Self-Rectifying Memristors for Beyond-CMOS Computing: Mechanisms, Materials, and Integration Prospects
Corresponding Author: Yishu Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 188
Abstract
The deceleration of Moore’s law and the energy–latency drawbacks of the von Neumann bottleneck have heightened the pursuit for beyond‑CMOS designs that integrate memory and compute. Self‑rectifying memristors (SRMs) have emerged as promising building blocks for high‑performance, low‑power systems by combining resistive switching with intrinsic diode-like behavior. Their unidirectional conduction inhibits sneak‑path currents in crossbar arrays devoid of external selectors, while nonlinear I–V characteristics, adjustable conductance states, low operating voltages, and rapid switching facilitate efficient vector–matrix operations, neuromorphic plasticity, and hardware security primitives. This review synthesizes the working mechanisms of SRMs, surveys material, and structural strategies and compares device metrics relevant to array‑scale deployment (rectification ratio, nonlinearity, endurance, retention, variability, and operating voltage). We assess SRM-enabled in-memory computing and neuromorphic applications, as well as security functions such as physical unclonable functions and reconfigurable cryptographic primitives. Integration pathways toward CMOS compatibility are analyzed, including back-end-of-line thermal budgets, uniformity, write disturb mitigation, and reliability. Finally, we outline key challenges and opportunities: materials/architecture co‑design, precision analog training, stochasticity control/exploitation, 3D stacking, and standardized benchmarking that can accelerate large‑scale SRM adoption. Through the use of specialized materials and structural optimization, SRMs are set to provide selector‑free, densely integrated, and energy‑efficient hardware for future information processing.
Highlights:
1 SRMs integrate intrinsic diode-like rectification, enabling sneak path suppression in crossbar arrays without external selectors, simplifying design, and enhancing energy efficiency for high-density in-memory computing.
2 Key metrics such as rectification ratio, nonlinearity, and CMOS compatibility are systematically reviewed, highlighting progress in 3D integration and scalable array.
3 Applications span in-memory computing, neuromorphic networks, and hardware security, with emerging potentials in in-sensor computing and self-supervised learning, positioning SRMs as pivotal beyond-CMOS building blocks.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Waldrop, The chips are down for Moore’s law. Nature 530(7589), 144–147 (2016). https://doi.org/10.1038/530144a
- C.A. Mack, Fifty years of Moore’s law. IEEE Trans. Semicond. Manufact. 24(2), 202–207 (2011). https://doi.org/10.1109/tsm.2010.2096437
- X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce et al., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425(6955), 274–278 (2003). https://doi.org/10.1038/nature01996
- B. Yu, L.L. Chang, S. Ahmed, H.H. Wang, S. Bell, C.Y. Yang, C. Tabery, C. Ho, Q. Xiang, T. J. King, J. Bokor, C.M. Hu, M.R. Lin, D. Kyser. Finfet scaling to 10nm gate length. IEEE International Electron Devices Meeting. Dec 08–11, 2002. San Francisco, Ca, (2002), pp. 251–254. https://doi.org/10.1109/IEDM.2002.1175825
- U.K. Das, T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron Devices 67(6), 2633–2638 (2020). https://doi.org/10.1109/TED.2020.2987139
- D. Yakimets, G. Eneman, P. Schuddinck, T.H. Bao, M.G. Bardon et al., Vertical GAAFETs for the ultimate CMOS scaling. IEEE Trans. Electron Devices 62(5), 1433–1439 (2015). https://doi.org/10.1109/ted.2015.2414924
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- S. Manipatruni, D.E. Nikonov, I.A. Young, Beyond CMOS computing with spin and polarization. Nat. Phys. 14(4), 338–343 (2018). https://doi.org/10.1038/s41567-018-0101-4
- Y. Zhao, M. Gobbi, L.E. Hueso, P. Samorì, Molecular approach to engineer two-dimensional devices for CMOS and beyond-CMOS applications. Chem. Rev. 122(1), 50–131 (2022). https://doi.org/10.1021/acs.chemrev.1c00497
- Q. Chen, L. Lu, J. Meng, M. Xu, T. Wang, Advances of emerging memristors for in-memory computing applications. Research 8, 0916 (2025). https://doi.org/10.34133/research.0916
- Z. Wang, J. Zhang, Z. Zhang, J. Meng, C. Lei et al., Near-sensor neuromorphic computing system based on a thermopile infrared detector and a memristor for encrypted visual information transmission. Nano Lett. 25(19), 8049–8057 (2025). https://doi.org/10.1021/acs.nanolett.5c01843
- S.-G. Ren, A.-W. Dong, L. Yang, Y.-B. Xue, J.-C. Li et al., Self-rectifying memristors for three-dimensional in-memory computing. Adv. Mater. 36(4), e2307218 (2024). https://doi.org/10.1002/adma.202307218
- Q. Luo, X. Zhang, Y. Hu, T. Gong, X. Xu et al., Self-rectifying and forming-free resistive-switching device for embedded memory application. IEEE Electron Device Lett. 39(5), 664–667 (2018). https://doi.org/10.1109/led.2018.2821162
- B. Gao, B. Lin, Y. Pang, F. Xu, Y. Lu et al., Concealable physically unclonable function chip with a memristor array. Sci. Adv. 8(24), eabn7753 (2022). https://doi.org/10.1126/sciadv.abn7753
- Y. Sun, X. Zhao, C. Song, K. Xu, Y. Xi et al., Performance-enhancing selector via symmetrical multilayer design. Adv. Funct. Mater. 29(13), 1808376 (2019). https://doi.org/10.1002/adfm.201808376
- Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100(15), 153503 (2012). https://doi.org/10.1063/1.3701722
- J. Li, S.-G. Ren, Y. Li, L. Yang, Y. Yu et al., Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 9(25), eadf7474 (2023). https://doi.org/10.1126/sciadv.adf7474
- F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14(8), 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
- Y. Lin, B. Gao, J. Tang, Q. Zhang, H. Qian et al., Deep Bayesian active learning using in-memory computing hardware. Nat. Comput. Sci. 5(1), 27–36 (2025). https://doi.org/10.1038/s43588-024-00744-y
- M. Rao, H. Tang, J. Wu, W. Song, M. Zhang et al., Thousands of conductance levels in memristors integrated on CMOS. Nature 615(7954), 823–829 (2023). https://doi.org/10.1038/s41586-023-05759-5
- D. Sharma, S.P. Rath, B. Kundu, A. Korkmaz, S. Harivignesh et al., Linear symmetric self-selecting 14-bit kinetic molecular memristors. Nature 633(8030), 560–566 (2024). https://doi.org/10.1038/s41586-024-07902-2
- G. Molas, E. Nowak, Advances in emerging memory technologies: from data storage to artificial intelligence. Appl. Sci. 11(23), 11254 (2021). https://doi.org/10.3390/app112311254
- W. Wan, R. Kubendran, C. Schaefer, S.B. Eryilmaz, W. Zhang et al., A compute-in-memory chip based on resistive random-access memory. Nature 608(7923), 504–512 (2022). https://doi.org/10.1038/s41586-022-04992-8
- Z. Wang, Y. Song, G. Zhang, Q. Luo, K. Xu et al., Advances of embedded resistive random access memory in industrial manufacturing and its potential applications. Int. J. Extrem. Manuf. 6(3), 032006 (2024). https://doi.org/10.1088/2631-7990/ad2fea
- J. Cui, F. An, J. Qian, Y. Wu, L.L. Sloan et al., CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators. Nat. Electron. 6(4), 292–300 (2023). https://doi.org/10.1038/s41928-023-00939-7
- S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11(6), 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
- J. Van Damme, S. Massar, R. Acharya, T. Ivanov, D. Perez Lozano et al., Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 634(8032), 74–79 (2024). https://doi.org/10.1038/s41586-024-07941-9
- D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932
- G. Zhang, Z. Wang, X. Fan, Z. Wang, P. Li et al., Self-rectifying memristors with high rectification ratio and dynamic linearity for in-memory computing. Appl. Phys. Lett. 125(13), 133501 (2024). https://doi.org/10.1063/5.0225833
- G. Zhang, Z. Wang, X. Fan, P. Li, D. Gao et al., Self-rectifying memristor-based reservoir computing for real-time intrusion detection in cybersecurity. Nano Lett. 24(49), 15707–15715 (2024). https://doi.org/10.1021/acs.nanolett.4c04385
- Z. Wang, G. Zhang, P. Li, S. Xing, Z. Wang et al., High-performance CMOS-compatible self-rectifying memristor for passive array integration. Phys. Rev. Appl. 22(6), 064003 (2024). https://doi.org/10.1103/physrevapplied.22.064003
- K. Jeon, J.J. Ryu, S. Im, H.K. Seo, T. Eom et al., Purely self-rectifying memristor-based passive crossbar array for artificial neural network accelerators. Nat. Commun. 15(1), 129 (2024). https://doi.org/10.1038/s41467-023-44620-1
- H. Zhang, B. Jiang, C. Cheng, B. Huang, H. Zhang et al., A self-rectifying synaptic memristor array with ultrahigh weight potentiation linearity for a self-organizing-map neural network. Nano Lett. 23(8), 3107–3115 (2023). https://doi.org/10.1021/acs.nanolett.2c03624
- K. Jeon, J. Kim, J.J. Ryu, S.-J. Yoo, C. Song et al., Self-rectifying resistive memory in passive crossbar arrays. Nat. Commun. 12, 2968 (2021). https://doi.org/10.1038/s41467-021-23180-2
