Regulation Engineering of Alkali Metal Interlayer Pillar in P2-Type Cathode for Ultra-High Rate and Long-Term Cycling Sodium-Ion Batteries
Corresponding Author: Jianguo Lu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 105
Abstract
Layered oxides have attracted significant attention as cathodes for sodium-ion batteries (SIBs) due to their compositional versatility and tuneable electrochemical performance. However, these materials still face challenges such as structural phase transitions, Na+/vacancy ordering, and Jahn–Teller distortion effect, resulting in severe capacity decay and sluggish ion kinetics. We develop a novel Cu/Y dual-doping strategy that leads to the formation of "Na–Y" interlayer aggregates, which act as structural pillars within alkali metal layers, enhancing structural stability and disrupting the ordered arrangement of Na+/vacancies. This disruption leads to a unique coexistence of ordered and disordered Na+/vacancy states with near-zero strain, which significantly improves Na+ diffusion kinetics. This structural innovation not only mitigates the unfavorable P2–O2 phase transition but also facilitates rapid ion transport. As a result, the doped material demonstrates exceptional electrochemical performance, including an ultra-long cycle life of 3000 cycles at 10 C and an outstanding high-rate capability of ~70 mAh g−1 at 50 C. The discovery of this novel interlayer pillar, along with its role in modulating Na⁺/vacancy arrangements, provides a fresh perspective on engineering layered oxides. It opens up promising new pathways for the structural design of advanced cathode materials toward efficient, stable, and high-rate SIBs.
Highlights:
1 A novel “Na–Y” interlayer aggregate is proposed, which acts as a robust interlayer pillar, distinct from previously reported single-ion-based pillar structures.
2 The coexistence of ordered and disordered Na⁺/vacancy states resulting from Cu/Y dual-site doping can stimulate rapid Na⁺ diffusion.
3 The designed Na0.67Y0.05Ni0.18Cu0.1Mn0.67O2 electrode exhibits outstanding long-term cycling performance (~3000 cycles) and high-rate capability (~ 70 mAh g−1 at 50 C).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- Z. Zhao, Y. Wu, R. Hu, J. Lu, D. Chen et al., Intercalation pseudocapacitance in 2D VS2/Ti3C2Tx MXene hybrids for all-climate and long-cycle sodium-ion batteries. Adv. Funct. Mater. 33(50), 2307794 (2023). https://doi.org/10.1002/adfm.202307794
- X. Rong, J. Liu, E. Hu, Y. Liu, Y. Wang et al., Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2(1), 125 (2018). https://doi.org/10.1016/j.joule.2017.10.008
- D. Chen, Y. Xu, J. Lu, Y. Tian, T. Li et al., Intercalation-induced localized conversion reaction in h-CuSe for ultrafast-rechargeable and long-cycling sodium metal battery. Adv. Mater. 36(32), 2404640 (2024). https://doi.org/10.1002/adma.202404640
- H.Y. Asl, A. Manthiram, Reining in dissolved transition-metal ions. Science 369(6500), 140–141 (2020). https://doi.org/10.1126/science.abc5454
- K. Kubota, S. Komaba, Review: practical issues and future perspective for Na-ion batteries. J. Electrochem. Soc. 162(14), A2538–A2550 (2015). https://doi.org/10.1149/2.0151514jes
- Z. Yang, Y. Lu, H. Dong, J. Lin, Y. Wang, M. Qiu, Z. Ye, J. Lu, Recent progress and prospect of Li-Se batteries: a comprehensive review. Energy Mater. 3, 300027 (2023). https://doi.org/10.20517/energymater.2022.91
