adv. Mater. 36(38), 2403153 (2024). https://doi.org/10.1002/adma.202403153
- B. Samanta, Á. Morales-García, F. Illas, N. Goga, J.A. Anta et al., Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 51(9), 3794–3818 (2022). https://doi.org/10.1039/d1cs00648g
- Y. Shi, Z. Zhao, D. Yang, J. Tan, X. Xin et al., Engineering photocatalytic ammonia synthesis. Chem. Soc. Rev. 52(20), 6938–6956 (2023). https://doi.org/10.1039/d2cs00797e
- T. Takata, L. Lin, T. Hisatomi, K. Domen, Best practices for assessing performance of photocatalytic water splitting systems. Adv. Mater. 36(44), 2406848 (2024). https://doi.org/10.1002/adma.202406848
- X.-B. Li, Z.-K. Xin, S.-G. Xia, X.-Y. Gao, C.-H. Tung et al., Semiconductor nanocrystals for small molecule activationviaartificial photosynthesis. Chem. Soc. Rev. 49(24), 9028–9056 (2020). https://doi.org/10.1039/d0cs00930j
- J. Liu, D. Zheng, K. Wang, Z. Li, S. Liu et al., Evolutionary manufacturing approaches for advancing flexible perovskite solar cells. Joule 8(4), 944–969 (2024). https://doi.org/10.1016/j.joule.2024.02.025
- A. Kausar, A. Sattar, C. Xu, S. Zhang, Z. Kang et al., Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem. Soc. Rev. 50(4), 2696–2736 (2021). https://doi.org/10.1039/d0cs01316a
- C.-H. Lu, G.V. Biesold-McGee, Y. Liu, Z. Kang, Z. Lin, Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 49(14), 4953–5007 (2020). https://doi.org/10.1039/c9cs00790c
- A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha et al., State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15(7), 10775–10981 (2021). https://doi.org/10.1021/acsnano.0c08903
- J. Wang, Y. Shi, Y. Wang, Z. Li, Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: recent advances, challenges, and prospects. ACS Energy Lett. 7(6), 2043–2059 (2022). https://doi.org/10.1021/acsenergylett.2c00752
- S. Park, W.J. Chang, C.W. Lee, S. Park, H.-Y. Ahn et al., Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2, 16185 (2017). https://doi.org/10.1038/nenergy.2016.185
- C. Zhao, H. Song, Y. Chen, W. Xiong, M. Hu et al., Stable and recyclable photocatalysts of CsPbBr3@MSNs nanocomposites for photoinduced electron transfer RAFT polymerization. ACS Energy Lett. 7(12), 4389–4397 (2022). https://doi.org/10.1021/acsenergylett.2c02293
- Y. Dong, Y. Feng, Z. Li, H. Zhou, H. Lv et al., CsPbBr3/Polyoxometalate composites for selective photocatalytic oxidation of benzyl alcohol. ACS Catal. 13, 14346 (2023). https://doi.org/10.1021/acscatal.3c03977
- M. Liu, P. Xia, G. Zhao, C. Nie, K. Gao et al., Energy-transfer photocatalysis using lead halide perovskite nanocrystals: sensitizing molecular isomerization and cycloaddition. Angew. Chem. Int. Ed. 61(35), e202208241 (2022). https://doi.org/10.1002/anie.202208241
- K. Ren, S. Yue, C. Li, Z. Fang, K.A.M. Gasem et al., Metal halide perovskites for photocatalysis applications. J. Mater. Chem. A 10(2), 407–429 (2022). https://doi.org/10.1039/d1ta09148d
- N. Li, X. Chen, J. Wang, X. Liang, L. Ma et al., ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano 16(2), 3332–3340 (2022). https://doi.org/10.1021/acsnano.1c11442
- Z. Liu, H. Yang, J. Wang, Y. Yuan, K. Hills-Kimball et al., Synthesis of lead-free Cs(2)AgBiX(6) (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Lett. 21(4), 1620–1627 (2021). https://doi.org/10.1021/acs.nanolett.0c04148
- S. Pan, J. Li, Z. Wen, R. Lu, Q. Zhang et al., Halide perovskite materials for photo(electro)chemical applications: dimensionality, heterojunction, and performance. Adv. Energy Mater. 12(4), 2004002 (2022). https://doi.org/10.1002/aenm.202004002
- L. Li, Z. Zhang, In-situ fabrication of Cu doped dual-phase CsPbBr3–Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction. Chem. Eng. J. 434, 134811 (2022). https://doi.org/10.1016/j.cej.2022.134811
- J. Wang, L. Xiong, Y. Bai, Z. Chen, Q. Zheng et al., Mn-doped perovskite nanocrystals for photocatalytic CO2 reduction: insight into the role of the charge carriers with prolonged lifetime. Solar RRL 6(8), 2270086 (2022). https://doi.org/10.1002/solr.202270086
- X.-D. Wang, Y.-H. Huang, J.-F. Liao, Y. Jiang, L. Zhou et al., In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 141(34), 13434–13441 (2019). https://doi.org/10.1021/jacs.9b04482
- Q. Guo, J.-D. Zhang, Y.-J. Chen, K.-Y. Zhang, L.-N. Guo et al., Enhanced hydrogen evolution activity of CsPbBr3 nanocrystals achieved by dimensionality change. Chem. Commun. 59(28), 4189–4192 (2023). https://doi.org/10.1039/D2CC06731E
- Q. Guo, J.-D. Zhang, J.-M. Liu, Y.-J. Chen, B. Qin et al., Promoting charge-carriers dynamics by relaxed lattice strain in A-site-doped halide perovskite for photocatalytic H2 evolution. Angew. Chem. Int. Ed. 64(5), e202419082 (2025). https://doi.org/10.1002/anie.202419082
- Q. Guo, J.-L. Lu, B. Qin, Q.-C. Shan, L. Liu et al., Facets in metal halide perovskite nanocrystals for the photoinduced electron transfer annulation reaction. J. Mater. Chem. A 12(35), 23406–23410 (2024). https://doi.org/10.1039/D4TA04268A
- Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33(27), 2100855 (2021). https://doi.org/10.1002/adma.202100855
- J. Chen, D. Yuan, Y. Wang, Covalent organic frameworks based heterostructure in solar-to-fuel conversion. Adv. Funct. Mater. 33(41), 2304071 (2023). https://doi.org/10.1002/adfm.202304071
- Q. Guo, X. Feng, Z.C. Zhang, L. Huang, Interfacial interactions between co-based cocatalysts and semiconducting light absorbers for solar-light-driven redox reactions. Sol. RRL 5(8), 2100234 (2021). https://doi.org/10.1002/solr.202100234
- D. Huang, S. Chen, G. Zeng, X. Gong, C. Zhou et al., Artificial Z-scheme photocatalytic system: what have been done and where to go? Coord. Chem. Rev. 385, 44–80 (2019). https://doi.org/10.1016/j.ccr.2018.12.013
- X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119(6), 3962–4179 (2019). https://doi.org/10.1021/acs.chemrev.8b00400
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
- M. Lin, H. Chen, Z. Zhang, X. Wang, Engineering interface structures for heterojunction photocatalysts. Phys. Chem. Chem. Phys. 25(6), 4388–4407 (2023). https://doi.org/10.1039/d2cp05281d
- H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234 (2014). https://doi.org/10.1039/c4cs00126e
- Y. Tong, W. Liu, C. Li, X. Liu, J. Liu et al., A metal/semiconductor contact induced Mott-Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustain. Energy Fuels 7(1), 12–30 (2022). https://doi.org/10.1039/d2se01355j
- Y. Wu, P. Wang, Z. Guan, J. Liu, Z. Wang et al., Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3–xIx achieved by bandgap funneling of charge carriers. ACS Catal. 8(11), 10349–10357 (2018). https://doi.org/10.1021/acscatal.8b02374
- Q. Zhang, M. Tai, Y. Zhou, Y. Zhou, Y. Wei et al., Enhanced photocatalytic property of γ-CsPbI3 perovskite nanocrystals with WS2. ACS Sustain. Chem. Eng. 8(2), 1219–1229 (2020). https://doi.org/10.1021/acssuschemeng.9b06451
- Z. Zhang, B. Wang, H.-B. Zhao, J.-F. Liao, Z.-C. Zhou et al., Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Appl. Catal. B Environ. 312, 121358 (2022). https://doi.org/10.1016/j.apcatb.2022.121358
- W. Li, F. Wang, Z. Zhang, S. Min, MAPbI3 microcrystals integrated with Ti3C2Tx MXene nanosheets for efficient visible-light photocatalytic H2 evolution. Chem. Commun. 57(63), 7774–7777 (2021). https://doi.org/10.1039/D1CC02511B
- Q. Guo, F. Liang, X.-Y. Gao, Q.-C. Gan, X.-B. Li et al., Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots. ACS Catal. 8(7), 5890–5895 (2018). https://doi.org/10.1021/acscatal.8b01105
- Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li et al., Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting. ACS Catal. 9(9), 8144–8152 (2019). https://doi.org/10.1021/acscatal.9b01605
- X.-B. Li, C.-H. Tung, L.-Z. Wu, Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2(8), 160–173 (2018). https://doi.org/10.1038/s41570-018-0024-8
- D. Xiang, F. Niu, J. Ji, J. Liang, H. Chen et al., Construction of graphene supported dual-phase perovskite quantum dots for efficient photocatalytic CO2 reduction. J. Mol. Struct. 1295, 136711 (2024). https://doi.org/10.1016/j.molstruc.2023.136711
- X. Wang, J. He, J. Li, G. Lu, F. Dong et al., Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Appl. Catal. B Environ. 277, 119230 (2020). https://doi.org/10.1016/j.apcatb.2020.119230
- B. Zhu, B. Cheng, J. Fan, W. Ho, J. Yu, G-C3N4-based 2D/2D composite heterojunction photocatalyst. Small Struct. 2(12), 2100086 (2021). https://doi.org/10.1002/sstr.202100086
- J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang et al., Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135(42), 15913–15922 (2013). https://doi.org/10.1021/ja4079804
- Y. Yang, Z. Chen, H. Huang, Y. Liu, J. Zou et al., Synergistic surface activation during photocatalysis on perovskite derivative sites in heterojunction. Appl. Catal. B Environ. 323, 122146 (2023). https://doi.org/10.1016/j.apcatb.2022.122146
- B.-J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh et al., Z-scheme photocatalytic systems for solar water splitting. Adv. Sci. 7(7), 1903171 (2020). https://doi.org/10.1002/advs.201903171
- A. Kumar, P. Singh, V.-H. Nguyen, Q.V. Le, T. Ahamad et al., Rationally constructed synergy between dual-vacancies and Z-scheme heterostructured MoS2-x/g-C3N4/Ca-α-Fe2O3 for high-performance photodegradation of sulfamethoxazole antibiotic from aqueous solution. Chem. Eng. J. 474, 145720 (2023). https://doi.org/10.1016/j.cej.2023.145720