- Y.H. Jang, J. Han, J. Kim, W. Kim, K.S. Woo et al., Graph analysis with multifunctional self-rectifying memristive crossbar array. Adv. Mater. 35(10), e2209503 (2023). https://doi.org/10.1002/adma.202209503
- S.-E. Kim, J.-G. Lee, L. Ling, S.E. Liu, H.-K. Lim et al., Sodium-doped titania self-rectifying memristors for crossbar array neuromorphic architectures. Adv. Mater. 34(6), 2106913 (2022). https://doi.org/10.1002/adma.202106913
- C. Lu, J. Meng, J. Song, K. Xu, T. Wang et al., Reconfigurable selector-free all-optical controlled neuromorphic memristor for in-memory sensing and reservoir computing. ACS Nano 18(43), 29715–29723 (2024). https://doi.org/10.1021/acsnano.4c09199
- C. Zang, B. Li, Y. Sun, S. Feng, X.-Z. Wang et al., Uniform self-rectifying resistive random-access memory based on an MXene-TiO2 Schottky junction. Nanoscale Adv. 4(23), 5062–5069 (2022). https://doi.org/10.1039/d2na00281g
- J.H. Yoon, S. Yoo, S.J. Song, K.J. Yoon, D.E. Kwon et al., Uniform self-rectifying resistive switching behavior via preformed conducting paths in a vertical-type Ta2O5/HfO2–x structure with a sub-μm2 cell area. ACS Appl. Mater. Interfaces 8(28), 18215–18221 (2016). https://doi.org/10.1021/acsami.6b05657
- Y. Zhao, Z. Lou, J. Hu, Z. Li, L. Xu et al., Scalable layer-controlled oxidation of Bi2O2Se for self-rectifying memristor arrays with sub-pA sneak currents. Adv. Mater. 36(44), e2406608 (2024). https://doi.org/10.1002/adma.202406608
- L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10(1), 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
- J. Bae, C. Kwon, S.-O. Park, H. Jeong, T. Park et al., Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems. Sci. Adv. 10(23), eadm7221 (2024). https://doi.org/10.1126/sciadv.adm7221
- K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi et al., Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16(11), 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781
- J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon et al., Pt/Ta2O5/HfO2–x/Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 27(25), 3811–3816 (2015). https://doi.org/10.1002/adma.201501167
- S. Choi, J. Shin, G. Park, J.S. Eo, J. Jang et al., 3d-integrated multilayered physical reservoir array for learning and forecasting time-series information. Nat. Commun. 15(1), 2044 (2024). https://doi.org/10.1038/s41467-024-46323-7
- H. Jeong, S. Han, S.-O. Park, T.R. Kim, J. Bae et al., Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array. Nat. Electron. 8(2), 168–178 (2025). https://doi.org/10.1038/s41928-024-01318-6
- K.S. Woo, J. Han, S.-I. Yi, L. Thomas, H. Park et al., Tunable stochastic memristors for energy-efficient encryption and computing. Nat. Commun. 15(1), 3245 (2024). https://doi.org/10.1038/s41467-024-47488-x
- Y. Yu, S. Ren, L. Yang, Y. Li, X. Miao, 3D self-rectifying memristive ternary content addressable memory for massive and exact in-memory search. Sci. China Inf. Sci. 68(3), 139402 (2025). https://doi.org/10.1007/s11432-024-4253-9
- C. Lu, J. Meng, J. Yu, J. Song, T. Wang et al., Novel three-dimensional artificial neural network based on an eight-layer vertical memristor with an ultrahigh rectify ratio (>107) and an ultrahigh nonlinearity (>105) for neuromorphic computing. Nano Lett. 24(6), 2018–2024 (2024). https://doi.org/10.1021/acs.nanolett.3c04577
- Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017). https://doi.org/10.1038/nmat4756
- G. Zhang, X. Fan, J. Wang, Z. Wang, Z. Zhang et al., Self-rectifying memristors with high rectification ratio for attack-resilient autonomous driving systems. Nat. Commun. 16(1), 5759 (2025). https://doi.org/10.1038/s41467-025-60970-4
- J. Li, S. Ren, Y. Li, W. Peng, Z. Zhou et al., Demonstration of a floating-point deep neural matrix equation solver using 3D vertical ReRAM with high energy- and area-efficiency, in 2024 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2025), pp. 1–4. https://doi.org/10.1109/IEDM50854.2024.10873550
- Y. Ding, J. Yang, Y. Liu, J. Gao, Y. Wang et al., 16-layer 3D vertical RRAM with low read latency (18ns), high nonlinearity (>5000) and ultra-low leakage current (~pA) self-selective cells, in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2 (IEEE, 2023), pp. 1–2. https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185341
- J. Jang, J.P. Hong, S.-J. Kim, J. Ahn, B.-S. Yu et al., Conductive-bridge interlayer contacts for two-dimensional optoelectronic devices. Nat. Electron. 8(4), 298–308 (2025). https://doi.org/10.1038/s41928-025-01339-9
- E. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015). https://doi.org/10.3390/electronics4030586
- C. Li, L. Han, H. Jiang, M.-H. Jang, P. Lin et al., Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8, 15666 (2017). https://doi.org/10.1038/ncomms15666
- R. Ni, L. Yang, X.-D. Huang, S.-G. Ren, T.-Q. Wan et al., Controlled majority-inverter graph logic with highly nonlinear, self-rectifying memristor. IEEE Trans. Electron Devices 68(10), 4897–4902 (2021). https://doi.org/10.1109/TED.2021.3106234
- Y. Kim, J. Kim, K. Soo, K. Jae, K. Seop et al., Kernel application of the stacked crossbar array composed of self-rectifying resistive switching memory for convolutional neural networks. Adv. Intell. Syst. 2(2), 1900116 (2020). https://doi.org/10.1002/aisy.201900116
- P.-Q. Pham, T.-A. Tran, T. Vo Van Anh, T.D. Nguyen, J. Brugger et al., Selector-free 16 × 16 CrOX/TiO2-based memristor array for synaptic dynamics and LTP/LTD emulation: experimental–computational correlation. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202516695
- Y. Zhang, S.-G. Ren, W.-B. Zuo, Y.-B. Xue, J.-Y. Sun et al., Realizing performance balance by band offset and defect concentration engineering in HfOx/ZrOy self-rectifying memristor. IEEE Electron Device Lett. 46(8), 1317–1320 (2025). https://doi.org/10.1109/LED.2025.3578071
- B.M. Lim, Y.M. Lee, C.S. Yoo, M. Kim, S.J. Kim et al., High-reliability and self-rectifying alkali ion memristor through bottom electrode design and dopant incorporation. ACS Nano 18(8), 6373–6386 (2024). https://doi.org/10.1021/acsnano.3c11325
- S. Choi, S. Jang, J.-H. Moon, J.C. Kim, H.Y. Jeong et al., A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 10(12), 1097–1106 (2018). https://doi.org/10.1038/s41427-018-0101-y
- W.H. Cheong, J.B. Jeon, J.H. In, G. Kim, H. Song et al., Demonstration of neuromodulation-inspired stashing system for energy-efficient learning of spiking neural network using a self-rectifying memristor array. Adv. Funct. Mater. 32(29), 2200337 (2022). https://doi.org/10.1002/adfm.202200337
- X. Zhao, K. Zhang, K. Hu, Y. Zhang, Q. Zhou et al., Self-rectifying Al2O3/TaOx memristor with gradual operation at low current by interfacial layer. IEEE Trans. Electron Devices 68(12), 6100–6105 (2021). https://doi.org/10.1109/TED.2021.3120701
- D.-H. Choe, S. Kim, T. Moon, S. Jo, H. Bae et al., Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls. Mater. Today 50, 8–15 (2021). https://doi.org/10.1016/j.mattod.2021.07.022
- J. Son, M. Lee, A. Sannyal, H. Yun, J. Cheon et al., Self-rectifying resistive memory with a ferroelectric and 2D perovskite lateral heterostructure. ACS Nano 19(11), 10796–10806 (2025). https://doi.org/10.1021/acsnano.4c07869
- W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34(23), 2312885 (2024). https://doi.org/10.1002/adfm.202312885
- T. Wu, S. Gao, Y. Li, IGZO/WO3−x-heterostructured artificial optoelectronic synaptic devices mimicking image segmentation and motion capture. Small 20(27), 2309857 (2024). https://doi.org/10.1002/smll.202309857
- S. Ke, C. Fu, X. Lin, Y. Zhu, H. Mao et al., BCM learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors. IEEE Trans. Electron Devices 69(8), 4646–4650 (2022). https://doi.org/10.1109/ted.2022.3178967
- S.-G. Ren, R. Ni, X.-D. Huang, Y. Li, K.-H. Xue et al., Pt/Al2O3/TaOX/Ta self-rectifying memristor with record-low operation current (2 PA), low power (fJ), and high scalability. IEEE Trans. Electron Devices 69(2), 838–842 (2022). https://doi.org/10.1109/TED.2021.3134137
- M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
- M.A. Kainz, S. Schönhuber, A.M. Andrews, H. Detz, B. Limbacher et al., Barrier height tuning of terahertz quantum cascade lasers for high-temperature operation. ACS Photonics 5(11), 4687–4693 (2018). https://doi.org/10.1021/acsphotonics.8b01280
- W. Xu, J. Wu, Z. Zheng, Electrode materials optimize operating voltage and switching speed in micro/nano plasma ultrafast devices. J. Phys. D Appl. Phys. 58(5), 055101 (2025). https://doi.org/10.1088/1361-6463/ad8e6f
- M. Zhao, B. Gao, Y. Xi, F. Xu, H. Wu et al., Endurance and retention degradation of intermediate levels in filamentary analog RRAM. IEEE J. Electron Devices Soc. 7, 1239–1247 (2019). https://doi.org/10.1109/JEDS.2019.2943017
- J. Wang, L. Liu, X. Zhao, Y. Zhang, Y. Yan, Reconfigurable counterion gradient around charged metal nanops enables self-rectifying and volatile artificial synapse. Nano Lett. 25(35), 13243–13250 (2025). https://doi.org/10.1021/acs.nanolett.5c03221