- H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
- M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/C4EE03192J
- X. Wang, L. Ren, Y. Wang, M. Qiu, Z. Yang et al., A strategy to enhance rate capability by doping Titanium into Na2FeP2O7@C cathode materials for Na-ion batteries. J. Power. Sources 557, 232533 (2023). https://doi.org/10.1016/j.jpowsour.2022.232533
- K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Electrochemistry and solid-state chemistry of NaMeO2 (me = 3d transition metals). Adv. Energy Mater. 8(17), 1703415 (2018). https://doi.org/10.1002/aenm.201703415
- Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J. Mater. Chem. A 7(15), 9215–9221 (2019). https://doi.org/10.1039/C8TA11927A
- S. Komaba, T. Nakayama, A. Ogata, T. Shimizu, C. Takei et al., Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Trans. 16(42), 43–55 (2009). https://doi.org/10.1149/1.3112727
- N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10(5), 1051–1074 (2017). https://doi.org/10.1039/C7EE00566K
- P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8(8), 1701912 (2018). https://doi.org/10.1002/aenm.201701912
- X. Wang, Z. Yang, D. Chen, B. Lu, Q. Zhang et al., Structural regulation of P2-type layered oxide with anion/cation codoping strategy for sodium-ion batteries. Adv. Funct. Mater. 35(14), 2418322 (2025). https://doi.org/10.1002/adfm.202418322
- Y. Lai, H. Xie, P. Li, B. Li, A. Zhao et al., Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries. Adv. Mater. 34(47), 2206039 (2022). https://doi.org/10.1002/adma.202206039
- X. Cai, Z. Shadike, N. Wang et al., Constraining interlayer slipping in P2-type layered oxides with oxygen redox by constructing strong covalent bonds. J. Am. Chem. Soc. 147(7), 5860–5870 (2025). https://doi.org/10.1021/jacs.4c14587
- J. Liu, W. Huang, R. Liu, J. Lang, Y. Li et al., Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries. Adv. Funct. Mater. 34(24), 2315437 (2024). https://doi.org/10.1002/adfm.202315437
- S. Yuan, L. Yu, G. Qian, Y. Xie, P. Guo et al., P2-type moisture-stable and high-voltage-tolerable cathodes for high-energy and long-life sodium-ion batteries. Nano Lett. 23(5), 1743–1751 (2023). https://doi.org/10.1021/acs.nanolett.2c04465
- B. Peng, Z. Zhou, J. Shi, S. Xu, J. Yang et al., A customized strategy realizes stable cycle of large-capacity and high-voltage layered cathode for sodium-ion batteries. Angew. Chem. Int. Ed. 63(50), e202411618 (2024). https://doi.org/10.1002/anie.202411618
- B. Peng, Y. Chen, L. Zhao, S. Zeng, G. Wan et al., Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries. Energy Storage Mater. 56, 631–641 (2023). https://doi.org/10.1016/j.ensm.2023.02.001
- Y. Wang, L. Wang, H. Zhu, J. Chu, Y. Fang et al., Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2–O2 transition for stable sodium ion storage. Adv. Funct. Mater. 30(13), 1910327 (2020). https://doi.org/10.1002/adfm.201910327
- Q. Shi, R. Qi, X. Feng, J. Wang, Y. Li et al., Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat. Commun. 13(1), 3205 (2022). https://doi.org/10.1038/s41467-022-30942-z
- K. Kubota, T. Asari, S. Komaba, Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni–Mn and Na-vacancy ordering and electrochemical properties. Adv. Mater. 35(26), 2300714 (2023). https://doi.org/10.1002/adma.202300714
- Q. Pei, M. Lu, Z. Liu, D. Li, X. Rao et al., Improving the Na0.67Ni0.33Mn0.67O2 cathode material for high-voltage cyclability via Ti/Cu codoping for sodium-ion batteries. ACS Appl. Energy Mater. 5(2), 1953–1962 (2022). https://doi.org/10.1021/acsaem.1c03466