- M.E. Malefane, P.J. Mafa, M. Managa, T.T.I. Nkambule, A.T. Kuvarega, Understanding the principles and applications of dual Z-scheme heterojunctions: how far can we go? J. Phys. Chem. Lett. 14(4), 1029–1045 (2023). https://doi.org/10.1021/acs.jpclett.2c03387
- Y. Wang, H. Huang, Z. Zhang, C. Wang, Y. Yang et al., Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Appl. Catal. B Environ. 282, 119570 (2021). https://doi.org/10.1016/j.apcatb.2020.119570
- L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-scheme photocatalyst. Adv. Mater. 34(11), 2107668 (2022). https://doi.org/10.1002/adma.202107668
- Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst. Chem 6(7), 1543–1559 (2020). https://doi.org/10.1016/j.chempr.2020.06.010
- Y. Bao, S. Song, G. Yao, S. Jiang, S-scheme photocatalytic systems. Sol. RRL 5(7), 2100118 (2021). https://doi.org/10.1002/solr.202100118
- X. Yue, L. Cheng, J. Fan, Q. Xiang, 2D/2D BiVO4/CsPbBr3 s-scheme heterojunction for photocatalytic CO2 reduction: insights into structure regulation and Fermi level modulation. Appl. Catal. B Environ. 304, 120979 (2022). https://doi.org/10.1016/j.apcatb.2021.120979
- J. Wang, J. Wang, N. Li, X. Du, J. Ma et al., Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interf. 12(28), 31477–31485 (2020). https://doi.org/10.1021/acsami.0c08152
- L. Li, Z. Zhang, C. Ding, J. Xu, Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3HT. Chem. Eng. J. 419, 129543 (2021). https://doi.org/10.1016/j.cej.2021.129543
- Z. Zhang, L. Li, Y. Jiang, J. Xu, Step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets for efficient CO2 photoreduction. Inorg. Chem. 61(7), 3351–3360 (2022). https://doi.org/10.1021/acs.inorgchem.2c00012
- Z. Zhang, Z. Dong, Y. Jiang, Y. Chu, J. Xu, A novel S-scheme heterojunction of CsPbBr3 nanocrystals/AgBr nanorods for artificial photosynthesis. Chem. Eng. J. 435, 135014 (2022). https://doi.org/10.1016/j.cej.2022.135014
- Y. Wu, X. Yue, J. Fan, X. Hao, Q. Xiang, In situ fabrication of plasmonic Bi/CsPbBr3 composite photocatalyst toward enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 609, 155391 (2023). https://doi.org/10.1016/j.apsusc.2022.155391
- S.-R. Xu, J.-L. Li, Q.-L. Mo, K. Wang, G. Wu et al., Steering photocatalytic CO2 conversion over CsPbBr3 perovskite nanocrystals by coupling with transition-metal chalcogenides. Inorg. Chem. 61(44), 17828–17837 (2022). https://doi.org/10.1021/acs.inorgchem.2c03148
- Y. Jiang, Y. Wang, Z. Zhang, Z. Dong, J. Xu, 2D/2D CsPbBr3/BiOCl heterojunction with an S-scheme charge transfer for boosting the photocatalytic conversion of CO2. Inorg. Chem. 61(27), 10557–10566 (2022). https://doi.org/10.1021/acs.inorgchem.2c01452
- Q. Wang, J. Wang, J.-C. Wang, X. Hu, Y. Bai et al., Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction. Chemsuschem 14(4), 1131–1139 (2021). https://doi.org/10.1002/cssc.202002847
- Y. Wang, J. Wang, M. Zhang, S. Zheng, J. Wu et al., In situ constructed perovskite-chalcogenide heterojunction for photocatalytic CO2 reduction. Small 19(37), e2300841 (2023). https://doi.org/10.1002/smll.202300841
- H. Huang, J. Zhao, Y. Du, C. Zhou, M. Zhang et al., Direct Z-scheme heterojunction of semicoherent FAPbBr3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano 14(12), 16689–16697 (2020). https://doi.org/10.1021/acsnano.0c03146
- L. Romani, A. Speltini, F. Ambrosio, E. Mosconi, A. Profumo et al., Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis. Angew. Chem. Int. Ed. 60(7), 3611–3618 (2021). https://doi.org/10.1002/anie.202007584
- Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen et al., Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 3(11), 2656–2662 (2018). https://doi.org/10.1021/acsenergylett.8b01658
- H. Hu, W. Guan, Y. Xu, X. Wang, L. Wu et al., Construction of single-atom platinum catalysts enabled by CsPbBr3 nanocrystals. ACS Nano 15(8), 13129–13139 (2021). https://doi.org/10.1021/acsnano.1c02515
- K. Su, G.-X. Dong, W. Zhang, Z.-L. Liu, M. Zhang et al., In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction. ACS Appl. Mater. Interf. 12(45), 50464–50471 (2020). https://doi.org/10.1021/acsami.0c14826
- R. Cheng, J.A. Steele, M.B.J. Roeffaers, J. Hofkens, E. Debroye, Dual-channel charge carrier transfer in CsPbX3 perovskite/W18O49 composites for selective photocatalytic benzyl alcohol oxidation. ACS Appl. Energy Mater. 4(4), 3460–3468 (2021). https://doi.org/10.1021/acsaem.0c03215
- Y. Tang, C.H. Mak, R. Liu, Z. Wang, L. Ji et al., In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution. Adv. Funct. Mater. 30(52), 2006919 (2020). https://doi.org/10.1002/adfm.202006919
- L. Ding, B. Borjigin, Y. Li, X. Yang, X. Wang et al., Assembling an affinal 0D CsPbBr3/2D CsPb2Br5 architecture by synchronously in situ growing CsPbBr3 QDs and CsPb2Br5 nanosheets: enhanced activity and reusability for photocatalytic CO2 reduction. ACS Appl. Mater. Interf. 13(43), 51161–51173 (2021). https://doi.org/10.1021/acsami.1c17870
- N. Kandoth, S.P. Chaudhary, S. Gupta, K. Raksha, A. Chatterjee et al., Multimodal biofilm inactivation using a photocatalytic bismuth perovskite–TiO2–Ru(II)polypyridyl-based multisite heterojunction. ACS Nano 17(11), 10393–10406 (2023). https://doi.org/10.1021/acsnano.3c01064
- Y.-F. Mu, W. Zhang, G.-X. Dong, K. Su, M. Zhang et al., Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 16(29), 2002140 (2020). https://doi.org/10.1002/smll.202002140
- Q. Guo, F. Liang, Z. Sun, Y. Wang, X.-B. Li et al., Optimal d-band-induced Cu3N as a cocatalyst on metal sulfides for boosting photocatalytic hydrogen evolution. J. Mater. Chem. A 8(43), 22601–22606 (2020). https://doi.org/10.1039/D0TA07916B
- X.-Z. Wang, S.-L. Meng, J. Liu, C. Yu, C. Ye et al., Mechanistic insights into consecutive 2e− and 2H+ reactions of hydrogenase mimic. Chem 9(9), 2610–2619 (2023). https://doi.org/10.1016/j.chempr.2023.05.010
- B. Li, W. Wang, J. Zhao, Z. Wang, B. Su et al., All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 9(16), 10270–10276 (2021). https://doi.org/10.1039/d1ta01220g
- J. Li, F. University, J. Zhao, F. University, S. Wang et al., Activating lattice oxygen in perovskite ferrite for efficient and stable photothermal dry reforming of methane. J. Am. Chem. Soc. 147(17), 14705–14714 (2025). https://doi.org/10.1021/jacs.5c03098
- P. Zhou, H. Chen, Y. Chao, Q. Zhang, W. Zhang et al., Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat. Commun. 12(1), 4412 (2021). https://doi.org/10.1038/s41467-021-24702-8
- C. Cai, Y. Teng, J.-H. Wu, J.-Y. Li, H.-Y. Chen et al., In situ photosynthesis of an MAPbI3/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution. Adv. Funct. Mater. 30(35), 2001478 (2020). https://doi.org/10.1002/adfm.202001478
- H. Zhao, K. Chordiya, P. Leukkunen, A. Popov, M. Upadhyay Kahaly et al., Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res. 14(4), 1116–1125 (2021). https://doi.org/10.1007/s12274-020-3159-0
- Y. Jiang, K. Li, X. Wu, M. Zhu, H. Zhang et al., In situ synthesis of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon for efficient hydrogen evolution in aqueous HBr solution. ACS Appl. Mater. Interf. 13(8), 10037–10046 (2021). https://doi.org/10.1021/acsami.0c21588
- Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang et al., Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 30(7), 1704342 (2018). https://doi.org/10.1002/adma.201704342
- R. Li, X. Li, J. Wu, X. Lv, Y.-Z. Zheng et al., Few-layer black phosphorus-on-MAPbI3 for superb visible-light photocatalytic hydrogen evolution from HI splitting. Appl. Catal. B Environ. 259, 118075 (2019). https://doi.org/10.1016/j.apcatb.2019.118075
- L. Romani, A. Speltini, C.N. Dibenedetto, A. Listorti, F. Ambrosio et al., Experimental strategy and mechanistic view to boost the photocatalytic activity of Cs3Bi2Br9 lead-free perovskite derivative by g-C3N4 composite engineering. Adv. Funct. Mater. 31(46), 2104428 (2021). https://doi.org/10.1002/adfm.202104428
- X. Zhao, S. Chen, H. Yin, S. Jiang, K. Zhao et al., Perovskite microcrystals with intercalated monolayer MoS2 nanosheets as advanced photocatalyst for solar-powered hydrogen generation. Matter 3(3), 935–949 (2020). https://doi.org/10.1016/j.matt.2020.07.004
- X. Wang, H. Wang, H. Zhang, W. Yu, X. Wang et al., Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting. ACS Energy Lett. 3(5), 1159–1164 (2018). https://doi.org/10.1021/acsenergylett.8b00488
- H. Lv, H. Yin, N. Jiao, C. Yuan, S. Weng et al., Efficient charge transfer and effective active sites in lead-free halide double perovskite S-scheme heterojunctions for photocatalytic H2 evolution. Small Methods. 7(3), 2201365 (2023). https://doi.org/10.1002/smtd.202201365
- Y. Guo, G. Liu, Z. Li, Y. Lou, J. Chen et al., Stable lead-free (CH3NH3)3Bi2I9 perovskite for photocatalytic hydrogen generation. ACS Sustainable Chem. Eng. 7(17), 15080–15085 (2019). https://doi.org/10.1021/acssuschemeng.9b03761
- Q. Huang, Y. Guo, J. Chen, Y. Lou, Y. Zhao, NiCoP modified lead-free double perovskite Cs2AgBiBr6 for efficient photocatalytic hydrogen generation. New J. Chem. 46(16), 7395–7402 (2022). https://doi.org/10.1039/d2nj00435f
- H. Fu, Q. Zhang, Y. Wu, Z. Wang, Y. Liu et al., Composite of mixed-cation perovskite MA1-FA PbI3 with MoSe2 for enhanced photocatalytic H2 evolution. Chem. Eng. J. 511, 162120 (2025). https://doi.org/10.1016/j.cej.2025.162120