- Z. Xia, X. Sun, Z. Wang, J. Meng, B. Jin et al., Low-power memristor for neuromorphic computing: from materials to applications. Nano-Micro Lett. 17(1), 217 (2025). https://doi.org/10.1007/s40820-025-01705-4
- T. Tan, M. Sivan, K. Zhou, H. Guo, Y. Wu et al., Self-rectifying MoS2 memtransistor via asymmetry contact metal engineering for neuromorphic computing. Small (2025). https://doi.org/10.1002/smll.202503716
- M. Liu, H. Zang, Y. Jia, K. Jiang, J. Ben et al., Effect and regulation mechanism of post-deposition annealing on the ferroelectric properties of AlScN thin films. ACS Appl. Mater. Interfaces 16(13), 16427–16435 (2024). https://doi.org/10.1021/acsami.3c17282
- Z. Wang, J. Zhang, G. Jia, W. Sun, S. Yin et al., Self-rectifying memristors based on epitaxial AlScN for neuromorphic computing. Appl. Phys. Lett. 127(4), 044105 (2025). https://doi.org/10.1063/5.0251575
- F. Yang, H. Sun, X. Zhang, D. Chen, J. Chen et al., Optoelectronic synaptic memristor with coupled reversible self-rectifying and bipolar resistive switching for multifunctional neuromorphic applications. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202516894
- D. Ju, M. Noh, S. Lee, G. Kim, J. Park et al., Self-rectifying volatile memristor for highly dynamic functions. Adv. Funct. Mater. 35(29), 2423880 (2025). https://doi.org/10.1002/adfm.202423880
- S. He, X. Ye, X. Zhu, Q. Zhong, Y. Liu et al., High-performance self-rectifying memristor array based on Pt/HfO2/Ta2O5–x/Ti structure for flexible electronics. Nano Res. 18(2), 94907085 (2025). https://doi.org/10.26599/nr.2025.94907085
- D.-E. Kim, A.S. Chabungbam, G. Kim, J. Son, B.M. Lim et al., Doping engineering for optimized self-rectifying TaOx memristor for crossbar array neuromorphic applications. Adv. Funct. Mater. 35(45), 2503883 (2025). https://doi.org/10.1002/adfm.202503883
- J. Zhao, Y. Zhu, S. Yan, G. Li, R. Liu et al., High rectification ratio self-rectifying memristor crossbar array for convolutional neural network operations. Small 21(25), 2500062 (2025). https://doi.org/10.1002/smll.202500062
- H. Ran, Z. Ren, J. Li, B. Sun, T. Wang et al., Self-rectifying switching memory based on HfOx/FeOx semiconductor heterostructure for neuromorphic computing. Adv. Funct. Mater. 35(13), 2418113 (2025). https://doi.org/10.1002/adfm.202418113
- C. Lu, J. Meng, J. Song, T. Wang, H. Zhu et al., Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett. 24(5), 1667–1672 (2024). https://doi.org/10.1021/acs.nanolett.3c04358
- J.C. Li, Y.C. Li, Z.C. Liu, Y.X. Ma, Y.L. Wang, Self-rectifying resistive switching characteristics in CsMAFAPbIBr perovskite-based memristor device. IEEE Electron Device Lett. 45(11), 2106–2109 (2024). https://doi.org/10.1109/LED.2024.3455372
- D. Ju, S. Kim, Versatile NbOx-based volatile memristor for artificial intelligent applications. Adv. Funct. Mater. 34(49), 2409436 (2024). https://doi.org/10.1002/adfm.202409436
- H. Ji, S. Kim, S. Kim, Self-rectifying short-term memory phenomena through integration of TiOx oxygen reservoir and Al2O3 barrier layers for neuromorphic system. Adv. Mater. Technol. 10(3), 2400895 (2025). https://doi.org/10.1002/admt.202400895
- D. Gu, B. Yan, B. Zhang, C. Liao, X. Yang et al., In-sensor Reservoir computing based on self-rectifying TiOx photosynapse for image recognition and speech signal processing. ACS Photonics (2024). https://doi.org/10.1021/acsphotonics.4c01415
- S.-G. Ren, Y.-B. Xue, Y. Zhang, Y. Li, X.-S. Miao, 3D vertical self-rectifying memristor arrays with split-cell structure, large nonlinearity (>104) and fJ-level switching energy. IEEE Electron Device Lett. 44(12), 2059–2062 (2023). https://doi.org/10.1109/LED.2023.3323341
- T. Park, K. Soo, L. Jun, P. Won, K. Jin et al., Highly parallel stateful Boolean logic gates based on aluminum-doped self-rectifying memristors in a vertical crossbar array structure. Nanoscale 15(13), 6387–6395 (2023). https://doi.org/10.1039/d3nr00271c
- G. Kim, S. Son, H. Song, J.B. Jeon, J. Lee et al., Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware. Adv. Sci. 10(3), 2205654 (2023). https://doi.org/10.1002/advs.202205654
- W. Sun, W. Zhang, J. Yu, Y. Li, Z. Guo et al., 3D reservoir computing with high area efficiency (5.12 TOPS/mm2) implemented by 3D dynamic memristor array for temporal signal processing, in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE, 2022), pp. 222–223. https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830310
- Q. Luo, X. Xu, T. Gong, H. Lv, D. Dong et al., 8-Layers 3D vertical RRAM with excellent scalability towards storage class memory applications, in 2017 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2018), pp. 2.7.1–2.7.4. https://doi.org/10.1109/iedm.2017.8268315
- X. Xu, L. Qing, T. Gong, H. Lv, S. Long et al., Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling, in 2016 IEEE Symposium on VLSI Technology (IEEE, 2016), pp. 1–2. https://doi.org/10.1109/VLSIT.2016.7573388
- S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi et al., First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, in 2016 IEEE Symposium on VLSI Technology (IEEE, 2016), pp. 1–2. https://doi.org/10.1109/VLSIT.2016.7573413
- Q. Luo, X. Xu, H. Liu, H. Lv, T. Gong et al., Demonstration of 3D vertical RRAM with ultra low-leakage, high-selectivity and self-compliance memory cells, in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), pp. 10.2.1–10.2.4. https://doi.org/10.1109/IEDM.2015.7409667
- Y.-C. Chiu, W.-S. Khwa, C.-S. Yang, S.-H. Teng, H.-Y. Huang et al., A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices. Nat. Electron. 6(7), 534–543 (2023). https://doi.org/10.1038/s41928-023-00994-0
- H. Nili, G.C. Adam, B. Hoskins, M. Prezioso, J. Kim et al., Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nat. Electron. 1(3), 197–202 (2018). https://doi.org/10.1038/s41928-018-0039-7
- C. Wang, G.-J. Ruan, Z.-Z. Yang, X.-J. Yangdong, Y. Li et al., Parallel in-memory wireless computing. Nat. Electron. 6(5), 381–389 (2023). https://doi.org/10.1038/s41928-023-00965-5
- Y. Zhong, J. Tang, X. Li, X. Liang, Z. Liu et al., A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5(10), 672–681 (2022). https://doi.org/10.1038/s41928-022-00838-3
- B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen et al., RRAM-based analog approximate computing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(12), 1905–1917 (2015). https://doi.org/10.1109/tcad.2015.2445741
- Y. Liao, B. Gao, F. Xu, P. Yao, J. Chen et al., A compact model of analog RRAM with device and array nonideal effects for neuromorphic systems. IEEE Trans. Electron Devices 67(4), 1593–1599 (2020). https://doi.org/10.1109/TED.2020.2975314
- J. Wu, F. Mo, T. Saraya, T. Hiramoto, M. Kobayashi, A monolithic 3-D integration of RRAM array and oxide semiconductor FET for in-memory computing in 3-D neural network. IEEE Trans. Electron Devices 67(12), 5322–5328 (2020). https://doi.org/10.1109/TED.2020.3033831
- Q. Huo, Y. Yang, Y. Wang, D. Lei, X. Fu et al., A computing-in-memory macro based on three-dimensional resistive random-access memory. Nat. Electron. 5(7), 469–477 (2022). https://doi.org/10.1038/s41928-022-00795-x
- P.-F. Chiu, M.-F. Chang, S.-S. Sheu, K.-F. Lin, P.-C. Chiang et al., A low store energy, low VDDmin, nonvolatile 8T2R SRAM with 3D stacked RRAM devices for low power mobile applications, in 2010 Symposium on VLSI Circuits (IEEE, 2010), pp. 229–230. https://doi.org/10.1109/vlsic.2010.5560286
- S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-addressable network. SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001). https://doi.org/10.1145/964723.383072
- B. Chen, Y. Zhang, W. Liu, S. Xu, R. Cheng et al., Ge-based asymmetric RRAM enable 8F2 content addressable memory. IEEE Electron Device Lett. 39(9), 1294–1297 (2018). https://doi.org/10.1109/LED.2018.2856537
- Y. Goh, J. Hwang, M. Kim, M. Jung, S. Lim et al., High performance and self-rectifying Hafnia-based ferroelectric tunnel junction for neuromorphic computing and TCAM applications, in 2021 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2022), pp. 17.2.1–17.2.4. https://doi.org/10.1109/iedm19574.2021.9720610
- Q. Guo, X. Guo, Y. Bai, E. İpek, A resistive TCAM accelerator for data-intensive computing, in Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (ACM, Porto Alegre, 2011). pp. 339–350. https://doi.org/10.1145/2155620.2155660
- X. Wang, Y. Qu, F. Yang, L. Zhao, C. Lee et al., A highly compact nonvolatile ternary content addressable memory (TCAM) with ultralow power and 200-ps search operation. IEEE Trans. Electron Devices 69(8), 4259–4264 (2022). https://doi.org/10.1109/TED.2022.3182287
- S. Lim, Y. Goh, Y.K. Lee, D.H. Ko, J. Hwang et al., A highly integrated crosspoint array using self-rectifying FTJ for dual-mode operations: CAM and PUF, in ESSCIRC 2022-IEEE 48th European Solid State Circuits Conference (ESSCIRC). (IEEE, 2022), pp. 113–116. https://doi.org/10.1109/esscirc55480.2022.9911355
- P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang et al., Sparse coding with memristor networks. Nat. Nanotechnol. 12(8), 784–789 (2017). https://doi.org/10.1038/nnano.2017.83
- Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1(7), 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
- S.-X. You, S.-J. Hong, K.-T. Chen, L.-C. Shih, J.-S. Chen, Self-rectifying dynamic memristor circuits for periodic LIF refractory period emulation and TTFS/rate signal encoding. Small 21(15), 2408233 (2025). https://doi.org/10.1002/smll.202408233
- D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing. Nat. Rev. Phys. 2(9), 499–510 (2020). https://doi.org/10.1038/s42254-020-0208-2
- F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang et al., Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15(1), 1974 (2024). https://doi.org/10.1038/s41467-024-45670-9
- J.-H. Ryu, S. Kim, Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing. Chaos Solitons Fractals 140, 110236 (2020). https://doi.org/10.1016/j.chaos.2020.110236
- P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
- X. Liang, J. Tang, Y. Zhong, B. Gao, H. Qian et al., Physical reservoir computing with emerging electronics. Nat. Electron. 7(3), 193–206 (2024). https://doi.org/10.1038/s41928-024-01133-z
- S.-O. Park, H. Jeong, J. Park, J. Bae, S. Choi, Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13(1), 2888 (2022). https://doi.org/10.1038/s41467-022-30539-6
- L.G. Wright, T. Onodera, M.M. Stein, T. Wang, D.T. Schachter et al., Deep physical neural networks trained with backpropagation. Nature 601(7894), 549–555 (2022). https://doi.org/10.1038/s41586-021-04223-6
- J.Z. Kim, Z. Lu, E. Nozari, G.J. Pappas, D.S. Bassett, Teaching recurrent neural networks to infer global temporal structure from local examples. Nat. Mach. Intell. 3(4), 316–323 (2021). https://doi.org/10.1038/s42256-021-00321-2
- G. Milano, G. Pedretti, K. Montano, S. Ricci, S. Hashemkhani et al., In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21(2), 195–202 (2022). https://doi.org/10.1038/s41563-021-01099-9
- J. Zhang, Z. Zhu, J. Meng, T. Wang, Fiber memristor-based physical reservoir computing for multimodal sleep monitoring. Research 8, 0870 (2025). https://doi.org/10.34133/research.0870
- K.S. Woo, H. Park, N. Ghenzi, A.A. Talin, T. Jeong et al., Memristors with tunable volatility for reconfigurable neuromorphic computing. ACS Nano 18(26), 17007–17017 (2024). https://doi.org/10.1021/acsnano.4c03238
- Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17(1), 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
- B. Dang, T. Zhang, X. Wu, K. Liu, R. Huang et al., Reconfigurable in-sensor processing based on a multi-phototransistor–one-memristor array. Nat. Electron. 7(11), 991–1003 (2024). https://doi.org/10.1038/s41928-024-01280-3
- V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala et al., Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019). https://doi.org/10.1038/s41586-019-0980-2
- L. Zaadnoordijk, T.R. Besold, R. Cusack, Lessons from infant learning for unsupervised machine learning. Nat. Mach. Intell. 4(6), 510–520 (2022). https://doi.org/10.1038/s42256-022-00488-2
- X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang et al., Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/tkde.2021.3090866
- Y. Gao, S.F. Al-Sarawi, D. Abbott, Physical unclonable functions. Nat. Electron. 3(2), 81–91 (2020). https://doi.org/10.1038/s41928-020-0372-5
- M.A. Mahdian, E. Taheri, K. Rahbardar Mojaver, M. Nikdast, Hardware assurance with silicon photonic physical unclonable functions. Sci. Rep. 14(1), 25591 (2024). https://doi.org/10.1038/s41598-024-72922-x
- J. Yu, K.K. Min, Y. Kim, S. Kim, S. Hwang et al., A novel physical unclonable function (PUF) using 16 × 16 pure-HfO(x)ferroelectric tunnel junction array for security applications. Nanotechnology 32(48), 485202 (2021). https://doi.org/10.1088/1361-6528/ac1dd5
- Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, Memristive crypto primitive for building highly secure physical unclonable functions. Sci. Rep. 5, 12785 (2015). https://doi.org/10.1038/srep12785
- Y. Wang, Q. Huo, X. Xu, F. Tan, R. Gao et al., A homogeneous, reconfigurable, and efficient implementation of PUF in 3-D selector-free RRAM. IEEE Trans. Electron Devices 68(5), 2577–2581 (2021). https://doi.org/10.1109/ted.2021.3066087
- J. Yang, D. Lei, D. Chen, J. Li, H. Jiang et al., A machine-learning-resistant 3D PUF with 8-layer stacking vertical RRAM and 0.014% bit error rate using in-cell stabilization scheme for IoT security applications, in 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020 (IEEE, San Francisco, 2020), pp. 28.6.1–28.6.4. https://doi.org/10.1109/iedm13553.2020.9372107
- R.A. John, N. Shah, S.K. Vishwanath, S.E. Ng, B. Febriansyah et al., Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun. 12(1), 3681 (2021). https://doi.org/10.1038/s41467-021-24057-0
- J.M. Cho, S.S. Kim, T.W. Park, D.H. Shin, Y.R. Kim et al., Concealable physical unclonable function generation and an in-memory encryption machine using vertical self-rectifying memristors. Nanoscale Horiz. 10(1), 113–123 (2025). https://doi.org/10.1039/d4nh00420e
- Y. Luo, Z. Li, X. Lin, K. Hu, D. Song et al., Application of circuit model based on self-rectifying Al2O3/TaOX memristor and generation of physically unclonable functions. IEEE Trans. Electron Devices 72(8), 4090–4095 (2025). https://doi.org/10.1109/TED.2025.3582218
- G. Zhang, Z. Wang, X. Fan, Q. Luo, P. Li et al., Stochastic self-rectifying memristor crossbar array as physical unclonable function for authentication and tamper-evident image security. Device 100, 988 (2025). https://doi.org/10.1016/j.device.2025.100988
- G.S. Syed, M. Le Gallo, A. Sebastian, Phase-change memory for in-memory computing. Chem. Rev. 125(11), 5163–5194 (2025). https://doi.org/10.1021/acs.chemrev.4c00670
- S. Gao, X. Zhu, X. Zhang, B. Xue, J. Xi et al., A low-noise high-resolution temperature measurement technique based on inductive voltage divider and alternating-current bridge. Sensors 25(9), 2777 (2025). https://doi.org/10.3390/s25092777
- E.R. da Silva, I.C.R. do Nascimento, F.H. Behrens, M.M. Pelicia, R.S. Kickhofel et al., Power management techniques for very low consumption and EMI reduction in automotive applications, in Proceedings of the 21st Annual Symposium on Integrated Circuits and System Design (ACM, Gramado Brazil, 2008). pp. 129–133. https://doi.org/10.1145/1404371.1404411
- M.K. Salama, A.M. Soliman, Low-voltage low-power CMOS RF low noise amplifier. AEU - Int. J. Electron. Commun. 63(6), 478–482 (2009). https://doi.org/10.1016/j.aeue.2008.03.007
- W. Yue, K. Wu, Z. Li, J. Zhou, Z. Wang et al., Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models. Nat. Commun. 16(1), 1031 (2025). https://doi.org/10.1038/s41467-025-56412-w
- B. Gao, B. Lin, X. Li, J. Tang, H. Qian et al., A unified PUF and TRNG design based on 40-nm RRAM with high entropy and robustness for IoT security. IEEE Trans. Electron Devices 69(2), 536–542 (2022). https://doi.org/10.1109/TED.2021.3138365
- C. Hyung, I. Hyun, J. Bum, G. Kim, K. Min, Stochastic switching and analog-state programmable memristor and its utilization for homomorphic encryption hardware. Nat. Commun. 15(1), 6318 (2024). https://doi.org/10.1038/s41467-024-50592-7
- Z. Wang, Y. Wu, Y. Park, W.D. Lu, Safe, secure and trustworthy compute-in-memory accelerators. Nat. Electron. 7(12), 1086–1097 (2024). https://doi.org/10.1038/s41928-024-01312-y
- X. Fan, Z. Wang, H. Yu, G. Zhang, P. Li et al., Superior rectification self-rectifying memristors with self-recovery capabilities enabled by GaOx/InOx heterostructures. Appl. Phys. Lett. 127(19), 193501 (2025). https://doi.org/10.1063/5.0283706
- I. Abdelwahab, D. Kumar, T. Bian, H. Zheng, H. Gao et al., Two-dimensional chiral perovskites with large spin Hall angle and collinear spin Hall conductivity. Science 385(6706), 311–317 (2024). https://doi.org/10.1126/science.adq0967
- G. Zhang, Q. Luo, J. Yao, S. Zhong, H. Wang et al., All-in-one neuromorphic hardware with 2D material technology: current status and future perspective. Chem. Soc. Rev. 54(18), 8196–8242 (2025). https://doi.org/10.1039/d5cs00251f
- Z. Jia, M. Zhao, Q. Chen, Y. Tian, L. Liu et al., Spintronic devices upon 2D magnetic materials and heterojunctions. ACS Nano 19(10), 9452–9483 (2025). https://doi.org/10.1021/acsnano.4c14168
- H.K. Warner, J. Holzgrafe, B. Yankelevich, D. Barton, S. Poletto et al., Coherent control of a superconducting qubit using light. Nat. Phys. 21(5), 831–838 (2025). https://doi.org/10.1038/s41567-025-02812-0
- M. Mollenhauer, A. Irfan, X. Cao, S. Mandal, W. Pfaff, A high-efficiency elementary network of interchangeable superconducting qubit devices. Nat. Electron. 8(7), 610–619 (2025). https://doi.org/10.1038/s41928-025-01404-3
- X. Huang, L. Tong, L. Xu, W. Shi, Z. Peng et al., 2D MoS2-based reconfigurable analog hardware. Nat. Commun. 16, 101 (2025). https://doi.org/10.1038/s41467-024-55395-4
- M. Ao, X. Zhou, X. Kong, S. Gou, S. Chen et al., A RISC-V 32-bit microprocessor based on two-dimensional semiconductors. Nature 640(8059), 654–661 (2025). https://doi.org/10.1038/s41586-025-08759-9