- G. Zhang, X. Yin, D. Ning, Y. Chai, R. Du et al., Crystal modulation of Mn-based layered oxide toward long-enduring anionic redox with fast kinetics for sodium-ion batteries. Angew. Chem. Int. Ed. 64(3), e202415450 (2025). https://doi.org/10.1002/anie.202415450
- P. Zou, L. Yao, C. Wang, S.J. Lee, T. Li et al., Regulating cation interactions for zero-strain and high-voltage P2-type Na2/3Li1/6Co1/6Mn2/3O2 layered oxide cathodes of sodium-ion batteries. Angew. Chem. Int. Ed. 62(28), e202304628 (2023). https://doi.org/10.1002/anie.202304628
- F. Ding, C. Zhao, D. Xiao, X. Rong, H. Wang et al., Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144(18), 8286–8295 (2022). https://doi.org/10.1021/jacs.2c02353
- Z. Liu, R. Liu, S. Xu, J. Tian, J. Li et al., Achieving a deeply desodiated stabilized cathode material by the high entropy strategy for sodium-ion batteries. Angew. Chem. Int. Ed. 63(29), e202405620 (2024). https://doi.org/10.1002/anie.202405620
- F. Ding, P. Ji, Z. Han, X. Hou, Y. Yang et al., Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials. Nat. Energy 9(12), 1529–1539 (2024). https://doi.org/10.1038/s41560-024-01616-5
- Y. Huang, Y. Zhu, A. Nie, H. Fu, Z. Hu et al., Enabling anionic redox stability of P2-Na5/6Li1/4Mn3/4O2 by Mg substitution. Adv. Mater. 34(9), 2105404 (2022). https://doi.org/10.1002/adma.202105404
- U. Maitra, R.A. House, J.W. Somerville, N. Tapia-Ruiz, J.G. Lozano et al., Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10(3), 288–295 (2018). https://doi.org/10.1038/nchem.2923
- B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34(6), 2103210 (2022). https://doi.org/10.1002/adma.202103210
- N. Ahmad, L. Yu, M.U. Muzaffar, B. Peng, Z. Tao et al., Dual-pillar effect in P2-type Na0.67Ni0.33Mn0.67O2 through Na site substitution achieve superior electrochemical and air/water dual-stability as cathode for sodium-ion batteries. Adv. Energy Mater. 15(20), 2404093 (2025). https://doi.org/10.1002/aenm.202404093
- C. Zhao, Z. Yao, Q. Wang, H. Li, J. Wang et al., Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 142(12), 5742–5750 (2020). https://doi.org/10.1021/jacs.9b13572
- Y. Wang, R. Xiao, Y.-S. Hu, M. Avdeev, L. Chen, P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 6, 6954 (2015). https://doi.org/10.1038/ncomms7954
- P.-F. Wang, H.-R. Yao, X.-Y. Liu, Y.-X. Yin, J.-N. Zhang et al., Na(+)/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 4(3), eaar6018 (2018). https://doi.org/10.1126/sciadv.aar6018
- Y. Shi, P. Jiang, S. Wang, W. Chen, B. Wei et al., Slight compositional variation-induced structural disorder-to-order transition enables fast Na(+) storage in layered transition metal oxides. Nat. Commun. 13(1), 7888 (2022). https://doi.org/10.1038/s41467-022-35597-4
- J. Zhang, W. Wang, W. Wang, S. Wang, B. Li, Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl. Mater. Interfaces 11(25), 22051–22066 (2019). https://doi.org/10.1021/acsami.9b03937
- D.H. Lee, J. Xu, Y.S. Meng, An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 15(9), 3304–3312 (2013). https://doi.org/10.1039/C2CP44467D
- A. Gutierrez, W.M. Dose, O. Borkiewicz, F. Guo, M. Avdeev et al., On disrupting the Na+-ion/vacancy ordering in P2-type sodium–manganese–nickel oxide cathodes for Na+-ion batteries. J. Phys. Chem. C 122(41), 23251–23260 (2018). https://doi.org/10.1021/acs.jpcc.8b05537