- K. Song, J. Gou, L. Wu, C. Zeng, Two-dimensional black phosphorus-modified Cs2AgBiBr6 with efficient charge separation for enhanced visible-light photocatalytic H2 evolution. J. Mater. Chem. C 10(41), 15386–15393 (2022). https://doi.org/10.1039/d2tc03100k
- J. Cai, X. Li, B. Su, B. Guo, X. Lin et al., Rational design and fabrication of S-scheme NiTiO3/CdS heterostructures for photocatalytic CO2 reduction. J. Mater. Sci. Technol. 234, 82–89 (2025). https://doi.org/10.1016/j.jmst.2025.01.050
- B. Su, H. Huang, Z. Ding, M.B.J. Roeffaers, S. Wang et al., S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J. Mater. Sci. Technol. 124, 164–170 (2022). https://doi.org/10.1016/j.jmst.2022.01.030
- Q. Guo, F. Liang, X.-B. Li, Y.-J. Gao, M.-Y. Huang et al., Efficient and selective CO2 reduction integrated with organic synthesis by solar energy. Chem 5(10), 2605–2616 (2019). https://doi.org/10.1016/j.chempr.2019.06.019
- Q. Guo, S.-G. Xia, Z.-K. Xin, Y. Wang, F. Liang et al., Anion vacancy correlated photocatalytic CO2 to CO conversion over quantum-confined CdS nanorods under visible light. J. Mater. Chem. A 11(8), 3937–3941 (2023). https://doi.org/10.1039/D2TA09451G
- K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6(11), 7485–7527 (2016). https://doi.org/10.1021/acscatal.6b02089
- J. Ran, M. Jaroniec, S.-Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30(7), 1704649 (2018). https://doi.org/10.1002/adma.201704649
- Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen et al., A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139(16), 5660–5663 (2017). https://doi.org/10.1021/jacs.7b00489
- H.-B. Zhao, J.-N. Huang, Q. Qin, H.-Y. Chen, D.-B. Kuang, In situ loading of Cu nanocrystals on CsCuCl3 for selective photoreduction of CO2 to CH4. Small 19(45), 2302022 (2023). https://doi.org/10.1002/smll.202302022
- Y.-F. Xu, M.-Z. Yang, H.-Y. Chen, J.-F. Liao, X.-D. Wang et al., Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet Schottky-junction photocatalyst. ACS Appl. Energy Mater. 1(9), 5083–5089 (2018). https://doi.org/10.1021/acsaem.8b01133
- M. Shu, Z. Zhang, Z. Dong, J. Xu, CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction. Carbon 182, 454–462 (2021). https://doi.org/10.1016/j.carbon.2021.06.040
- A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia et al., CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J. Phys. Chem. Lett. 10(21), 6590–6597 (2019). https://doi.org/10.1021/acs.jpclett.9b02605
- M. Que, Y. Zhao, Y. Yang, L. Pan, W. Lei et al., Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interf. 13(5), 6180–6187 (2021). https://doi.org/10.1021/acsami.0c18391
- X. Wang, J. He, L. Mao, X. Cai, C. Sun et al., CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chem. Eng. J. 416, 128077 (2021). https://doi.org/10.1016/j.cej.2020.128077
- L. Ding, F. Bai, B. Borjigin, Y. Li, H. Li et al., Embedding Cs2AgBiBr6 QDs into Ce-UiO-66-H to in situ construct a novel bifunctional material for capturing and photocatalytic reduction of CO2. Chem. Eng. J. 446, 137102 (2022). https://doi.org/10.1016/j.cej.2022.137102
- W. Xiong, Y. Dong, A. Pan, Fabricating a type II heterojunction by growing lead-free perovskite Cs2AgBiBr6 in situ on graphite-like g-C3N4 nanosheets for enhanced photocatalytic CO2 reduction. Nanoscale 15(38), 15619–15625 (2023). https://doi.org/10.1039/d3nr04152b
- M. Ou, W. Tu, S. Yin, W. Xing, S. Wu et al., Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57(41), 13570–13574 (2018). https://doi.org/10.1002/anie.201808930
- Y. Jiang, J.-F. Liao, H.-Y. Chen, H.-H. Zhang, J.-Y. Li et al., All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem 6(3), 766–780 (2020). https://doi.org/10.1016/j.chempr.2020.01.005
- Y.-F. Mu, C. Zhang, M.-R. Zhang, W. Zhang, M. Zhang et al., Direct Z-scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation. ACS Appl. Mater. Interf. 13(19), 22314–22322 (2021). https://doi.org/10.1021/acsami.1c01718
- R. Zhang, L. Li, Y. Li, D. Wang, Y. Lin et al., Z-scheme SnS2/CsPbBr3 heterojunctions for photoreduction CO2 reaction and related photoinduced carrier behaviors. Solar RRL 6(10), 2200536 (2022). https://doi.org/10.1002/solr.202200536
- H. Sun, R. Tang, X. Zhang, S. Zhang, W. Yang et al., Interfacial energy band engineered CsPbBr3/NiFe-LDH heterostructure catalysts with tunable visible light driven photocatalytic CO2 reduction capability. Catal. Sci. Technol. 13(4), 1154–1163 (2023). https://doi.org/10.1039/d2cy01982e
- P. Wang, X. Ba, X. Zhang, H. Gao, M. Han et al., Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chem. Eng. J. 457, 141248 (2023). https://doi.org/10.1016/j.cej.2022.141248
- Z.-L. Liu, R.-R. Liu, Y.-F. Mu, Y.-X. Feng, G.-X. Dong et al., In situ construction of lead-free perovskite direct Z-scheme heterojunction Cs3Bi2I9/Bi2WO6 for efficient photocatalysis of CO2 reduction. Solar RRL 5(3), 2000691 (2021). https://doi.org/10.1002/solr.202000691
- X. Wang, Z. Wang, Y. Li, J. Wang, G. Zhang, Efficient photocatalytic CO2 conversion over 2D/2D Ni-doped CsPbBr3/Bi3O4Br Z-scheme heterojunction: critical role of Ni doping, boosted charge separation and mechanism study. Appl. Catal. B Environ. 319, 121895 (2022). https://doi.org/10.1016/j.apcatb.2022.121895
- L. Ding, Y. Ding, F. Bai, G. Chen, S. Zhang et al., In situ growth of Cs3Bi2Br9 quantum dots on Bi-MOF nanosheets via cosharing bismuth atoms for CO2 capture and photocatalytic reduction. Inorg. Chem. 62(5), 2289–2303 (2023). https://doi.org/10.1021/acs.inorgchem.2c04041
- Q.-M. Sun, J.-J. Xu, F.-F. Tao, W. Ye, C. Zhou et al., Boosted inner surface charge transfer in perovskite Nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane. Angew. Chem. Int. Ed. 61(20), e202200872 (2022). https://doi.org/10.1002/anie.202200872
- P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu et al., Highly selective photoconversion of CO2 to CH4 over SnO2/Cs3Bi2Br9 heterojunctions assisted by S-scheme charge separation. ACS Catal. 13(19), 12623–12633 (2023). https://doi.org/10.1021/acscatal.3c03095
- J.-N. Huang, Y.-J. Dong, H.-B. Zhao, H.-Y. Chen, D.-B. Kuang et al., Efficient encapsulation of CsPbBr3 and Au nanocrystals in mesoporous metal–organic frameworks towards synergetic photocatalytic CO2 reduction. J. Mater. Chem. A 10(47), 25212–25219 (2022). https://doi.org/10.1039/d2ta06561d
- X. Li, J. Liu, G. Jiang, X. Lin, J. Wang et al., Self-supported CsPbBr/Ti3C2Tx MXene aerogels towards efficient photocatalytic CO2 reduction. J. Colloid Interf. Sci. 643, 174–182 (2023). https://doi.org/10.1016/j.jcis.2023.04.015
- X. Wang, K. Li, J. He, J. Yang, F. Dong et al., Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy 78, 105388 (2020). https://doi.org/10.1016/j.nanoen.2020.105388
- Z. Zhang, M. Shu, Y. Jiang, J. Xu, Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem. Eng. J. 414, 128889 (2021). https://doi.org/10.1016/j.cej.2021.128889
- Y. Jiang, C. Mei, Z. Zhang, Z. Dong, Immobilizing CsPbBr3 perovskite nanocrystals on nanoporous carbon powder for visible-light-driven CO2 photoreduction. Dalton Trans. 50(45), 16711–16719 (2021). https://doi.org/10.1039/D1DT03099J
- X. Zhong, X. Liang, X. Lin, J. Wang, M.Z. Shahid et al., A new 0D–2D CsPbBr3–Co3O4 heterostructure photocatalyst with efficient charge separation for photocatalytic CO2 reduction. Inorg. Chem. Front. 10(11), 3273–3283 (2023). https://doi.org/10.1039/D3QI00527E
- T.H. Kim, I. Park, K.H. Lee, J.-H. Sim, M.-H. Park et al., Investigating the interfacial properties of halide perovskite/TiOx heterostructures for versatile photocatalytic reactions under sunlight. Nanoscale 15(17), 7710–7714 (2023). https://doi.org/10.1039/D2NR06840K
- Y. Jiang, J.-F. Liao, Y.-F. Xu, H.-Y. Chen, X.-D. Wang et al., Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction. J. Mater. Chem. A 7(22), 13762–13769 (2019). https://doi.org/10.1039/c9ta03478a
- G. Yin, X. Qi, Y. Chen, Q. Peng, X. Jiang et al., Constructing an all zero-dimensional CsPbBr3/CdSe heterojunction for highly efficient photocatalytic CO2 reduction. J. Mater. Chem. A 10(42), 22468–22476 (2022). https://doi.org/10.1039/d2ta05186a
- Q. Zheng, J. Wang, X. Li, Y. Bai, Y. Li et al., Surface halogen compensation on CsPbBr3 nanocrystals with SOBr2 for photocatalytic CO2 reduction. ACS Mater. Lett. 4(9), 1638–1645 (2022). https://doi.org/10.1021/acsmaterialslett.2c00482
- Y.-X. Feng, G.-X. Dong, K. Su, Z.-L. Liu, W. Zhang et al., Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2. J. Energy Chem. 69, 348–355 (2022). https://doi.org/10.1016/j.jechem.2022.01.015
- X. Jiang, Y. Ding, S. Zheng, Y. Ye, Z. Li et al., In-situ generated CsPbBr3 nanocrystals on O-defective WO3 for photocatalytic CO2 reduction. Chemsuschem 15(4), e202102295 (2022). https://doi.org/10.1002/cssc.202102295
- A. Mahmoud Idris, S. Zheng, L. Wu, S. Zhou, H. Lin et al., A heterostructure of halide and oxide double perovskites Cs2AgBiBr6/Sr2FeNbO6 for boosting the charge separation toward high efficient photocatalytic CO2 reduction under visible-light irradiation. Chem. Eng. J. 446, 137197 (2022). https://doi.org/10.1016/j.cej.2022.137197
- Y. Hou, Y. Zhang, S. Jiao, J. Qin, L. Liu et al., High catalytic activity and stability of visible-light-driven CO2 reduction via CsPbBr3 QDs/Cu-BTC core–shell photocatalysts. J. Mater. Chem. A 13(7), 5007–5016 (2025). https://doi.org/10.1039/d4ta07190e