- Y. Xiang, C. Wang, C. Liu, T. Wang, Y. Jiang et al., Subnanosecond flash memory enabled by 2D-enhanced hot-carrier injection. Nature 641(8061), 90–97 (2025). https://doi.org/10.1038/s41586-025-08839-w
- J. Wu, Z. Wen, B. Guo, Y. Wu, B. Li et al., Dielectric-free MoS2/VO2 junction field-effect transistor with sensitive and ultrafast photoresponse for light encrypted communication. Adv. Mater. 37(37), e2503294 (2025). https://doi.org/10.1002/adma.202503294
- D. Lu, Y. Chen, Z. Lu, L. Ma, Q. Tao et al., Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630(8016), 340–345 (2024). https://doi.org/10.1038/s41586-024-07406-z
- Y. Zhu, R. Liu, A. Yi, X. Wang, Y. Qin et al., A hybrid single quantum dot coupled cavity on a CMOS-compatible SiC photonic chip for Purcell-enhanced deterministic single-photon emission. Light. Sci. Appl. 14, 86 (2025). https://doi.org/10.1038/s41377-024-01676-y
- X. Liang, D. Su, Y. Tang, B. Xi, C. Yang et al., Lab-on-device investigation of phase transition in MoOx semiconductors. Nat. Commun. 16(1), 4784 (2025). https://doi.org/10.1038/s41467-025-60050-7
- X. He, H. Wang, J. Sun, X. Zhang, K. Chang et al., Intercalation of functional materials with phase transitions for neuromorphic applications. Matter 8(1), 101893 (2025). https://doi.org/10.1016/j.matt.2024.10.011
- A.I. Khan, A. Daus, R. Islam, K.M. Neilson, H.R. Lee et al., Ultralow-switching current density multilevel phase-change memory on a flexible substrate. Science 373(6560), 1243–1247 (2021). https://doi.org/10.1126/science.abj1261
References
M.M. Waldrop, The chips are down for Moore’s law. Nature 530(7589), 144–147 (2016). https://doi.org/10.1038/530144a
C.A. Mack, Fifty years of Moore’s law. IEEE Trans. Semicond. Manufact. 24(2), 202–207 (2011). https://doi.org/10.1109/tsm.2010.2096437
X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce et al., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425(6955), 274–278 (2003). https://doi.org/10.1038/nature01996
B. Yu, L.L. Chang, S. Ahmed, H.H. Wang, S. Bell, C.Y. Yang, C. Tabery, C. Ho, Q. Xiang, T. J. King, J. Bokor, C.M. Hu, M.R. Lin, D. Kyser. Finfet scaling to 10nm gate length. IEEE International Electron Devices Meeting. Dec 08–11, 2002. San Francisco, Ca, (2002), pp. 251–254. https://doi.org/10.1109/IEDM.2002.1175825
U.K. Das, T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron Devices 67(6), 2633–2638 (2020). https://doi.org/10.1109/TED.2020.2987139
D. Yakimets, G. Eneman, P. Schuddinck, T.H. Bao, M.G. Bardon et al., Vertical GAAFETs for the ultimate CMOS scaling. IEEE Trans. Electron Devices 62(5), 1433–1439 (2015). https://doi.org/10.1109/ted.2015.2414924
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
S. Manipatruni, D.E. Nikonov, I.A. Young, Beyond CMOS computing with spin and polarization. Nat. Phys. 14(4), 338–343 (2018). https://doi.org/10.1038/s41567-018-0101-4
Y. Zhao, M. Gobbi, L.E. Hueso, P. Samorì, Molecular approach to engineer two-dimensional devices for CMOS and beyond-CMOS applications. Chem. Rev. 122(1), 50–131 (2022). https://doi.org/10.1021/acs.chemrev.1c00497
Q. Chen, L. Lu, J. Meng, M. Xu, T. Wang, Advances of emerging memristors for in-memory computing applications. Research 8, 0916 (2025). https://doi.org/10.34133/research.0916
Z. Wang, J. Zhang, Z. Zhang, J. Meng, C. Lei et al., Near-sensor neuromorphic computing system based on a thermopile infrared detector and a memristor for encrypted visual information transmission. Nano Lett. 25(19), 8049–8057 (2025). https://doi.org/10.1021/acs.nanolett.5c01843
S.-G. Ren, A.-W. Dong, L. Yang, Y.-B. Xue, J.-C. Li et al., Self-rectifying memristors for three-dimensional in-memory computing. Adv. Mater. 36(4), e2307218 (2024). https://doi.org/10.1002/adma.202307218
Q. Luo, X. Zhang, Y. Hu, T. Gong, X. Xu et al., Self-rectifying and forming-free resistive-switching device for embedded memory application. IEEE Electron Device Lett. 39(5), 664–667 (2018). https://doi.org/10.1109/led.2018.2821162
B. Gao, B. Lin, Y. Pang, F. Xu, Y. Lu et al., Concealable physically unclonable function chip with a memristor array. Sci. Adv. 8(24), eabn7753 (2022). https://doi.org/10.1126/sciadv.abn7753
Y. Sun, X. Zhao, C. Song, K. Xu, Y. Xi et al., Performance-enhancing selector via symmetrical multilayer design. Adv. Funct. Mater. 29(13), 1808376 (2019). https://doi.org/10.1002/adfm.201808376
Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100(15), 153503 (2012). https://doi.org/10.1063/1.3701722
J. Li, S.-G. Ren, Y. Li, L. Yang, Y. Yu et al., Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 9(25), eadf7474 (2023). https://doi.org/10.1126/sciadv.adf7474
F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14(8), 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
Y. Lin, B. Gao, J. Tang, Q. Zhang, H. Qian et al., Deep Bayesian active learning using in-memory computing hardware. Nat. Comput. Sci. 5(1), 27–36 (2025). https://doi.org/10.1038/s43588-024-00744-y
M. Rao, H. Tang, J. Wu, W. Song, M. Zhang et al., Thousands of conductance levels in memristors integrated on CMOS. Nature 615(7954), 823–829 (2023). https://doi.org/10.1038/s41586-023-05759-5
D. Sharma, S.P. Rath, B. Kundu, A. Korkmaz, S. Harivignesh et al., Linear symmetric self-selecting 14-bit kinetic molecular memristors. Nature 633(8030), 560–566 (2024). https://doi.org/10.1038/s41586-024-07902-2
G. Molas, E. Nowak, Advances in emerging memory technologies: from data storage to artificial intelligence. Appl. Sci. 11(23), 11254 (2021). https://doi.org/10.3390/app112311254
W. Wan, R. Kubendran, C. Schaefer, S.B. Eryilmaz, W. Zhang et al., A compute-in-memory chip based on resistive random-access memory. Nature 608(7923), 504–512 (2022). https://doi.org/10.1038/s41586-022-04992-8
Z. Wang, Y. Song, G. Zhang, Q. Luo, K. Xu et al., Advances of embedded resistive random access memory in industrial manufacturing and its potential applications. Int. J. Extrem. Manuf. 6(3), 032006 (2024). https://doi.org/10.1088/2631-7990/ad2fea
J. Cui, F. An, J. Qian, Y. Wu, L.L. Sloan et al., CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators. Nat. Electron. 6(4), 292–300 (2023). https://doi.org/10.1038/s41928-023-00939-7
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11(6), 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
J. Van Damme, S. Massar, R. Acharya, T. Ivanov, D. Perez Lozano et al., Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 634(8032), 74–79 (2024). https://doi.org/10.1038/s41586-024-07941-9
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932
G. Zhang, Z. Wang, X. Fan, Z. Wang, P. Li et al., Self-rectifying memristors with high rectification ratio and dynamic linearity for in-memory computing. Appl. Phys. Lett. 125(13), 133501 (2024). https://doi.org/10.1063/5.0225833
G. Zhang, Z. Wang, X. Fan, P. Li, D. Gao et al., Self-rectifying memristor-based reservoir computing for real-time intrusion detection in cybersecurity. Nano Lett. 24(49), 15707–15715 (2024). https://doi.org/10.1021/acs.nanolett.4c04385
Z. Wang, G. Zhang, P. Li, S. Xing, Z. Wang et al., High-performance CMOS-compatible self-rectifying memristor for passive array integration. Phys. Rev. Appl. 22(6), 064003 (2024). https://doi.org/10.1103/physrevapplied.22.064003
K. Jeon, J.J. Ryu, S. Im, H.K. Seo, T. Eom et al., Purely self-rectifying memristor-based passive crossbar array for artificial neural network accelerators. Nat. Commun. 15(1), 129 (2024). https://doi.org/10.1038/s41467-023-44620-1
H. Zhang, B. Jiang, C. Cheng, B. Huang, H. Zhang et al., A self-rectifying synaptic memristor array with ultrahigh weight potentiation linearity for a self-organizing-map neural network. Nano Lett. 23(8), 3107–3115 (2023). https://doi.org/10.1021/acs.nanolett.2c03624
K. Jeon, J. Kim, J.J. Ryu, S.-J. Yoo, C. Song et al., Self-rectifying resistive memory in passive crossbar arrays. Nat. Commun. 12, 2968 (2021). https://doi.org/10.1038/s41467-021-23180-2
Y.H. Jang, J. Han, J. Kim, W. Kim, K.S. Woo et al., Graph analysis with multifunctional self-rectifying memristive crossbar array. Adv. Mater. 35(10), e2209503 (2023). https://doi.org/10.1002/adma.202209503
S.-E. Kim, J.-G. Lee, L. Ling, S.E. Liu, H.-K. Lim et al., Sodium-doped titania self-rectifying memristors for crossbar array neuromorphic architectures. Adv. Mater. 34(6), 2106913 (2022). https://doi.org/10.1002/adma.202106913
C. Lu, J. Meng, J. Song, K. Xu, T. Wang et al., Reconfigurable selector-free all-optical controlled neuromorphic memristor for in-memory sensing and reservoir computing. ACS Nano 18(43), 29715–29723 (2024). https://doi.org/10.1021/acsnano.4c09199
C. Zang, B. Li, Y. Sun, S. Feng, X.-Z. Wang et al., Uniform self-rectifying resistive random-access memory based on an MXene-TiO2 Schottky junction. Nanoscale Adv. 4(23), 5062–5069 (2022). https://doi.org/10.1039/d2na00281g
J.H. Yoon, S. Yoo, S.J. Song, K.J. Yoon, D.E. Kwon et al., Uniform self-rectifying resistive switching behavior via preformed conducting paths in a vertical-type Ta2O5/HfO2–x structure with a sub-μm2 cell area. ACS Appl. Mater. Interfaces 8(28), 18215–18221 (2016). https://doi.org/10.1021/acsami.6b05657