- J.F. Qu, W. Wang, Y. Chen, G. Li, X.G. Li, Raman spectra study on nonstoichiometric compound NaxCoO2. Phys. Rev. B 73(9), 092518 (2006). https://doi.org/10.1103/physrevb.73.092518
- W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto et al., Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Mater. Lett. 135, 131–134 (2014). https://doi.org/10.1016/j.matlet.2014.07.153
- C. Zhao, Y. Lu, L. Chen, Y.-S. Hu, Ni-based cathode materials for Na-ion batteries. Nano Res. 12(9), 2018–2030 (2019). https://doi.org/10.1007/s12274-019-2451-3
- Y. Xiao, Y.-F. Zhu, H.-R. Yao, P.-F. Wang, X.-D. Zhang et al., A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 9(19), 1803978 (2019). https://doi.org/10.1002/aenm.201803978
- Y. Zhou, M. Pang, M. Zhang, Y. Yuan, Y. Yang et al., Controlling crystallographic orientation through composite phase regulation to unlock oxide cathode performance. Chem. Eng. J. 501, 157527 (2024). https://doi.org/10.1016/j.cej.2024.157527
- K. Liu, S. Tan, X.-G. Sun, Q. Zhang, C. Li et al., Heteroatom anchoring to enhance electrochemical reversibility for high-voltage P2-type oxide cathodes of sodium-ion batteries. Nano Energy 128, 109925 (2024). https://doi.org/10.1016/j.nanoen.2024.109925
- Z.-D. Liu, X.-W. Gao, J.-J. Mu, H. Chen, G. Gao et al., Multiphase riveting structure for high power and long lifespan potassium-ion batteries. Adv. Funct. Mater. 34(26), 2315006 (2024). https://doi.org/10.1002/adfm.202315006
- T. Zhang, H. Ji, X. Hou, W. Ji, H. Fang et al., Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement. Nano Energy 100, 107482 (2022). https://doi.org/10.1016/j.nanoen.2022.107482
- Q. Zhao, F.K. Butt, M. Yang, Z. Guo, X. Yao et al., Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries. Energy Storage Mater. 41, 581–587 (2021). https://doi.org/10.1016/j.ensm.2021.06.029
- Y. Wang, J. Jin, X. Zhao, Q. Shen, X. Qu et al., Unexpected elevated working voltage by Na+/vacancy ordering and stabilized sodium-ion storage by transition-metal honeycomb ordering. Angew. Chem. Int. Ed. 63(38), e202409152 (2024). https://doi.org/10.1002/anie.202409152
- Y. Fan, X. Ye, X. Yang, L. Guan, C. Chen et al., Zn/Ti/F synergetic-doped Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries with high energy density. J. Mater. Chem. A 11(7), 3608–3615 (2023). https://doi.org/10.1039/D2TA08315A
- X. Cai, N. Wang, L. Liang, X.-L. Li, R. Zhang et al., Fast oxygen redox kinetics induced by CoO6 octahedron with π-interaction in P2-type sodium oxides. Adv. Funct. Mater. 34(51), 2409732 (2024). https://doi.org/10.1002/adfm.202409732
- J.G. Goiri, A. Van der Ven, Multishifter: software to generate structural models of extended two-dimensional defects in 3D and 2D crystals. Comput. Mater. Sci. 191, 110310 (2021). https://doi.org/10.1016/j.commatsci.2021.110310
References
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
Z. Zhao, Y. Wu, R. Hu, J. Lu, D. Chen et al., Intercalation pseudocapacitance in 2D VS2/Ti3C2Tx MXene hybrids for all-climate and long-cycle sodium-ion batteries. Adv. Funct. Mater. 33(50), 2307794 (2023). https://doi.org/10.1002/adfm.202307794
X. Rong, J. Liu, E. Hu, Y. Liu, Y. Wang et al., Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2(1), 125 (2018). https://doi.org/10.1016/j.joule.2017.10.008