- Y. Wang, Z. Liu, X. Tang, P. Huo, Z. Zhu et al., Construction of a CsPbBr3 modified porous g-C3N4 photocatalyst for effective reduction of CO2 and mechanism exploration. New J. Chem. 45(2), 1082–1091 (2021). https://doi.org/10.1039/d0nj04018e
- F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu et al., Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 11(1), 4613 (2020). https://doi.org/10.1038/s41467-020-18350-7
- L. Wang, J. Qiu, N. Wu, X. Yu, X. An, TiO2/CsPbBr3 S-scheme heterojunctions with highly improved CO2 photoreduction activity through facet-induced Fermi level modulation. J. Colloid Interf. Sci. 629, 206–214 (2023). https://doi.org/10.1016/j.jcis.2022.08.120
- Y. Zhang, L. Shi, H. Yuan, X. Sun, X. Li et al., Construction of melamine foam–supported WO3/CsPbBr3 S–scheme heterojunction with rich oxygen vacancies for efficient and long–period CO2 photoreduction in liquid–phase H2O environment. Chem. Eng. J. 430, 132820 (2022). https://doi.org/10.1016/j.cej.2021.132820
- Q. Chen, X. Lan, K. Chen, Q. Ren, J. Shi, Construction of WO3/CsPbBr3 s-scheme heterojunction via electrostatic self-assembly for efficient and long-period photocatalytic CO2 reduction. J. Colloid Interf. Sci. 616, 253–260 (2022). https://doi.org/10.1016/j.jcis.2022.02.044
- Y. Wang, H. Fan, X. Liu, J. Cao, H. Liu et al., 3D ZnO hollow spheres-dispersed CsPbBr3 quantum dots S-scheme heterojunctions for high-efficient CO2 photoreduction. J. Alloys Compd. 945, 169197 (2023). https://doi.org/10.1016/j.jallcom.2023.169197
- Z. Dong, Y. Shi, Y. Jiang, C. Yao, Z. Zhang, In situ growth of CsPbBr3 quantum dots in mesoporous SnO2 frameworks as an efficient CO2-reduction photocatalyst. J. CO2 Util. 72, 102480 (2023). https://doi.org/10.1016/j.jcou.2023.102480
- Z. Dong, J. Zhou, Z. Zhang, Y. Jiang, R. Zhou et al., Construction of a p–n type S-scheme heterojunction by incorporating CsPbBr3 nanocrystals into mesoporous Cu2O microspheres for efficient CO2 photoreduction. ACS Appl. Energy Mater. 5(8), 10076–10085 (2022). https://doi.org/10.1021/acsaem.2c01760
- K. Su, S.-X. Yuan, Y.-X. Feng, G.-X. Dong, Y.-F. Mu et al., Polymer-assisted in situ growth of Cs3Sb2Br9 on Co3O4 to boost sacrificial-agent-free photocatalytic CO2 reduction. Rare Met. 44(5), 3194–3205 (2025). https://doi.org/10.1007/s12598-024-02968-3
- X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46(8), 2127–2157 (2017). https://doi.org/10.1039/c6cs00937a
- T. Chai, X. Li, T. Feng, P. Guo, Y. Song et al., Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale 10(37), 17617–17622 (2018). https://doi.org/10.1039/C8NR03068E
- S. Wu, Z. Xu, J. Zhang, M. Zhu, Recent progress on metallic bismuth-based photocatalysts: synthesis, construction, and application in water purification. Sol. RRL 5(11), 2100668 (2021). https://doi.org/10.1002/solr.202100668
- Y. Zhang, Y. Tian, W. Chen, M. Zhou, S. Ou et al., Construction of a bismuthene/CsPbBr3 quantum dot S-scheme heterojunction and enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 126(6), 3087–3097 (2022). https://doi.org/10.1021/acs.jpcc.1c10729
- Y. Feng, D. Chen, Y. Zhong, Z. He, S. Ma et al., A lead-free 0D/2D Cs3Bi2Br9/Bi2WO6 S-scheme heterojunction for efficient photoreduction of CO2. ACS Appl. Mater. Interfaces 15(7), 9221–9230 (2023). https://doi.org/10.1021/acsami.2c19703
- J. Wang, H. Cheng, D. Wei, Z. Li, Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 s-scheme heterojunction for photocatalytic CO2 reduction under visible light. Chin. J. Catal. 43(10), 2606–2614 (2022). https://doi.org/10.1016/S1872-2067(22)64091-9
- W. Huang, Q. Zhu, Z. Li, Y. Zhu, J. Shen, Construction of S-scheme Cs2AgBiBr6/BiVO4 heterojunctions with fast charge transfer kinetics toward promoted photocatalytic conversion of CO2. Small 21(20), 2412289 (2025). https://doi.org/10.1002/smll.202412289
- H. Bian, D. Li, S. Wang, J. Yan, S.F. Liu, 2D–C3N4 encapsulated perovskite nanocrystals for efficient photo-assisted thermocatalytic CO2 reduction. Chem. Sci. 13(5), 1335–1341 (2022). https://doi.org/10.1039/d1sc06131c
- M.-R. Zhang, Y.-X. Feng, Z.-L. Liu, K. Su, S.-X. Yuan et al., A versatile self-templating approach for constructing ternary halide perovskite heterojunctions to achieve concurrent enhancement in photocatalytic CO2 reduction activity and stability. Adv. Funct. Mater. 35(22), 2423656 (2025). https://doi.org/10.1002/adfm.202423656
- W. Huang, B. Chan, Y. Yang, P. Chen, J. Wang et al., Intermarrying MOF glass and lead halide perovskites for artificial photosynthesis. J. Am. Chem. Soc. 147(4), 3195–3205 (2025). https://doi.org/10.1021/jacs.4c12619
- T. Zhao, D. Li, Y. Zhang, G. Chen, Constructing built-in electric field within CsPbBr3/sulfur doped graphitic carbon nitride ultra-thin nanosheet step-scheme heterojunction for carbon dioxide photoreduction. J. Colloid Interf. Sci. 628, 966–974 (2022). https://doi.org/10.1016/j.jcis.2022.08.008
- X. Feng, H. Ju, T. Song, T. Fang, W. Liu et al., Highly efficient photocatalytic degradation performance of CsPb(Br1–xClx)3-Au nanoheterostructures. ACS Sustain. Chem. Eng. 7(5), 5152–5156 (2019). https://doi.org/10.1021/acssuschemeng.8b06023
- Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li et al., Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew. Chem. Int. Ed. 58(22), 7263–7267 (2019). https://doi.org/10.1002/anie.201900658
- Y. Zhao, Y. Wang, X. Liang, H. Shi, C. Wang et al., Enhanced photocatalytic activity of Ag-CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA. Appl. Catal. B Environ. 247, 57–69 (2019). https://doi.org/10.1016/j.apcatb.2019.01.090
- T. Paul, D. Das, B.K. Das, S. Sarkar, S. Maiti et al., CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst. J. Hazard. Mater. 380, 120855 (2019). https://doi.org/10.1016/j.jhazmat.2019.120855
- Y. Wang, L. Luo, Z. Wang, B. Tawiah, C. Liu et al., Growing poly(norepinephrine) layer over individual nanops to boost hybrid perovskite photocatalysts. ACS Appl. Mater. Interf. 12(24), 27578–27586 (2020). https://doi.org/10.1021/acsami.0c06081
- Z. Xue, P. Yan, A. Aihemaiti, A. Tuerdi, A. Abdukayum, Lead-free double halide perovskite Cs2AgBiI6/g-C3N4 heterojunction photocatalysts for effective visible-light photocatalytic activity. J. Solid State Chem. 348, 125355 (2025). https://doi.org/10.1016/j.jssc.2025.125355
- H. Huang, H. Yuan, J. Zhao, G. Solís-Fernández, C. Zhou et al., C(sp3)–H bond activation by perovskite solar photocatalyst cell. ACS Energy Lett. 4(1), 203–208 (2019). https://doi.org/10.1021/acsenergylett.8b01698
- Z.-J. Bai, S. Tian, T.-Q. Zeng, L. Chen, B.-H. Wang et al., Cs3Bi2Br9 nanodots stabilized on defective BiOBr nanosheets by interfacial chemical bonding: modulated charge transfer for photocatalytic C(sp3)–H bond activation. ACS Catal. 12(24), 15157–15167 (2022). https://doi.org/10.1021/acscatal.2c04652
- W. Zhang, Y. Chen, X. Wang, X. Yan, J. Xu et al., Formation of n–n type heterojunction-based tin organic–inorganic hybrid perovskite composites and their functions in the photocatalytic field. Phys. Chem. Chem. Phys. 20(10), 6980–6989 (2018). https://doi.org/10.1039/c7cp07819f
- B.-M. Bresolin, P. Sgarbossa, D.W. Bahnemann, M. Sillanpää, Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes. Sep. Purif. Technol. 251, 117320 (2020). https://doi.org/10.1016/j.seppur.2020.117320
- J.-R. Xue, R.-C. Xue, P.-Y. Chen, Y. Wang, L.-P. Yu, Novel hydrostable Z-scheme Ag/CsPbBr3/Bi2WO6 photocatalyst for effective degradation of Rhodamine B in aqueous solution. J. Chin. Chem. Soc. 70(7), 1481–1492 (2023). https://doi.org/10.1002/jccs.202300025
- Y. Zhao, X. Liang, X. Hu, J. Fan, Green and efficient photodegradation of norfloxacin with CsPbBr3-rGO/Bi2WO6 s-scheme heterojunction photocatalyst. Colloids Surf. A, Physicochem. Eng. Aspects 626, 127098 (2021). https://doi.org/10.1016/j.colsurfa.2021.127098
- E. Zhu, Y. Zhao, Y. Dai, Q. Wang, Y. Dong et al., Heterojunction-type photocatalytic system based on inorganic halide perovskite CsPbBr3. Chin. J. Chem. 38(12), 1718–1722 (2020). https://doi.org/10.1002/cjoc.202000333
- Z.-J. Bai, Y. Mao, B.-H. Wang, L. Chen, S. Tian et al., Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3): H bond activation. Nano Res. 16(5), 6104–6112 (2023). https://doi.org/10.1007/s12274-022-4835-z
- Y. Teng, J.-H. Chen, Y.-H. Huang, Z.-C. Zhou, X.-D. Wang et al., Atom-triggered epitaxial growth of bi-based perovskite heterojunctions for promoting interfacial charge transfer. Appl. Catal. B Environ. 335, 122889 (2023). https://doi.org/10.1016/j.apcatb.2023.122889
- C. Callegari, C. Tedesco, A. Corbo, M. Prato, L. Malavasi et al., Application of lead-free metal halide perovskite heterojunctions for the carbohalogenation of C-C multiple bonds. Org. Lett. 27(14), 3667–3672 (2025). https://doi.org/10.1021/acs.orglett.5c00780
- Y. Zhong, H. Zhu, H. Zhang, X. Xie, L. Yang et al., Highly efficient photocatalytic synthesis of disulfides by a self-assembled CsPbBr3/Ti3C2Tx MXene heterojunction. Green Chem. 27(19), 5455–5463 (2025). https://doi.org/10.1039/D5GC01214G
- H. Huang, H. Yuan, K.P.F. Janssen, G. Solís-Fernández, Y. Wang et al., Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials. ACS Energy Lett. 3(4), 755–759 (2018). https://doi.org/10.1021/acsenergylett.8b00131
- W. Wang, H. Huang, X. Ke, X. Liu, S. Yang et al., Morphology- and size-dependent FAPbBr3/WO3 Z-scheme photocatalysts for the controllable photo-oxidation of benzyl alcohol. Mater. Des. 215, 110502 (2022). https://doi.org/10.1016/j.matdes.2022.110502