Y. Zhao, Z. Lou, J. Hu, Z. Li, L. Xu et al., Scalable layer-controlled oxidation of Bi2O2Se for self-rectifying memristor arrays with sub-pA sneak currents. Adv. Mater. 36(44), e2406608 (2024). https://doi.org/10.1002/adma.202406608
L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10(1), 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
J. Bae, C. Kwon, S.-O. Park, H. Jeong, T. Park et al., Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems. Sci. Adv. 10(23), eadm7221 (2024). https://doi.org/10.1126/sciadv.adm7221
K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi et al., Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16(11), 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781
J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon et al., Pt/Ta2O5/HfO2–x/Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 27(25), 3811–3816 (2015). https://doi.org/10.1002/adma.201501167
S. Choi, J. Shin, G. Park, J.S. Eo, J. Jang et al., 3d-integrated multilayered physical reservoir array for learning and forecasting time-series information. Nat. Commun. 15(1), 2044 (2024). https://doi.org/10.1038/s41467-024-46323-7
H. Jeong, S. Han, S.-O. Park, T.R. Kim, J. Bae et al., Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array. Nat. Electron. 8(2), 168–178 (2025). https://doi.org/10.1038/s41928-024-01318-6
K.S. Woo, J. Han, S.-I. Yi, L. Thomas, H. Park et al., Tunable stochastic memristors for energy-efficient encryption and computing. Nat. Commun. 15(1), 3245 (2024). https://doi.org/10.1038/s41467-024-47488-x
Y. Yu, S. Ren, L. Yang, Y. Li, X. Miao, 3D self-rectifying memristive ternary content addressable memory for massive and exact in-memory search. Sci. China Inf. Sci. 68(3), 139402 (2025). https://doi.org/10.1007/s11432-024-4253-9
C. Lu, J. Meng, J. Yu, J. Song, T. Wang et al., Novel three-dimensional artificial neural network based on an eight-layer vertical memristor with an ultrahigh rectify ratio (>107) and an ultrahigh nonlinearity (>105) for neuromorphic computing. Nano Lett. 24(6), 2018–2024 (2024). https://doi.org/10.1021/acs.nanolett.3c04577
Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017). https://doi.org/10.1038/nmat4756
G. Zhang, X. Fan, J. Wang, Z. Wang, Z. Zhang et al., Self-rectifying memristors with high rectification ratio for attack-resilient autonomous driving systems. Nat. Commun. 16(1), 5759 (2025). https://doi.org/10.1038/s41467-025-60970-4
J. Li, S. Ren, Y. Li, W. Peng, Z. Zhou et al., Demonstration of a floating-point deep neural matrix equation solver using 3D vertical ReRAM with high energy- and area-efficiency, in 2024 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2025), pp. 1–4. https://doi.org/10.1109/IEDM50854.2024.10873550
Y. Ding, J. Yang, Y. Liu, J. Gao, Y. Wang et al., 16-layer 3D vertical RRAM with low read latency (18ns), high nonlinearity (>5000) and ultra-low leakage current (~pA) self-selective cells, in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2 (IEEE, 2023), pp. 1–2. https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185341
J. Jang, J.P. Hong, S.-J. Kim, J. Ahn, B.-S. Yu et al., Conductive-bridge interlayer contacts for two-dimensional optoelectronic devices. Nat. Electron. 8(4), 298–308 (2025). https://doi.org/10.1038/s41928-025-01339-9
E. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015). https://doi.org/10.3390/electronics4030586
C. Li, L. Han, H. Jiang, M.-H. Jang, P. Lin et al., Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8, 15666 (2017). https://doi.org/10.1038/ncomms15666
R. Ni, L. Yang, X.-D. Huang, S.-G. Ren, T.-Q. Wan et al., Controlled majority-inverter graph logic with highly nonlinear, self-rectifying memristor. IEEE Trans. Electron Devices 68(10), 4897–4902 (2021). https://doi.org/10.1109/TED.2021.3106234
Y. Kim, J. Kim, K. Soo, K. Jae, K. Seop et al., Kernel application of the stacked crossbar array composed of self-rectifying resistive switching memory for convolutional neural networks. Adv. Intell. Syst. 2(2), 1900116 (2020). https://doi.org/10.1002/aisy.201900116
P.-Q. Pham, T.-A. Tran, T. Vo Van Anh, T.D. Nguyen, J. Brugger et al., Selector-free 16 × 16 CrOX/TiO2-based memristor array for synaptic dynamics and LTP/LTD emulation: experimental–computational correlation. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202516695
Y. Zhang, S.-G. Ren, W.-B. Zuo, Y.-B. Xue, J.-Y. Sun et al., Realizing performance balance by band offset and defect concentration engineering in HfOx/ZrOy self-rectifying memristor. IEEE Electron Device Lett. 46(8), 1317–1320 (2025). https://doi.org/10.1109/LED.2025.3578071
B.M. Lim, Y.M. Lee, C.S. Yoo, M. Kim, S.J. Kim et al., High-reliability and self-rectifying alkali ion memristor through bottom electrode design and dopant incorporation. ACS Nano 18(8), 6373–6386 (2024). https://doi.org/10.1021/acsnano.3c11325
S. Choi, S. Jang, J.-H. Moon, J.C. Kim, H.Y. Jeong et al., A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 10(12), 1097–1106 (2018). https://doi.org/10.1038/s41427-018-0101-y
W.H. Cheong, J.B. Jeon, J.H. In, G. Kim, H. Song et al., Demonstration of neuromodulation-inspired stashing system for energy-efficient learning of spiking neural network using a self-rectifying memristor array. Adv. Funct. Mater. 32(29), 2200337 (2022). https://doi.org/10.1002/adfm.202200337
X. Zhao, K. Zhang, K. Hu, Y. Zhang, Q. Zhou et al., Self-rectifying Al2O3/TaOx memristor with gradual operation at low current by interfacial layer. IEEE Trans. Electron Devices 68(12), 6100–6105 (2021). https://doi.org/10.1109/TED.2021.3120701
D.-H. Choe, S. Kim, T. Moon, S. Jo, H. Bae et al., Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls. Mater. Today 50, 8–15 (2021). https://doi.org/10.1016/j.mattod.2021.07.022
J. Son, M. Lee, A. Sannyal, H. Yun, J. Cheon et al., Self-rectifying resistive memory with a ferroelectric and 2D perovskite lateral heterostructure. ACS Nano 19(11), 10796–10806 (2025). https://doi.org/10.1021/acsnano.4c07869
W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34(23), 2312885 (2024). https://doi.org/10.1002/adfm.202312885
T. Wu, S. Gao, Y. Li, IGZO/WO3−x-heterostructured artificial optoelectronic synaptic devices mimicking image segmentation and motion capture. Small 20(27), 2309857 (2024). https://doi.org/10.1002/smll.202309857
S. Ke, C. Fu, X. Lin, Y. Zhu, H. Mao et al., BCM learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors. IEEE Trans. Electron Devices 69(8), 4646–4650 (2022). https://doi.org/10.1109/ted.2022.3178967
S.-G. Ren, R. Ni, X.-D. Huang, Y. Li, K.-H. Xue et al., Pt/Al2O3/TaOX/Ta self-rectifying memristor with record-low operation current (2 PA), low power (fJ), and high scalability. IEEE Trans. Electron Devices 69(2), 838–842 (2022). https://doi.org/10.1109/TED.2021.3134137
M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
M.A. Kainz, S. Schönhuber, A.M. Andrews, H. Detz, B. Limbacher et al., Barrier height tuning of terahertz quantum cascade lasers for high-temperature operation. ACS Photonics 5(11), 4687–4693 (2018). https://doi.org/10.1021/acsphotonics.8b01280
W. Xu, J. Wu, Z. Zheng, Electrode materials optimize operating voltage and switching speed in micro/nano plasma ultrafast devices. J. Phys. D Appl. Phys. 58(5), 055101 (2025). https://doi.org/10.1088/1361-6463/ad8e6f
M. Zhao, B. Gao, Y. Xi, F. Xu, H. Wu et al., Endurance and retention degradation of intermediate levels in filamentary analog RRAM. IEEE J. Electron Devices Soc. 7, 1239–1247 (2019). https://doi.org/10.1109/JEDS.2019.2943017
J. Wang, L. Liu, X. Zhao, Y. Zhang, Y. Yan, Reconfigurable counterion gradient around charged metal nanops enables self-rectifying and volatile artificial synapse. Nano Lett. 25(35), 13243–13250 (2025). https://doi.org/10.1021/acs.nanolett.5c03221
Z. Xia, X. Sun, Z. Wang, J. Meng, B. Jin et al., Low-power memristor for neuromorphic computing: from materials to applications. Nano-Micro Lett. 17(1), 217 (2025). https://doi.org/10.1007/s40820-025-01705-4
T. Tan, M. Sivan, K. Zhou, H. Guo, Y. Wu et al., Self-rectifying MoS2 memtransistor via asymmetry contact metal engineering for neuromorphic computing. Small (2025). https://doi.org/10.1002/smll.202503716
M. Liu, H. Zang, Y. Jia, K. Jiang, J. Ben et al., Effect and regulation mechanism of post-deposition annealing on the ferroelectric properties of AlScN thin films. ACS Appl. Mater. Interfaces 16(13), 16427–16435 (2024). https://doi.org/10.1021/acsami.3c17282
Z. Wang, J. Zhang, G. Jia, W. Sun, S. Yin et al., Self-rectifying memristors based on epitaxial AlScN for neuromorphic computing. Appl. Phys. Lett. 127(4), 044105 (2025). https://doi.org/10.1063/5.0251575
F. Yang, H. Sun, X. Zhang, D. Chen, J. Chen et al., Optoelectronic synaptic memristor with coupled reversible self-rectifying and bipolar resistive switching for multifunctional neuromorphic applications. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202516894
D. Ju, M. Noh, S. Lee, G. Kim, J. Park et al., Self-rectifying volatile memristor for highly dynamic functions. Adv. Funct. Mater. 35(29), 2423880 (2025). https://doi.org/10.1002/adfm.202423880