D. Chen, Y. Xu, J. Lu, Y. Tian, T. Li et al., Intercalation-induced localized conversion reaction in h-CuSe for ultrafast-rechargeable and long-cycling sodium metal battery. Adv. Mater. 36(32), 2404640 (2024). https://doi.org/10.1002/adma.202404640
H.Y. Asl, A. Manthiram, Reining in dissolved transition-metal ions. Science 369(6500), 140–141 (2020). https://doi.org/10.1126/science.abc5454
K. Kubota, S. Komaba, Review: practical issues and future perspective for Na-ion batteries. J. Electrochem. Soc. 162(14), A2538–A2550 (2015). https://doi.org/10.1149/2.0151514jes
Z. Yang, Y. Lu, H. Dong, J. Lin, Y. Wang, M. Qiu, Z. Ye, J. Lu, Recent progress and prospect of Li-Se batteries: a comprehensive review. Energy Mater. 3, 300027 (2023). https://doi.org/10.20517/energymater.2022.91
H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/C4EE03192J
X. Wang, L. Ren, Y. Wang, M. Qiu, Z. Yang et al., A strategy to enhance rate capability by doping Titanium into Na2FeP2O7@C cathode materials for Na-ion batteries. J. Power. Sources 557, 232533 (2023). https://doi.org/10.1016/j.jpowsour.2022.232533
K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Electrochemistry and solid-state chemistry of NaMeO2 (me = 3d transition metals). Adv. Energy Mater. 8(17), 1703415 (2018). https://doi.org/10.1002/aenm.201703415
Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J. Mater. Chem. A 7(15), 9215–9221 (2019). https://doi.org/10.1039/C8TA11927A
S. Komaba, T. Nakayama, A. Ogata, T. Shimizu, C. Takei et al., Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Trans. 16(42), 43–55 (2009). https://doi.org/10.1149/1.3112727
N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10(5), 1051–1074 (2017). https://doi.org/10.1039/C7EE00566K
P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8(8), 1701912 (2018). https://doi.org/10.1002/aenm.201701912
X. Wang, Z. Yang, D. Chen, B. Lu, Q. Zhang et al., Structural regulation of P2-type layered oxide with anion/cation codoping strategy for sodium-ion batteries. Adv. Funct. Mater. 35(14), 2418322 (2025). https://doi.org/10.1002/adfm.202418322
Y. Lai, H. Xie, P. Li, B. Li, A. Zhao et al., Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries. Adv. Mater. 34(47), 2206039 (2022). https://doi.org/10.1002/adma.202206039
X. Cai, Z. Shadike, N. Wang et al., Constraining interlayer slipping in P2-type layered oxides with oxygen redox by constructing strong covalent bonds. J. Am. Chem. Soc. 147(7), 5860–5870 (2025). https://doi.org/10.1021/jacs.4c14587
J. Liu, W. Huang, R. Liu, J. Lang, Y. Li et al., Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries. Adv. Funct. Mater. 34(24), 2315437 (2024). https://doi.org/10.1002/adfm.202315437
S. Yuan, L. Yu, G. Qian, Y. Xie, P. Guo et al., P2-type moisture-stable and high-voltage-tolerable cathodes for high-energy and long-life sodium-ion batteries. Nano Lett. 23(5), 1743–1751 (2023). https://doi.org/10.1021/acs.nanolett.2c04465
B. Peng, Z. Zhou, J. Shi, S. Xu, J. Yang et al., A customized strategy realizes stable cycle of large-capacity and high-voltage layered cathode for sodium-ion batteries. Angew. Chem. Int. Ed. 63(50), e202411618 (2024). https://doi.org/10.1002/anie.202411618
B. Peng, Y. Chen, L. Zhao, S. Zeng, G. Wan et al., Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries. Energy Storage Mater. 56, 631–641 (2023). https://doi.org/10.1016/j.ensm.2023.02.001
Y. Wang, L. Wang, H. Zhu, J. Chu, Y. Fang et al., Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2–O2 transition for stable sodium ion storage. Adv. Funct. Mater. 30(13), 1910327 (2020). https://doi.org/10.1002/adfm.201910327