References
G. Jia, Y. Zhang, J.C. Yu, Z. Guo, Asymmetric atomic dual-sites for photocatalytic CO2 reduction. Adv. Mater. 36(38), 2403153 (2024). https://doi.org/10.1002/adma.202403153
B. Samanta, Á. Morales-García, F. Illas, N. Goga, J.A. Anta et al., Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 51(9), 3794–3818 (2022). https://doi.org/10.1039/d1cs00648g
Y. Shi, Z. Zhao, D. Yang, J. Tan, X. Xin et al., Engineering photocatalytic ammonia synthesis. Chem. Soc. Rev. 52(20), 6938–6956 (2023). https://doi.org/10.1039/d2cs00797e
T. Takata, L. Lin, T. Hisatomi, K. Domen, Best practices for assessing performance of photocatalytic water splitting systems. Adv. Mater. 36(44), 2406848 (2024). https://doi.org/10.1002/adma.202406848
X.-B. Li, Z.-K. Xin, S.-G. Xia, X.-Y. Gao, C.-H. Tung et al., Semiconductor nanocrystals for small molecule activationviaartificial photosynthesis. Chem. Soc. Rev. 49(24), 9028–9056 (2020). https://doi.org/10.1039/d0cs00930j
J. Liu, D. Zheng, K. Wang, Z. Li, S. Liu et al., Evolutionary manufacturing approaches for advancing flexible perovskite solar cells. Joule 8(4), 944–969 (2024). https://doi.org/10.1016/j.joule.2024.02.025
A. Kausar, A. Sattar, C. Xu, S. Zhang, Z. Kang et al., Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem. Soc. Rev. 50(4), 2696–2736 (2021). https://doi.org/10.1039/d0cs01316a
C.-H. Lu, G.V. Biesold-McGee, Y. Liu, Z. Kang, Z. Lin, Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 49(14), 4953–5007 (2020). https://doi.org/10.1039/c9cs00790c
A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha et al., State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15(7), 10775–10981 (2021). https://doi.org/10.1021/acsnano.0c08903
J. Wang, Y. Shi, Y. Wang, Z. Li, Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: recent advances, challenges, and prospects. ACS Energy Lett. 7(6), 2043–2059 (2022). https://doi.org/10.1021/acsenergylett.2c00752
S. Park, W.J. Chang, C.W. Lee, S. Park, H.-Y. Ahn et al., Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2, 16185 (2017). https://doi.org/10.1038/nenergy.2016.185
C. Zhao, H. Song, Y. Chen, W. Xiong, M. Hu et al., Stable and recyclable photocatalysts of CsPbBr3@MSNs nanocomposites for photoinduced electron transfer RAFT polymerization. ACS Energy Lett. 7(12), 4389–4397 (2022). https://doi.org/10.1021/acsenergylett.2c02293
Y. Dong, Y. Feng, Z. Li, H. Zhou, H. Lv et al., CsPbBr3/Polyoxometalate composites for selective photocatalytic oxidation of benzyl alcohol. ACS Catal. 13, 14346 (2023). https://doi.org/10.1021/acscatal.3c03977
M. Liu, P. Xia, G. Zhao, C. Nie, K. Gao et al., Energy-transfer photocatalysis using lead halide perovskite nanocrystals: sensitizing molecular isomerization and cycloaddition. Angew. Chem. Int. Ed. 61(35), e202208241 (2022). https://doi.org/10.1002/anie.202208241
K. Ren, S. Yue, C. Li, Z. Fang, K.A.M. Gasem et al., Metal halide perovskites for photocatalysis applications. J. Mater. Chem. A 10(2), 407–429 (2022). https://doi.org/10.1039/d1ta09148d
N. Li, X. Chen, J. Wang, X. Liang, L. Ma et al., ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano 16(2), 3332–3340 (2022). https://doi.org/10.1021/acsnano.1c11442
Z. Liu, H. Yang, J. Wang, Y. Yuan, K. Hills-Kimball et al., Synthesis of lead-free Cs(2)AgBiX(6) (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Lett. 21(4), 1620–1627 (2021). https://doi.org/10.1021/acs.nanolett.0c04148
S. Pan, J. Li, Z. Wen, R. Lu, Q. Zhang et al., Halide perovskite materials for photo(electro)chemical applications: dimensionality, heterojunction, and performance. Adv. Energy Mater. 12(4), 2004002 (2022). https://doi.org/10.1002/aenm.202004002
L. Li, Z. Zhang, In-situ fabrication of Cu doped dual-phase CsPbBr3–Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction. Chem. Eng. J. 434, 134811 (2022). https://doi.org/10.1016/j.cej.2022.134811
J. Wang, L. Xiong, Y. Bai, Z. Chen, Q. Zheng et al., Mn-doped perovskite nanocrystals for photocatalytic CO2 reduction: insight into the role of the charge carriers with prolonged lifetime. Solar RRL 6(8), 2270086 (2022). https://doi.org/10.1002/solr.202270086
X.-D. Wang, Y.-H. Huang, J.-F. Liao, Y. Jiang, L. Zhou et al., In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 141(34), 13434–13441 (2019). https://doi.org/10.1021/jacs.9b04482
Q. Guo, J.-D. Zhang, Y.-J. Chen, K.-Y. Zhang, L.-N. Guo et al., Enhanced hydrogen evolution activity of CsPbBr3 nanocrystals achieved by dimensionality change. Chem. Commun. 59(28), 4189–4192 (2023). https://doi.org/10.1039/D2CC06731E
Q. Guo, J.-D. Zhang, J.-M. Liu, Y.-J. Chen, B. Qin et al., Promoting charge-carriers dynamics by relaxed lattice strain in A-site-doped halide perovskite for photocatalytic H2 evolution. Angew. Chem. Int. Ed. 64(5), e202419082 (2025). https://doi.org/10.1002/anie.202419082
Q. Guo, J.-L. Lu, B. Qin, Q.-C. Shan, L. Liu et al., Facets in metal halide perovskite nanocrystals for the photoinduced electron transfer annulation reaction. J. Mater. Chem. A 12(35), 23406–23410 (2024). https://doi.org/10.1039/D4TA04268A
Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33(27), 2100855 (2021). https://doi.org/10.1002/adma.202100855
J. Chen, D. Yuan, Y. Wang, Covalent organic frameworks based heterostructure in solar-to-fuel conversion. Adv. Funct. Mater. 33(41), 2304071 (2023). https://doi.org/10.1002/adfm.202304071
Q. Guo, X. Feng, Z.C. Zhang, L. Huang, Interfacial interactions between co-based cocatalysts and semiconducting light absorbers for solar-light-driven redox reactions. Sol. RRL 5(8), 2100234 (2021). https://doi.org/10.1002/solr.202100234
D. Huang, S. Chen, G. Zeng, X. Gong, C. Zhou et al., Artificial Z-scheme photocatalytic system: what have been done and where to go? Coord. Chem. Rev. 385, 44–80 (2019). https://doi.org/10.1016/j.ccr.2018.12.013
X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119(6), 3962–4179 (2019). https://doi.org/10.1021/acs.chemrev.8b00400
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
M. Lin, H. Chen, Z. Zhang, X. Wang, Engineering interface structures for heterojunction photocatalysts. Phys. Chem. Chem. Phys. 25(6), 4388–4407 (2023). https://doi.org/10.1039/d2cp05281d
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234 (2014). https://doi.org/10.1039/c4cs00126e
Y. Tong, W. Liu, C. Li, X. Liu, J. Liu et al., A metal/semiconductor contact induced Mott-Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustain. Energy Fuels 7(1), 12–30 (2022). https://doi.org/10.1039/d2se01355j
Y. Wu, P. Wang, Z. Guan, J. Liu, Z. Wang et al., Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3–xIx achieved by bandgap funneling of charge carriers. ACS Catal. 8(11), 10349–10357 (2018). https://doi.org/10.1021/acscatal.8b02374
Q. Zhang, M. Tai, Y. Zhou, Y. Zhou, Y. Wei et al., Enhanced photocatalytic property of γ-CsPbI3 perovskite nanocrystals with WS2. ACS Sustain. Chem. Eng. 8(2), 1219–1229 (2020). https://doi.org/10.1021/acssuschemeng.9b06451
Z. Zhang, B. Wang, H.-B. Zhao, J.-F. Liao, Z.-C. Zhou et al., Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Appl. Catal. B Environ. 312, 121358 (2022). https://doi.org/10.1016/j.apcatb.2022.121358
W. Li, F. Wang, Z. Zhang, S. Min, MAPbI3 microcrystals integrated with Ti3C2Tx MXene nanosheets for efficient visible-light photocatalytic H2 evolution. Chem. Commun. 57(63), 7774–7777 (2021). https://doi.org/10.1039/D1CC02511B
Q. Guo, F. Liang, X.-Y. Gao, Q.-C. Gan, X.-B. Li et al., Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots. ACS Catal. 8(7), 5890–5895 (2018). https://doi.org/10.1021/acscatal.8b01105
Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li et al., Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting. ACS Catal. 9(9), 8144–8152 (2019). https://doi.org/10.1021/acscatal.9b01605
X.-B. Li, C.-H. Tung, L.-Z. Wu, Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2(8), 160–173 (2018). https://doi.org/10.1038/s41570-018-0024-8
D. Xiang, F. Niu, J. Ji, J. Liang, H. Chen et al., Construction of graphene supported dual-phase perovskite quantum dots for efficient photocatalytic CO2 reduction. J. Mol. Struct. 1295, 136711 (2024). https://doi.org/10.1016/j.molstruc.2023.136711
X. Wang, J. He, J. Li, G. Lu, F. Dong et al., Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Appl. Catal. B Environ. 277, 119230 (2020). https://doi.org/10.1016/j.apcatb.2020.119230
B. Zhu, B. Cheng, J. Fan, W. Ho, J. Yu, G-C3N4-based 2D/2D composite heterojunction photocatalyst. Small Struct. 2(12), 2100086 (2021). https://doi.org/10.1002/sstr.202100086
J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang et al., Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135(42), 15913–15922 (2013). https://doi.org/10.1021/ja4079804
Y. Yang, Z. Chen, H. Huang, Y. Liu, J. Zou et al., Synergistic surface activation during photocatalysis on perovskite derivative sites in heterojunction. Appl. Catal. B Environ. 323, 122146 (2023). https://doi.org/10.1016/j.apcatb.2022.122146
B.-J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh et al., Z-scheme photocatalytic systems for solar water splitting. Adv. Sci. 7(7), 1903171 (2020). https://doi.org/10.1002/advs.201903171