S. He, X. Ye, X. Zhu, Q. Zhong, Y. Liu et al., High-performance self-rectifying memristor array based on Pt/HfO2/Ta2O5–x/Ti structure for flexible electronics. Nano Res. 18(2), 94907085 (2025). https://doi.org/10.26599/nr.2025.94907085
D.-E. Kim, A.S. Chabungbam, G. Kim, J. Son, B.M. Lim et al., Doping engineering for optimized self-rectifying TaOx memristor for crossbar array neuromorphic applications. Adv. Funct. Mater. 35(45), 2503883 (2025). https://doi.org/10.1002/adfm.202503883
J. Zhao, Y. Zhu, S. Yan, G. Li, R. Liu et al., High rectification ratio self-rectifying memristor crossbar array for convolutional neural network operations. Small 21(25), 2500062 (2025). https://doi.org/10.1002/smll.202500062
H. Ran, Z. Ren, J. Li, B. Sun, T. Wang et al., Self-rectifying switching memory based on HfOx/FeOx semiconductor heterostructure for neuromorphic computing. Adv. Funct. Mater. 35(13), 2418113 (2025). https://doi.org/10.1002/adfm.202418113
C. Lu, J. Meng, J. Song, T. Wang, H. Zhu et al., Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett. 24(5), 1667–1672 (2024). https://doi.org/10.1021/acs.nanolett.3c04358
J.C. Li, Y.C. Li, Z.C. Liu, Y.X. Ma, Y.L. Wang, Self-rectifying resistive switching characteristics in CsMAFAPbIBr perovskite-based memristor device. IEEE Electron Device Lett. 45(11), 2106–2109 (2024). https://doi.org/10.1109/LED.2024.3455372
D. Ju, S. Kim, Versatile NbOx-based volatile memristor for artificial intelligent applications. Adv. Funct. Mater. 34(49), 2409436 (2024). https://doi.org/10.1002/adfm.202409436
H. Ji, S. Kim, S. Kim, Self-rectifying short-term memory phenomena through integration of TiOx oxygen reservoir and Al2O3 barrier layers for neuromorphic system. Adv. Mater. Technol. 10(3), 2400895 (2025). https://doi.org/10.1002/admt.202400895
D. Gu, B. Yan, B. Zhang, C. Liao, X. Yang et al., In-sensor Reservoir computing based on self-rectifying TiOx photosynapse for image recognition and speech signal processing. ACS Photonics (2024). https://doi.org/10.1021/acsphotonics.4c01415
S.-G. Ren, Y.-B. Xue, Y. Zhang, Y. Li, X.-S. Miao, 3D vertical self-rectifying memristor arrays with split-cell structure, large nonlinearity (>104) and fJ-level switching energy. IEEE Electron Device Lett. 44(12), 2059–2062 (2023). https://doi.org/10.1109/LED.2023.3323341
T. Park, K. Soo, L. Jun, P. Won, K. Jin et al., Highly parallel stateful Boolean logic gates based on aluminum-doped self-rectifying memristors in a vertical crossbar array structure. Nanoscale 15(13), 6387–6395 (2023). https://doi.org/10.1039/d3nr00271c
G. Kim, S. Son, H. Song, J.B. Jeon, J. Lee et al., Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware. Adv. Sci. 10(3), 2205654 (2023). https://doi.org/10.1002/advs.202205654
W. Sun, W. Zhang, J. Yu, Y. Li, Z. Guo et al., 3D reservoir computing with high area efficiency (5.12 TOPS/mm2) implemented by 3D dynamic memristor array for temporal signal processing, in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE, 2022), pp. 222–223. https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830310
Q. Luo, X. Xu, T. Gong, H. Lv, D. Dong et al., 8-Layers 3D vertical RRAM with excellent scalability towards storage class memory applications, in 2017 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2018), pp. 2.7.1–2.7.4. https://doi.org/10.1109/iedm.2017.8268315
X. Xu, L. Qing, T. Gong, H. Lv, S. Long et al., Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling, in 2016 IEEE Symposium on VLSI Technology (IEEE, 2016), pp. 1–2. https://doi.org/10.1109/VLSIT.2016.7573388
S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi et al., First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, in 2016 IEEE Symposium on VLSI Technology (IEEE, 2016), pp. 1–2. https://doi.org/10.1109/VLSIT.2016.7573413
Q. Luo, X. Xu, H. Liu, H. Lv, T. Gong et al., Demonstration of 3D vertical RRAM with ultra low-leakage, high-selectivity and self-compliance memory cells, in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), pp. 10.2.1–10.2.4. https://doi.org/10.1109/IEDM.2015.7409667
Y.-C. Chiu, W.-S. Khwa, C.-S. Yang, S.-H. Teng, H.-Y. Huang et al., A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices. Nat. Electron. 6(7), 534–543 (2023). https://doi.org/10.1038/s41928-023-00994-0
H. Nili, G.C. Adam, B. Hoskins, M. Prezioso, J. Kim et al., Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nat. Electron. 1(3), 197–202 (2018). https://doi.org/10.1038/s41928-018-0039-7
C. Wang, G.-J. Ruan, Z.-Z. Yang, X.-J. Yangdong, Y. Li et al., Parallel in-memory wireless computing. Nat. Electron. 6(5), 381–389 (2023). https://doi.org/10.1038/s41928-023-00965-5
Y. Zhong, J. Tang, X. Li, X. Liang, Z. Liu et al., A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5(10), 672–681 (2022). https://doi.org/10.1038/s41928-022-00838-3
B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen et al., RRAM-based analog approximate computing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(12), 1905–1917 (2015). https://doi.org/10.1109/tcad.2015.2445741
Y. Liao, B. Gao, F. Xu, P. Yao, J. Chen et al., A compact model of analog RRAM with device and array nonideal effects for neuromorphic systems. IEEE Trans. Electron Devices 67(4), 1593–1599 (2020). https://doi.org/10.1109/TED.2020.2975314
J. Wu, F. Mo, T. Saraya, T. Hiramoto, M. Kobayashi, A monolithic 3-D integration of RRAM array and oxide semiconductor FET for in-memory computing in 3-D neural network. IEEE Trans. Electron Devices 67(12), 5322–5328 (2020). https://doi.org/10.1109/TED.2020.3033831
Q. Huo, Y. Yang, Y. Wang, D. Lei, X. Fu et al., A computing-in-memory macro based on three-dimensional resistive random-access memory. Nat. Electron. 5(7), 469–477 (2022). https://doi.org/10.1038/s41928-022-00795-x
P.-F. Chiu, M.-F. Chang, S.-S. Sheu, K.-F. Lin, P.-C. Chiang et al., A low store energy, low VDDmin, nonvolatile 8T2R SRAM with 3D stacked RRAM devices for low power mobile applications, in 2010 Symposium on VLSI Circuits (IEEE, 2010), pp. 229–230. https://doi.org/10.1109/vlsic.2010.5560286
S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-addressable network. SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001). https://doi.org/10.1145/964723.383072
B. Chen, Y. Zhang, W. Liu, S. Xu, R. Cheng et al., Ge-based asymmetric RRAM enable 8F2 content addressable memory. IEEE Electron Device Lett. 39(9), 1294–1297 (2018). https://doi.org/10.1109/LED.2018.2856537
Y. Goh, J. Hwang, M. Kim, M. Jung, S. Lim et al., High performance and self-rectifying Hafnia-based ferroelectric tunnel junction for neuromorphic computing and TCAM applications, in 2021 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2022), pp. 17.2.1–17.2.4. https://doi.org/10.1109/iedm19574.2021.9720610
Q. Guo, X. Guo, Y. Bai, E. İpek, A resistive TCAM accelerator for data-intensive computing, in Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (ACM, Porto Alegre, 2011). pp. 339–350. https://doi.org/10.1145/2155620.2155660
X. Wang, Y. Qu, F. Yang, L. Zhao, C. Lee et al., A highly compact nonvolatile ternary content addressable memory (TCAM) with ultralow power and 200-ps search operation. IEEE Trans. Electron Devices 69(8), 4259–4264 (2022). https://doi.org/10.1109/TED.2022.3182287
S. Lim, Y. Goh, Y.K. Lee, D.H. Ko, J. Hwang et al., A highly integrated crosspoint array using self-rectifying FTJ for dual-mode operations: CAM and PUF, in ESSCIRC 2022-IEEE 48th European Solid State Circuits Conference (ESSCIRC). (IEEE, 2022), pp. 113–116. https://doi.org/10.1109/esscirc55480.2022.9911355
P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang et al., Sparse coding with memristor networks. Nat. Nanotechnol. 12(8), 784–789 (2017). https://doi.org/10.1038/nnano.2017.83
Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1(7), 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
S.-X. You, S.-J. Hong, K.-T. Chen, L.-C. Shih, J.-S. Chen, Self-rectifying dynamic memristor circuits for periodic LIF refractory period emulation and TTFS/rate signal encoding. Small 21(15), 2408233 (2025). https://doi.org/10.1002/smll.202408233
D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing. Nat. Rev. Phys. 2(9), 499–510 (2020). https://doi.org/10.1038/s42254-020-0208-2
F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang et al., Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15(1), 1974 (2024). https://doi.org/10.1038/s41467-024-45670-9
J.-H. Ryu, S. Kim, Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing. Chaos Solitons Fractals 140, 110236 (2020). https://doi.org/10.1016/j.chaos.2020.110236
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
X. Liang, J. Tang, Y. Zhong, B. Gao, H. Qian et al., Physical reservoir computing with emerging electronics. Nat. Electron. 7(3), 193–206 (2024). https://doi.org/10.1038/s41928-024-01133-z
S.-O. Park, H. Jeong, J. Park, J. Bae, S. Choi, Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13(1), 2888 (2022). https://doi.org/10.1038/s41467-022-30539-6
L.G. Wright, T. Onodera, M.M. Stein, T. Wang, D.T. Schachter et al., Deep physical neural networks trained with backpropagation. Nature 601(7894), 549–555 (2022). https://doi.org/10.1038/s41586-021-04223-6