Q. Shi, R. Qi, X. Feng, J. Wang, Y. Li et al., Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat. Commun. 13(1), 3205 (2022). https://doi.org/10.1038/s41467-022-30942-z
K. Kubota, T. Asari, S. Komaba, Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni–Mn and Na-vacancy ordering and electrochemical properties. Adv. Mater. 35(26), 2300714 (2023). https://doi.org/10.1002/adma.202300714
Q. Pei, M. Lu, Z. Liu, D. Li, X. Rao et al., Improving the Na0.67Ni0.33Mn0.67O2 cathode material for high-voltage cyclability via Ti/Cu codoping for sodium-ion batteries. ACS Appl. Energy Mater. 5(2), 1953–1962 (2022). https://doi.org/10.1021/acsaem.1c03466
G. Zhang, X. Yin, D. Ning, Y. Chai, R. Du et al., Crystal modulation of Mn-based layered oxide toward long-enduring anionic redox with fast kinetics for sodium-ion batteries. Angew. Chem. Int. Ed. 64(3), e202415450 (2025). https://doi.org/10.1002/anie.202415450
P. Zou, L. Yao, C. Wang, S.J. Lee, T. Li et al., Regulating cation interactions for zero-strain and high-voltage P2-type Na2/3Li1/6Co1/6Mn2/3O2 layered oxide cathodes of sodium-ion batteries. Angew. Chem. Int. Ed. 62(28), e202304628 (2023). https://doi.org/10.1002/anie.202304628
F. Ding, C. Zhao, D. Xiao, X. Rong, H. Wang et al., Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144(18), 8286–8295 (2022). https://doi.org/10.1021/jacs.2c02353
Z. Liu, R. Liu, S. Xu, J. Tian, J. Li et al., Achieving a deeply desodiated stabilized cathode material by the high entropy strategy for sodium-ion batteries. Angew. Chem. Int. Ed. 63(29), e202405620 (2024). https://doi.org/10.1002/anie.202405620
F. Ding, P. Ji, Z. Han, X. Hou, Y. Yang et al., Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials. Nat. Energy 9(12), 1529–1539 (2024). https://doi.org/10.1038/s41560-024-01616-5
Y. Huang, Y. Zhu, A. Nie, H. Fu, Z. Hu et al., Enabling anionic redox stability of P2-Na5/6Li1/4Mn3/4O2 by Mg substitution. Adv. Mater. 34(9), 2105404 (2022). https://doi.org/10.1002/adma.202105404
U. Maitra, R.A. House, J.W. Somerville, N. Tapia-Ruiz, J.G. Lozano et al., Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10(3), 288–295 (2018). https://doi.org/10.1038/nchem.2923
B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34(6), 2103210 (2022). https://doi.org/10.1002/adma.202103210
N. Ahmad, L. Yu, M.U. Muzaffar, B. Peng, Z. Tao et al., Dual-pillar effect in P2-type Na0.67Ni0.33Mn0.67O2 through Na site substitution achieve superior electrochemical and air/water dual-stability as cathode for sodium-ion batteries. Adv. Energy Mater. 15(20), 2404093 (2025). https://doi.org/10.1002/aenm.202404093
C. Zhao, Z. Yao, Q. Wang, H. Li, J. Wang et al., Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 142(12), 5742–5750 (2020). https://doi.org/10.1021/jacs.9b13572
Y. Wang, R. Xiao, Y.-S. Hu, M. Avdeev, L. Chen, P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 6, 6954 (2015). https://doi.org/10.1038/ncomms7954
P.-F. Wang, H.-R. Yao, X.-Y. Liu, Y.-X. Yin, J.-N. Zhang et al., Na(+)/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 4(3), eaar6018 (2018). https://doi.org/10.1126/sciadv.aar6018
Y. Shi, P. Jiang, S. Wang, W. Chen, B. Wei et al., Slight compositional variation-induced structural disorder-to-order transition enables fast Na(+) storage in layered transition metal oxides. Nat. Commun. 13(1), 7888 (2022). https://doi.org/10.1038/s41467-022-35597-4