A. Kumar, P. Singh, V.-H. Nguyen, Q.V. Le, T. Ahamad et al., Rationally constructed synergy between dual-vacancies and Z-scheme heterostructured MoS2-x/g-C3N4/Ca-α-Fe2O3 for high-performance photodegradation of sulfamethoxazole antibiotic from aqueous solution. Chem. Eng. J. 474, 145720 (2023). https://doi.org/10.1016/j.cej.2023.145720
M.E. Malefane, P.J. Mafa, M. Managa, T.T.I. Nkambule, A.T. Kuvarega, Understanding the principles and applications of dual Z-scheme heterojunctions: how far can we go? J. Phys. Chem. Lett. 14(4), 1029–1045 (2023). https://doi.org/10.1021/acs.jpclett.2c03387
Y. Wang, H. Huang, Z. Zhang, C. Wang, Y. Yang et al., Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Appl. Catal. B Environ. 282, 119570 (2021). https://doi.org/10.1016/j.apcatb.2020.119570
L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-scheme photocatalyst. Adv. Mater. 34(11), 2107668 (2022). https://doi.org/10.1002/adma.202107668
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst. Chem 6(7), 1543–1559 (2020). https://doi.org/10.1016/j.chempr.2020.06.010
Y. Bao, S. Song, G. Yao, S. Jiang, S-scheme photocatalytic systems. Sol. RRL 5(7), 2100118 (2021). https://doi.org/10.1002/solr.202100118
X. Yue, L. Cheng, J. Fan, Q. Xiang, 2D/2D BiVO4/CsPbBr3 s-scheme heterojunction for photocatalytic CO2 reduction: insights into structure regulation and Fermi level modulation. Appl. Catal. B Environ. 304, 120979 (2022). https://doi.org/10.1016/j.apcatb.2021.120979
J. Wang, J. Wang, N. Li, X. Du, J. Ma et al., Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interf. 12(28), 31477–31485 (2020). https://doi.org/10.1021/acsami.0c08152
L. Li, Z. Zhang, C. Ding, J. Xu, Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3HT. Chem. Eng. J. 419, 129543 (2021). https://doi.org/10.1016/j.cej.2021.129543
Z. Zhang, L. Li, Y. Jiang, J. Xu, Step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets for efficient CO2 photoreduction. Inorg. Chem. 61(7), 3351–3360 (2022). https://doi.org/10.1021/acs.inorgchem.2c00012
Z. Zhang, Z. Dong, Y. Jiang, Y. Chu, J. Xu, A novel S-scheme heterojunction of CsPbBr3 nanocrystals/AgBr nanorods for artificial photosynthesis. Chem. Eng. J. 435, 135014 (2022). https://doi.org/10.1016/j.cej.2022.135014
Y. Wu, X. Yue, J. Fan, X. Hao, Q. Xiang, In situ fabrication of plasmonic Bi/CsPbBr3 composite photocatalyst toward enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 609, 155391 (2023). https://doi.org/10.1016/j.apsusc.2022.155391
S.-R. Xu, J.-L. Li, Q.-L. Mo, K. Wang, G. Wu et al., Steering photocatalytic CO2 conversion over CsPbBr3 perovskite nanocrystals by coupling with transition-metal chalcogenides. Inorg. Chem. 61(44), 17828–17837 (2022). https://doi.org/10.1021/acs.inorgchem.2c03148
Y. Jiang, Y. Wang, Z. Zhang, Z. Dong, J. Xu, 2D/2D CsPbBr3/BiOCl heterojunction with an S-scheme charge transfer for boosting the photocatalytic conversion of CO2. Inorg. Chem. 61(27), 10557–10566 (2022). https://doi.org/10.1021/acs.inorgchem.2c01452
Q. Wang, J. Wang, J.-C. Wang, X. Hu, Y. Bai et al., Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction. Chemsuschem 14(4), 1131–1139 (2021). https://doi.org/10.1002/cssc.202002847
Y. Wang, J. Wang, M. Zhang, S. Zheng, J. Wu et al., In situ constructed perovskite-chalcogenide heterojunction for photocatalytic CO2 reduction. Small 19(37), e2300841 (2023). https://doi.org/10.1002/smll.202300841
H. Huang, J. Zhao, Y. Du, C. Zhou, M. Zhang et al., Direct Z-scheme heterojunction of semicoherent FAPbBr3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano 14(12), 16689–16697 (2020). https://doi.org/10.1021/acsnano.0c03146
L. Romani, A. Speltini, F. Ambrosio, E. Mosconi, A. Profumo et al., Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis. Angew. Chem. Int. Ed. 60(7), 3611–3618 (2021). https://doi.org/10.1002/anie.202007584
Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen et al., Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 3(11), 2656–2662 (2018). https://doi.org/10.1021/acsenergylett.8b01658
H. Hu, W. Guan, Y. Xu, X. Wang, L. Wu et al., Construction of single-atom platinum catalysts enabled by CsPbBr3 nanocrystals. ACS Nano 15(8), 13129–13139 (2021). https://doi.org/10.1021/acsnano.1c02515
K. Su, G.-X. Dong, W. Zhang, Z.-L. Liu, M. Zhang et al., In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction. ACS Appl. Mater. Interf. 12(45), 50464–50471 (2020). https://doi.org/10.1021/acsami.0c14826
R. Cheng, J.A. Steele, M.B.J. Roeffaers, J. Hofkens, E. Debroye, Dual-channel charge carrier transfer in CsPbX3 perovskite/W18O49 composites for selective photocatalytic benzyl alcohol oxidation. ACS Appl. Energy Mater. 4(4), 3460–3468 (2021). https://doi.org/10.1021/acsaem.0c03215
Y. Tang, C.H. Mak, R. Liu, Z. Wang, L. Ji et al., In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution. Adv. Funct. Mater. 30(52), 2006919 (2020). https://doi.org/10.1002/adfm.202006919
L. Ding, B. Borjigin, Y. Li, X. Yang, X. Wang et al., Assembling an affinal 0D CsPbBr3/2D CsPb2Br5 architecture by synchronously in situ growing CsPbBr3 QDs and CsPb2Br5 nanosheets: enhanced activity and reusability for photocatalytic CO2 reduction. ACS Appl. Mater. Interf. 13(43), 51161–51173 (2021). https://doi.org/10.1021/acsami.1c17870
N. Kandoth, S.P. Chaudhary, S. Gupta, K. Raksha, A. Chatterjee et al., Multimodal biofilm inactivation using a photocatalytic bismuth perovskite–TiO2–Ru(II)polypyridyl-based multisite heterojunction. ACS Nano 17(11), 10393–10406 (2023). https://doi.org/10.1021/acsnano.3c01064
Y.-F. Mu, W. Zhang, G.-X. Dong, K. Su, M. Zhang et al., Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 16(29), 2002140 (2020). https://doi.org/10.1002/smll.202002140
Q. Guo, F. Liang, Z. Sun, Y. Wang, X.-B. Li et al., Optimal d-band-induced Cu3N as a cocatalyst on metal sulfides for boosting photocatalytic hydrogen evolution. J. Mater. Chem. A 8(43), 22601–22606 (2020). https://doi.org/10.1039/D0TA07916B
X.-Z. Wang, S.-L. Meng, J. Liu, C. Yu, C. Ye et al., Mechanistic insights into consecutive 2e− and 2H+ reactions of hydrogenase mimic. Chem 9(9), 2610–2619 (2023). https://doi.org/10.1016/j.chempr.2023.05.010
B. Li, W. Wang, J. Zhao, Z. Wang, B. Su et al., All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 9(16), 10270–10276 (2021). https://doi.org/10.1039/d1ta01220g
J. Li, F. University, J. Zhao, F. University, S. Wang et al., Activating lattice oxygen in perovskite ferrite for efficient and stable photothermal dry reforming of methane. J. Am. Chem. Soc. 147(17), 14705–14714 (2025). https://doi.org/10.1021/jacs.5c03098
P. Zhou, H. Chen, Y. Chao, Q. Zhang, W. Zhang et al., Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat. Commun. 12(1), 4412 (2021). https://doi.org/10.1038/s41467-021-24702-8
C. Cai, Y. Teng, J.-H. Wu, J.-Y. Li, H.-Y. Chen et al., In situ photosynthesis of an MAPbI3/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution. Adv. Funct. Mater. 30(35), 2001478 (2020). https://doi.org/10.1002/adfm.202001478
H. Zhao, K. Chordiya, P. Leukkunen, A. Popov, M. Upadhyay Kahaly et al., Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res. 14(4), 1116–1125 (2021). https://doi.org/10.1007/s12274-020-3159-0
Y. Jiang, K. Li, X. Wu, M. Zhu, H. Zhang et al., In situ synthesis of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon for efficient hydrogen evolution in aqueous HBr solution. ACS Appl. Mater. Interf. 13(8), 10037–10046 (2021). https://doi.org/10.1021/acsami.0c21588
Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang et al., Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 30(7), 1704342 (2018). https://doi.org/10.1002/adma.201704342
R. Li, X. Li, J. Wu, X. Lv, Y.-Z. Zheng et al., Few-layer black phosphorus-on-MAPbI3 for superb visible-light photocatalytic hydrogen evolution from HI splitting. Appl. Catal. B Environ. 259, 118075 (2019). https://doi.org/10.1016/j.apcatb.2019.118075
L. Romani, A. Speltini, C.N. Dibenedetto, A. Listorti, F. Ambrosio et al., Experimental strategy and mechanistic view to boost the photocatalytic activity of Cs3Bi2Br9 lead-free perovskite derivative by g-C3N4 composite engineering. Adv. Funct. Mater. 31(46), 2104428 (2021). https://doi.org/10.1002/adfm.202104428
X. Zhao, S. Chen, H. Yin, S. Jiang, K. Zhao et al., Perovskite microcrystals with intercalated monolayer MoS2 nanosheets as advanced photocatalyst for solar-powered hydrogen generation. Matter 3(3), 935–949 (2020). https://doi.org/10.1016/j.matt.2020.07.004
X. Wang, H. Wang, H. Zhang, W. Yu, X. Wang et al., Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting. ACS Energy Lett. 3(5), 1159–1164 (2018). https://doi.org/10.1021/acsenergylett.8b00488
H. Lv, H. Yin, N. Jiao, C. Yuan, S. Weng et al., Efficient charge transfer and effective active sites in lead-free halide double perovskite S-scheme heterojunctions for photocatalytic H2 evolution. Small Methods. 7(3), 2201365 (2023). https://doi.org/10.1002/smtd.202201365
Y. Guo, G. Liu, Z. Li, Y. Lou, J. Chen et al., Stable lead-free (CH3NH3)3Bi2I9 perovskite for photocatalytic hydrogen generation. ACS Sustainable Chem. Eng. 7(17), 15080–15085 (2019). https://doi.org/10.1021/acssuschemeng.9b03761
Q. Huang, Y. Guo, J. Chen, Y. Lou, Y. Zhao, NiCoP modified lead-free double perovskite Cs2AgBiBr6 for efficient photocatalytic hydrogen generation. New J. Chem. 46(16), 7395–7402 (2022). https://doi.org/10.1039/d2nj00435f
H. Fu, Q. Zhang, Y. Wu, Z. Wang, Y. Liu et al., Composite of mixed-cation perovskite MA1-FA PbI3 with MoSe2 for enhanced photocatalytic H2 evolution. Chem. Eng. J. 511, 162120 (2025). https://doi.org/10.1016/j.cej.2025.162120