J.Z. Kim, Z. Lu, E. Nozari, G.J. Pappas, D.S. Bassett, Teaching recurrent neural networks to infer global temporal structure from local examples. Nat. Mach. Intell. 3(4), 316–323 (2021). https://doi.org/10.1038/s42256-021-00321-2
G. Milano, G. Pedretti, K. Montano, S. Ricci, S. Hashemkhani et al., In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21(2), 195–202 (2022). https://doi.org/10.1038/s41563-021-01099-9
J. Zhang, Z. Zhu, J. Meng, T. Wang, Fiber memristor-based physical reservoir computing for multimodal sleep monitoring. Research 8, 0870 (2025). https://doi.org/10.34133/research.0870
K.S. Woo, H. Park, N. Ghenzi, A.A. Talin, T. Jeong et al., Memristors with tunable volatility for reconfigurable neuromorphic computing. ACS Nano 18(26), 17007–17017 (2024). https://doi.org/10.1021/acsnano.4c03238
Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17(1), 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
B. Dang, T. Zhang, X. Wu, K. Liu, R. Huang et al., Reconfigurable in-sensor processing based on a multi-phototransistor–one-memristor array. Nat. Electron. 7(11), 991–1003 (2024). https://doi.org/10.1038/s41928-024-01280-3
V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala et al., Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019). https://doi.org/10.1038/s41586-019-0980-2
L. Zaadnoordijk, T.R. Besold, R. Cusack, Lessons from infant learning for unsupervised machine learning. Nat. Mach. Intell. 4(6), 510–520 (2022). https://doi.org/10.1038/s42256-022-00488-2
X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang et al., Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/tkde.2021.3090866
Y. Gao, S.F. Al-Sarawi, D. Abbott, Physical unclonable functions. Nat. Electron. 3(2), 81–91 (2020). https://doi.org/10.1038/s41928-020-0372-5
M.A. Mahdian, E. Taheri, K. Rahbardar Mojaver, M. Nikdast, Hardware assurance with silicon photonic physical unclonable functions. Sci. Rep. 14(1), 25591 (2024). https://doi.org/10.1038/s41598-024-72922-x
J. Yu, K.K. Min, Y. Kim, S. Kim, S. Hwang et al., A novel physical unclonable function (PUF) using 16 × 16 pure-HfO(x)ferroelectric tunnel junction array for security applications. Nanotechnology 32(48), 485202 (2021). https://doi.org/10.1088/1361-6528/ac1dd5
Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, Memristive crypto primitive for building highly secure physical unclonable functions. Sci. Rep. 5, 12785 (2015). https://doi.org/10.1038/srep12785
Y. Wang, Q. Huo, X. Xu, F. Tan, R. Gao et al., A homogeneous, reconfigurable, and efficient implementation of PUF in 3-D selector-free RRAM. IEEE Trans. Electron Devices 68(5), 2577–2581 (2021). https://doi.org/10.1109/ted.2021.3066087
J. Yang, D. Lei, D. Chen, J. Li, H. Jiang et al., A machine-learning-resistant 3D PUF with 8-layer stacking vertical RRAM and 0.014% bit error rate using in-cell stabilization scheme for IoT security applications, in 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020 (IEEE, San Francisco, 2020), pp. 28.6.1–28.6.4. https://doi.org/10.1109/iedm13553.2020.9372107
R.A. John, N. Shah, S.K. Vishwanath, S.E. Ng, B. Febriansyah et al., Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun. 12(1), 3681 (2021). https://doi.org/10.1038/s41467-021-24057-0
J.M. Cho, S.S. Kim, T.W. Park, D.H. Shin, Y.R. Kim et al., Concealable physical unclonable function generation and an in-memory encryption machine using vertical self-rectifying memristors. Nanoscale Horiz. 10(1), 113–123 (2025). https://doi.org/10.1039/d4nh00420e
Y. Luo, Z. Li, X. Lin, K. Hu, D. Song et al., Application of circuit model based on self-rectifying Al2O3/TaOX memristor and generation of physically unclonable functions. IEEE Trans. Electron Devices 72(8), 4090–4095 (2025). https://doi.org/10.1109/TED.2025.3582218
G. Zhang, Z. Wang, X. Fan, Q. Luo, P. Li et al., Stochastic self-rectifying memristor crossbar array as physical unclonable function for authentication and tamper-evident image security. Device 100, 988 (2025). https://doi.org/10.1016/j.device.2025.100988
G.S. Syed, M. Le Gallo, A. Sebastian, Phase-change memory for in-memory computing. Chem. Rev. 125(11), 5163–5194 (2025). https://doi.org/10.1021/acs.chemrev.4c00670
S. Gao, X. Zhu, X. Zhang, B. Xue, J. Xi et al., A low-noise high-resolution temperature measurement technique based on inductive voltage divider and alternating-current bridge. Sensors 25(9), 2777 (2025). https://doi.org/10.3390/s25092777
E.R. da Silva, I.C.R. do Nascimento, F.H. Behrens, M.M. Pelicia, R.S. Kickhofel et al., Power management techniques for very low consumption and EMI reduction in automotive applications, in Proceedings of the 21st Annual Symposium on Integrated Circuits and System Design (ACM, Gramado Brazil, 2008). pp. 129–133. https://doi.org/10.1145/1404371.1404411
M.K. Salama, A.M. Soliman, Low-voltage low-power CMOS RF low noise amplifier. AEU - Int. J. Electron. Commun. 63(6), 478–482 (2009). https://doi.org/10.1016/j.aeue.2008.03.007
W. Yue, K. Wu, Z. Li, J. Zhou, Z. Wang et al., Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models. Nat. Commun. 16(1), 1031 (2025). https://doi.org/10.1038/s41467-025-56412-w
B. Gao, B. Lin, X. Li, J. Tang, H. Qian et al., A unified PUF and TRNG design based on 40-nm RRAM with high entropy and robustness for IoT security. IEEE Trans. Electron Devices 69(2), 536–542 (2022). https://doi.org/10.1109/TED.2021.3138365
C. Hyung, I. Hyun, J. Bum, G. Kim, K. Min, Stochastic switching and analog-state programmable memristor and its utilization for homomorphic encryption hardware. Nat. Commun. 15(1), 6318 (2024). https://doi.org/10.1038/s41467-024-50592-7
Z. Wang, Y. Wu, Y. Park, W.D. Lu, Safe, secure and trustworthy compute-in-memory accelerators. Nat. Electron. 7(12), 1086–1097 (2024). https://doi.org/10.1038/s41928-024-01312-y
X. Fan, Z. Wang, H. Yu, G. Zhang, P. Li et al., Superior rectification self-rectifying memristors with self-recovery capabilities enabled by GaOx/InOx heterostructures. Appl. Phys. Lett. 127(19), 193501 (2025). https://doi.org/10.1063/5.0283706
I. Abdelwahab, D. Kumar, T. Bian, H. Zheng, H. Gao et al., Two-dimensional chiral perovskites with large spin Hall angle and collinear spin Hall conductivity. Science 385(6706), 311–317 (2024). https://doi.org/10.1126/science.adq0967
G. Zhang, Q. Luo, J. Yao, S. Zhong, H. Wang et al., All-in-one neuromorphic hardware with 2D material technology: current status and future perspective. Chem. Soc. Rev. 54(18), 8196–8242 (2025). https://doi.org/10.1039/d5cs00251f
Z. Jia, M. Zhao, Q. Chen, Y. Tian, L. Liu et al., Spintronic devices upon 2D magnetic materials and heterojunctions. ACS Nano 19(10), 9452–9483 (2025). https://doi.org/10.1021/acsnano.4c14168
H.K. Warner, J. Holzgrafe, B. Yankelevich, D. Barton, S. Poletto et al., Coherent control of a superconducting qubit using light. Nat. Phys. 21(5), 831–838 (2025). https://doi.org/10.1038/s41567-025-02812-0
M. Mollenhauer, A. Irfan, X. Cao, S. Mandal, W. Pfaff, A high-efficiency elementary network of interchangeable superconducting qubit devices. Nat. Electron. 8(7), 610–619 (2025). https://doi.org/10.1038/s41928-025-01404-3
X. Huang, L. Tong, L. Xu, W. Shi, Z. Peng et al., 2D MoS2-based reconfigurable analog hardware. Nat. Commun. 16, 101 (2025). https://doi.org/10.1038/s41467-024-55395-4
M. Ao, X. Zhou, X. Kong, S. Gou, S. Chen et al., A RISC-V 32-bit microprocessor based on two-dimensional semiconductors. Nature 640(8059), 654–661 (2025). https://doi.org/10.1038/s41586-025-08759-9
Y. Xiang, C. Wang, C. Liu, T. Wang, Y. Jiang et al., Subnanosecond flash memory enabled by 2D-enhanced hot-carrier injection. Nature 641(8061), 90–97 (2025). https://doi.org/10.1038/s41586-025-08839-w
J. Wu, Z. Wen, B. Guo, Y. Wu, B. Li et al., Dielectric-free MoS2/VO2 junction field-effect transistor with sensitive and ultrafast photoresponse for light encrypted communication. Adv. Mater. 37(37), e2503294 (2025). https://doi.org/10.1002/adma.202503294
D. Lu, Y. Chen, Z. Lu, L. Ma, Q. Tao et al., Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630(8016), 340–345 (2024). https://doi.org/10.1038/s41586-024-07406-z
Y. Zhu, R. Liu, A. Yi, X. Wang, Y. Qin et al., A hybrid single quantum dot coupled cavity on a CMOS-compatible SiC photonic chip for Purcell-enhanced deterministic single-photon emission. Light. Sci. Appl. 14, 86 (2025). https://doi.org/10.1038/s41377-024-01676-y
X. Liang, D. Su, Y. Tang, B. Xi, C. Yang et al., Lab-on-device investigation of phase transition in MoOx semiconductors. Nat. Commun. 16(1), 4784 (2025). https://doi.org/10.1038/s41467-025-60050-7
X. He, H. Wang, J. Sun, X. Zhang, K. Chang et al., Intercalation of functional materials with phase transitions for neuromorphic applications. Matter 8(1), 101893 (2025). https://doi.org/10.1016/j.matt.2024.10.011
A.I. Khan, A. Daus, R. Islam, K.M. Neilson, H.R. Lee et al., Ultralow-switching current density multilevel phase-change memory on a flexible substrate. Science 373(6560), 1243–1247 (2021). https://doi.org/10.1126/science.abj1261