J. Zhang, W. Wang, W. Wang, S. Wang, B. Li, Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl. Mater. Interfaces 11(25), 22051–22066 (2019). https://doi.org/10.1021/acsami.9b03937
D.H. Lee, J. Xu, Y.S. Meng, An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 15(9), 3304–3312 (2013). https://doi.org/10.1039/C2CP44467D
A. Gutierrez, W.M. Dose, O. Borkiewicz, F. Guo, M. Avdeev et al., On disrupting the Na+-ion/vacancy ordering in P2-type sodium–manganese–nickel oxide cathodes for Na+-ion batteries. J. Phys. Chem. C 122(41), 23251–23260 (2018). https://doi.org/10.1021/acs.jpcc.8b05537
J.F. Qu, W. Wang, Y. Chen, G. Li, X.G. Li, Raman spectra study on nonstoichiometric compound NaxCoO2. Phys. Rev. B 73(9), 092518 (2006). https://doi.org/10.1103/physrevb.73.092518
W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto et al., Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Mater. Lett. 135, 131–134 (2014). https://doi.org/10.1016/j.matlet.2014.07.153
C. Zhao, Y. Lu, L. Chen, Y.-S. Hu, Ni-based cathode materials for Na-ion batteries. Nano Res. 12(9), 2018–2030 (2019). https://doi.org/10.1007/s12274-019-2451-3
Y. Xiao, Y.-F. Zhu, H.-R. Yao, P.-F. Wang, X.-D. Zhang et al., A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 9(19), 1803978 (2019). https://doi.org/10.1002/aenm.201803978
Y. Zhou, M. Pang, M. Zhang, Y. Yuan, Y. Yang et al., Controlling crystallographic orientation through composite phase regulation to unlock oxide cathode performance. Chem. Eng. J. 501, 157527 (2024). https://doi.org/10.1016/j.cej.2024.157527
K. Liu, S. Tan, X.-G. Sun, Q. Zhang, C. Li et al., Heteroatom anchoring to enhance electrochemical reversibility for high-voltage P2-type oxide cathodes of sodium-ion batteries. Nano Energy 128, 109925 (2024). https://doi.org/10.1016/j.nanoen.2024.109925
Z.-D. Liu, X.-W. Gao, J.-J. Mu, H. Chen, G. Gao et al., Multiphase riveting structure for high power and long lifespan potassium-ion batteries. Adv. Funct. Mater. 34(26), 2315006 (2024). https://doi.org/10.1002/adfm.202315006
T. Zhang, H. Ji, X. Hou, W. Ji, H. Fang et al., Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement. Nano Energy 100, 107482 (2022). https://doi.org/10.1016/j.nanoen.2022.107482
Q. Zhao, F.K. Butt, M. Yang, Z. Guo, X. Yao et al., Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries. Energy Storage Mater. 41, 581–587 (2021). https://doi.org/10.1016/j.ensm.2021.06.029
Y. Wang, J. Jin, X. Zhao, Q. Shen, X. Qu et al., Unexpected elevated working voltage by Na+/vacancy ordering and stabilized sodium-ion storage by transition-metal honeycomb ordering. Angew. Chem. Int. Ed. 63(38), e202409152 (2024). https://doi.org/10.1002/anie.202409152
Y. Fan, X. Ye, X. Yang, L. Guan, C. Chen et al., Zn/Ti/F synergetic-doped Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries with high energy density. J. Mater. Chem. A 11(7), 3608–3615 (2023). https://doi.org/10.1039/D2TA08315A
X. Cai, N. Wang, L. Liang, X.-L. Li, R. Zhang et al., Fast oxygen redox kinetics induced by CoO6 octahedron with π-interaction in P2-type sodium oxides. Adv. Funct. Mater. 34(51), 2409732 (2024). https://doi.org/10.1002/adfm.202409732
J.G. Goiri, A. Van der Ven, Multishifter: software to generate structural models of extended two-dimensional defects in 3D and 2D crystals. Comput. Mater. Sci. 191, 110310 (2021). https://doi.org/10.1016/j.commatsci.2021.110310