K. Song, J. Gou, L. Wu, C. Zeng, Two-dimensional black phosphorus-modified Cs2AgBiBr6 with efficient charge separation for enhanced visible-light photocatalytic H2 evolution. J. Mater. Chem. C 10(41), 15386–15393 (2022). https://doi.org/10.1039/d2tc03100k
J. Cai, X. Li, B. Su, B. Guo, X. Lin et al., Rational design and fabrication of S-scheme NiTiO3/CdS heterostructures for photocatalytic CO2 reduction. J. Mater. Sci. Technol. 234, 82–89 (2025). https://doi.org/10.1016/j.jmst.2025.01.050
B. Su, H. Huang, Z. Ding, M.B.J. Roeffaers, S. Wang et al., S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J. Mater. Sci. Technol. 124, 164–170 (2022). https://doi.org/10.1016/j.jmst.2022.01.030
Q. Guo, F. Liang, X.-B. Li, Y.-J. Gao, M.-Y. Huang et al., Efficient and selective CO2 reduction integrated with organic synthesis by solar energy. Chem 5(10), 2605–2616 (2019). https://doi.org/10.1016/j.chempr.2019.06.019
Q. Guo, S.-G. Xia, Z.-K. Xin, Y. Wang, F. Liang et al., Anion vacancy correlated photocatalytic CO2 to CO conversion over quantum-confined CdS nanorods under visible light. J. Mater. Chem. A 11(8), 3937–3941 (2023). https://doi.org/10.1039/D2TA09451G
K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6(11), 7485–7527 (2016). https://doi.org/10.1021/acscatal.6b02089
J. Ran, M. Jaroniec, S.-Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30(7), 1704649 (2018). https://doi.org/10.1002/adma.201704649
Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen et al., A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139(16), 5660–5663 (2017). https://doi.org/10.1021/jacs.7b00489
H.-B. Zhao, J.-N. Huang, Q. Qin, H.-Y. Chen, D.-B. Kuang, In situ loading of Cu nanocrystals on CsCuCl3 for selective photoreduction of CO2 to CH4. Small 19(45), 2302022 (2023). https://doi.org/10.1002/smll.202302022
Y.-F. Xu, M.-Z. Yang, H.-Y. Chen, J.-F. Liao, X.-D. Wang et al., Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet Schottky-junction photocatalyst. ACS Appl. Energy Mater. 1(9), 5083–5089 (2018). https://doi.org/10.1021/acsaem.8b01133
M. Shu, Z. Zhang, Z. Dong, J. Xu, CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction. Carbon 182, 454–462 (2021). https://doi.org/10.1016/j.carbon.2021.06.040
A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia et al., CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J. Phys. Chem. Lett. 10(21), 6590–6597 (2019). https://doi.org/10.1021/acs.jpclett.9b02605
M. Que, Y. Zhao, Y. Yang, L. Pan, W. Lei et al., Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interf. 13(5), 6180–6187 (2021). https://doi.org/10.1021/acsami.0c18391
X. Wang, J. He, L. Mao, X. Cai, C. Sun et al., CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chem. Eng. J. 416, 128077 (2021). https://doi.org/10.1016/j.cej.2020.128077
L. Ding, F. Bai, B. Borjigin, Y. Li, H. Li et al., Embedding Cs2AgBiBr6 QDs into Ce-UiO-66-H to in situ construct a novel bifunctional material for capturing and photocatalytic reduction of CO2. Chem. Eng. J. 446, 137102 (2022). https://doi.org/10.1016/j.cej.2022.137102
W. Xiong, Y. Dong, A. Pan, Fabricating a type II heterojunction by growing lead-free perovskite Cs2AgBiBr6 in situ on graphite-like g-C3N4 nanosheets for enhanced photocatalytic CO2 reduction. Nanoscale 15(38), 15619–15625 (2023). https://doi.org/10.1039/d3nr04152b
M. Ou, W. Tu, S. Yin, W. Xing, S. Wu et al., Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57(41), 13570–13574 (2018). https://doi.org/10.1002/anie.201808930
Y. Jiang, J.-F. Liao, H.-Y. Chen, H.-H. Zhang, J.-Y. Li et al., All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem 6(3), 766–780 (2020). https://doi.org/10.1016/j.chempr.2020.01.005
Y.-F. Mu, C. Zhang, M.-R. Zhang, W. Zhang, M. Zhang et al., Direct Z-scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation. ACS Appl. Mater. Interf. 13(19), 22314–22322 (2021). https://doi.org/10.1021/acsami.1c01718
R. Zhang, L. Li, Y. Li, D. Wang, Y. Lin et al., Z-scheme SnS2/CsPbBr3 heterojunctions for photoreduction CO2 reaction and related photoinduced carrier behaviors. Solar RRL 6(10), 2200536 (2022). https://doi.org/10.1002/solr.202200536
H. Sun, R. Tang, X. Zhang, S. Zhang, W. Yang et al., Interfacial energy band engineered CsPbBr3/NiFe-LDH heterostructure catalysts with tunable visible light driven photocatalytic CO2 reduction capability. Catal. Sci. Technol. 13(4), 1154–1163 (2023). https://doi.org/10.1039/d2cy01982e
P. Wang, X. Ba, X. Zhang, H. Gao, M. Han et al., Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chem. Eng. J. 457, 141248 (2023). https://doi.org/10.1016/j.cej.2022.141248
Z.-L. Liu, R.-R. Liu, Y.-F. Mu, Y.-X. Feng, G.-X. Dong et al., In situ construction of lead-free perovskite direct Z-scheme heterojunction Cs3Bi2I9/Bi2WO6 for efficient photocatalysis of CO2 reduction. Solar RRL 5(3), 2000691 (2021). https://doi.org/10.1002/solr.202000691
X. Wang, Z. Wang, Y. Li, J. Wang, G. Zhang, Efficient photocatalytic CO2 conversion over 2D/2D Ni-doped CsPbBr3/Bi3O4Br Z-scheme heterojunction: critical role of Ni doping, boosted charge separation and mechanism study. Appl. Catal. B Environ. 319, 121895 (2022). https://doi.org/10.1016/j.apcatb.2022.121895
L. Ding, Y. Ding, F. Bai, G. Chen, S. Zhang et al., In situ growth of Cs3Bi2Br9 quantum dots on Bi-MOF nanosheets via cosharing bismuth atoms for CO2 capture and photocatalytic reduction. Inorg. Chem. 62(5), 2289–2303 (2023). https://doi.org/10.1021/acs.inorgchem.2c04041
Q.-M. Sun, J.-J. Xu, F.-F. Tao, W. Ye, C. Zhou et al., Boosted inner surface charge transfer in perovskite Nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane. Angew. Chem. Int. Ed. 61(20), e202200872 (2022). https://doi.org/10.1002/anie.202200872
P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu et al., Highly selective photoconversion of CO2 to CH4 over SnO2/Cs3Bi2Br9 heterojunctions assisted by S-scheme charge separation. ACS Catal. 13(19), 12623–12633 (2023). https://doi.org/10.1021/acscatal.3c03095
J.-N. Huang, Y.-J. Dong, H.-B. Zhao, H.-Y. Chen, D.-B. Kuang et al., Efficient encapsulation of CsPbBr3 and Au nanocrystals in mesoporous metal–organic frameworks towards synergetic photocatalytic CO2 reduction. J. Mater. Chem. A 10(47), 25212–25219 (2022). https://doi.org/10.1039/d2ta06561d
X. Li, J. Liu, G. Jiang, X. Lin, J. Wang et al., Self-supported CsPbBr/Ti3C2Tx MXene aerogels towards efficient photocatalytic CO2 reduction. J. Colloid Interf. Sci. 643, 174–182 (2023). https://doi.org/10.1016/j.jcis.2023.04.015
X. Wang, K. Li, J. He, J. Yang, F. Dong et al., Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy 78, 105388 (2020). https://doi.org/10.1016/j.nanoen.2020.105388
Z. Zhang, M. Shu, Y. Jiang, J. Xu, Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem. Eng. J. 414, 128889 (2021). https://doi.org/10.1016/j.cej.2021.128889
Y. Jiang, C. Mei, Z. Zhang, Z. Dong, Immobilizing CsPbBr3 perovskite nanocrystals on nanoporous carbon powder for visible-light-driven CO2 photoreduction. Dalton Trans. 50(45), 16711–16719 (2021). https://doi.org/10.1039/D1DT03099J
X. Zhong, X. Liang, X. Lin, J. Wang, M.Z. Shahid et al., A new 0D–2D CsPbBr3–Co3O4 heterostructure photocatalyst with efficient charge separation for photocatalytic CO2 reduction. Inorg. Chem. Front. 10(11), 3273–3283 (2023). https://doi.org/10.1039/D3QI00527E
T.H. Kim, I. Park, K.H. Lee, J.-H. Sim, M.-H. Park et al., Investigating the interfacial properties of halide perovskite/TiOx heterostructures for versatile photocatalytic reactions under sunlight. Nanoscale 15(17), 7710–7714 (2023). https://doi.org/10.1039/D2NR06840K
Y. Jiang, J.-F. Liao, Y.-F. Xu, H.-Y. Chen, X.-D. Wang et al., Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction. J. Mater. Chem. A 7(22), 13762–13769 (2019). https://doi.org/10.1039/c9ta03478a
G. Yin, X. Qi, Y. Chen, Q. Peng, X. Jiang et al., Constructing an all zero-dimensional CsPbBr3/CdSe heterojunction for highly efficient photocatalytic CO2 reduction. J. Mater. Chem. A 10(42), 22468–22476 (2022). https://doi.org/10.1039/d2ta05186a
Q. Zheng, J. Wang, X. Li, Y. Bai, Y. Li et al., Surface halogen compensation on CsPbBr3 nanocrystals with SOBr2 for photocatalytic CO2 reduction. ACS Mater. Lett. 4(9), 1638–1645 (2022). https://doi.org/10.1021/acsmaterialslett.2c00482
Y.-X. Feng, G.-X. Dong, K. Su, Z.-L. Liu, W. Zhang et al., Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2. J. Energy Chem. 69, 348–355 (2022). https://doi.org/10.1016/j.jechem.2022.01.015
X. Jiang, Y. Ding, S. Zheng, Y. Ye, Z. Li et al., In-situ generated CsPbBr3 nanocrystals on O-defective WO3 for photocatalytic CO2 reduction. Chemsuschem 15(4), e202102295 (2022). https://doi.org/10.1002/cssc.202102295
A. Mahmoud Idris, S. Zheng, L. Wu, S. Zhou, H. Lin et al., A heterostructure of halide and oxide double perovskites Cs2AgBiBr6/Sr2FeNbO6 for boosting the charge separation toward high efficient photocatalytic CO2 reduction under visible-light irradiation. Chem. Eng. J. 446, 137197 (2022). https://doi.org/10.1016/j.cej.2022.137197
Y. Hou, Y. Zhang, S. Jiao, J. Qin, L. Liu et al., High catalytic activity and stability of visible-light-driven CO2 reduction via CsPbBr3 QDs/Cu-BTC core–shell photocatalysts. J. Mater. Chem. A 13(7), 5007–5016 (2025). https://doi.org/10.1039/d4ta07190e
Y. Wang, Z. Liu, X. Tang, P. Huo, Z. Zhu et al., Construction of a CsPbBr3 modified porous g-C3N4 photocatalyst for effective reduction of CO2 and mechanism exploration. New J. Chem. 45(2), 1082–1091 (2021). https://doi.org/10.1039/d0nj04018e
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu et al., Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 11(1), 4613 (2020). https://doi.org/10.1038/s41467-020-18350-7
L. Wang, J. Qiu, N. Wu, X. Yu, X. An, TiO2/CsPbBr3 S-scheme heterojunctions with highly improved CO2 photoreduction activity through facet-induced Fermi level modulation. J. Colloid Interf. Sci. 629, 206–214 (2023). https://doi.org/10.1016/j.jcis.2022.08.120
Y. Zhang, L. Shi, H. Yuan, X. Sun, X. Li et al., Construction of melamine foam–supported WO3/CsPbBr3 S–scheme heterojunction with rich oxygen vacancies for efficient and long–period CO2 photoreduction in liquid–phase H2O environment. Chem. Eng. J. 430, 132820 (2022). https://doi.org/10.1016/j.cej.2021.132820
Q. Chen, X. Lan, K. Chen, Q. Ren, J. Shi, Construction of WO3/CsPbBr3 s-scheme heterojunction via electrostatic self-assembly for efficient and long-period photocatalytic CO2 reduction. J. Colloid Interf. Sci. 616, 253–260 (2022). https://doi.org/10.1016/j.jcis.2022.02.044
Y. Wang, H. Fan, X. Liu, J. Cao, H. Liu et al., 3D ZnO hollow spheres-dispersed CsPbBr3 quantum dots S-scheme heterojunctions for high-efficient CO2 photoreduction. J. Alloys Compd. 945, 169197 (2023). https://doi.org/10.1016/j.jallcom.2023.169197
Z. Dong, Y. Shi, Y. Jiang, C. Yao, Z. Zhang, In situ growth of CsPbBr3 quantum dots in mesoporous SnO2 frameworks as an efficient CO2-reduction photocatalyst. J. CO2 Util. 72, 102480 (2023). https://doi.org/10.1016/j.jcou.2023.102480
Z. Dong, J. Zhou, Z. Zhang, Y. Jiang, R. Zhou et al., Construction of a p–n type S-scheme heterojunction by incorporating CsPbBr3 nanocrystals into mesoporous Cu2O microspheres for efficient CO2 photoreduction. ACS Appl. Energy Mater. 5(8), 10076–10085 (2022). https://doi.org/10.1021/acsaem.2c01760
K. Su, S.-X. Yuan, Y.-X. Feng, G.-X. Dong, Y.-F. Mu et al., Polymer-assisted in situ growth of Cs3Sb2Br9 on Co3O4 to boost sacrificial-agent-free photocatalytic CO2 reduction. Rare Met. 44(5), 3194–3205 (2025). https://doi.org/10.1007/s12598-024-02968-3
X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46(8), 2127–2157 (2017). https://doi.org/10.1039/c6cs00937a
T. Chai, X. Li, T. Feng, P. Guo, Y. Song et al., Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale 10(37), 17617–17622 (2018). https://doi.org/10.1039/C8NR03068E
S. Wu, Z. Xu, J. Zhang, M. Zhu, Recent progress on metallic bismuth-based photocatalysts: synthesis, construction, and application in water purification. Sol. RRL 5(11), 2100668 (2021). https://doi.org/10.1002/solr.202100668
Y. Zhang, Y. Tian, W. Chen, M. Zhou, S. Ou et al., Construction of a bismuthene/CsPbBr3 quantum dot S-scheme heterojunction and enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 126(6), 3087–3097 (2022). https://doi.org/10.1021/acs.jpcc.1c10729
Y. Feng, D. Chen, Y. Zhong, Z. He, S. Ma et al., A lead-free 0D/2D Cs3Bi2Br9/Bi2WO6 S-scheme heterojunction for efficient photoreduction of CO2. ACS Appl. Mater. Interfaces 15(7), 9221–9230 (2023). https://doi.org/10.1021/acsami.2c19703
J. Wang, H. Cheng, D. Wei, Z. Li, Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 s-scheme heterojunction for photocatalytic CO2 reduction under visible light. Chin. J. Catal. 43(10), 2606–2614 (2022). https://doi.org/10.1016/S1872-2067(22)64091-9
W. Huang, Q. Zhu, Z. Li, Y. Zhu, J. Shen, Construction of S-scheme Cs2AgBiBr6/BiVO4 heterojunctions with fast charge transfer kinetics toward promoted photocatalytic conversion of CO2. Small 21(20), 2412289 (2025). https://doi.org/10.1002/smll.202412289
H. Bian, D. Li, S. Wang, J. Yan, S.F. Liu, 2D–C3N4 encapsulated perovskite nanocrystals for efficient photo-assisted thermocatalytic CO2 reduction. Chem. Sci. 13(5), 1335–1341 (2022). https://doi.org/10.1039/d1sc06131c
M.-R. Zhang, Y.-X. Feng, Z.-L. Liu, K. Su, S.-X. Yuan et al., A versatile self-templating approach for constructing ternary halide perovskite heterojunctions to achieve concurrent enhancement in photocatalytic CO2 reduction activity and stability. Adv. Funct. Mater. 35(22), 2423656 (2025). https://doi.org/10.1002/adfm.202423656
W. Huang, B. Chan, Y. Yang, P. Chen, J. Wang et al., Intermarrying MOF glass and lead halide perovskites for artificial photosynthesis. J. Am. Chem. Soc. 147(4), 3195–3205 (2025). https://doi.org/10.1021/jacs.4c12619
T. Zhao, D. Li, Y. Zhang, G. Chen, Constructing built-in electric field within CsPbBr3/sulfur doped graphitic carbon nitride ultra-thin nanosheet step-scheme heterojunction for carbon dioxide photoreduction. J. Colloid Interf. Sci. 628, 966–974 (2022). https://doi.org/10.1016/j.jcis.2022.08.008
X. Feng, H. Ju, T. Song, T. Fang, W. Liu et al., Highly efficient photocatalytic degradation performance of CsPb(Br1–xClx)3-Au nanoheterostructures. ACS Sustain. Chem. Eng. 7(5), 5152–5156 (2019). https://doi.org/10.1021/acssuschemeng.8b06023
Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li et al., Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew. Chem. Int. Ed. 58(22), 7263–7267 (2019). https://doi.org/10.1002/anie.201900658
Y. Zhao, Y. Wang, X. Liang, H. Shi, C. Wang et al., Enhanced photocatalytic activity of Ag-CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA. Appl. Catal. B Environ. 247, 57–69 (2019). https://doi.org/10.1016/j.apcatb.2019.01.090
T. Paul, D. Das, B.K. Das, S. Sarkar, S. Maiti et al., CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst. J. Hazard. Mater. 380, 120855 (2019). https://doi.org/10.1016/j.jhazmat.2019.120855
Y. Wang, L. Luo, Z. Wang, B. Tawiah, C. Liu et al., Growing poly(norepinephrine) layer over individual nanops to boost hybrid perovskite photocatalysts. ACS Appl. Mater. Interf. 12(24), 27578–27586 (2020). https://doi.org/10.1021/acsami.0c06081
Z. Xue, P. Yan, A. Aihemaiti, A. Tuerdi, A. Abdukayum, Lead-free double halide perovskite Cs2AgBiI6/g-C3N4 heterojunction photocatalysts for effective visible-light photocatalytic activity. J. Solid State Chem. 348, 125355 (2025). https://doi.org/10.1016/j.jssc.2025.125355
H. Huang, H. Yuan, J. Zhao, G. Solís-Fernández, C. Zhou et al., C(sp3)–H bond activation by perovskite solar photocatalyst cell. ACS Energy Lett. 4(1), 203–208 (2019). https://doi.org/10.1021/acsenergylett.8b01698
Z.-J. Bai, S. Tian, T.-Q. Zeng, L. Chen, B.-H. Wang et al., Cs3Bi2Br9 nanodots stabilized on defective BiOBr nanosheets by interfacial chemical bonding: modulated charge transfer for photocatalytic C(sp3)–H bond activation. ACS Catal. 12(24), 15157–15167 (2022). https://doi.org/10.1021/acscatal.2c04652
W. Zhang, Y. Chen, X. Wang, X. Yan, J. Xu et al., Formation of n–n type heterojunction-based tin organic–inorganic hybrid perovskite composites and their functions in the photocatalytic field. Phys. Chem. Chem. Phys. 20(10), 6980–6989 (2018). https://doi.org/10.1039/c7cp07819f
B.-M. Bresolin, P. Sgarbossa, D.W. Bahnemann, M. Sillanpää, Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes. Sep. Purif. Technol. 251, 117320 (2020). https://doi.org/10.1016/j.seppur.2020.117320
J.-R. Xue, R.-C. Xue, P.-Y. Chen, Y. Wang, L.-P. Yu, Novel hydrostable Z-scheme Ag/CsPbBr3/Bi2WO6 photocatalyst for effective degradation of Rhodamine B in aqueous solution. J. Chin. Chem. Soc. 70(7), 1481–1492 (2023). https://doi.org/10.1002/jccs.202300025
Y. Zhao, X. Liang, X. Hu, J. Fan, Green and efficient photodegradation of norfloxacin with CsPbBr3-rGO/Bi2WO6 s-scheme heterojunction photocatalyst. Colloids Surf. A, Physicochem. Eng. Aspects 626, 127098 (2021). https://doi.org/10.1016/j.colsurfa.2021.127098
E. Zhu, Y. Zhao, Y. Dai, Q. Wang, Y. Dong et al., Heterojunction-type photocatalytic system based on inorganic halide perovskite CsPbBr3. Chin. J. Chem. 38(12), 1718–1722 (2020). https://doi.org/10.1002/cjoc.202000333
Z.-J. Bai, Y. Mao, B.-H. Wang, L. Chen, S. Tian et al., Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3): H bond activation. Nano Res. 16(5), 6104–6112 (2023). https://doi.org/10.1007/s12274-022-4835-z
Y. Teng, J.-H. Chen, Y.-H. Huang, Z.-C. Zhou, X.-D. Wang et al., Atom-triggered epitaxial growth of bi-based perovskite heterojunctions for promoting interfacial charge transfer. Appl. Catal. B Environ. 335, 122889 (2023). https://doi.org/10.1016/j.apcatb.2023.122889
C. Callegari, C. Tedesco, A. Corbo, M. Prato, L. Malavasi et al., Application of lead-free metal halide perovskite heterojunctions for the carbohalogenation of C-C multiple bonds. Org. Lett. 27(14), 3667–3672 (2025). https://doi.org/10.1021/acs.orglett.5c00780
Y. Zhong, H. Zhu, H. Zhang, X. Xie, L. Yang et al., Highly efficient photocatalytic synthesis of disulfides by a self-assembled CsPbBr3/Ti3C2Tx MXene heterojunction. Green Chem. 27(19), 5455–5463 (2025). https://doi.org/10.1039/D5GC01214G
H. Huang, H. Yuan, K.P.F. Janssen, G. Solís-Fernández, Y. Wang et al., Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials. ACS Energy Lett. 3(4), 755–759 (2018). https://doi.org/10.1021/acsenergylett.8b00131
W. Wang, H. Huang, X. Ke, X. Liu, S. Yang et al., Morphology- and size-dependent FAPbBr3/WO3 Z-scheme photocatalysts for the controllable photo-oxidation of benzyl alcohol. Mater. Des. 215, 110502 (2022). https://doi.org/10.1016/j.matdes.2022.110502