Entropy-Driven Cellulosic Elastomer Self-Assembly for Mechanical Energy Harvesting and Self-Powered Sensing
Corresponding Author: Xinliang Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 215
Abstract
The rapid advancement of flexible electronics technology has placed higher demands on the structural design and performance regulation of elastic materials. Cellulosic elastomers, with their biodegradability, renewability, and tunability, emerge as ideal candidate materials. Entropy-driven self-assembly promotes the spontaneous formation of ordered structures, serving as a crucial pathway for optimizing cellulose elastomer properties. However, the structure–property relationship between the self-assembled ordered structures of cellulose elastomers and their mechanical and electrical properties remains insufficiently explored. It hinders the expansion of their applications in electronic devices. This paper systematically reviews the structure–property regulation mechanisms of self-assembled cellulosic elastomers from an entropy-driven perspective. It elucidates the application principles and performance optimization strategies for mechanical energy harvesting and self-powered sensing, while also exploring the challenges and prospects for performance enhancement. This work provides a reference for the development of self-assembled cellulosic elastomers in the field of energy devices.
Highlights:
1 It systematically discusses the contribution of entropy-driven approaches to the design of self-assembled structures and performance regulation in cellulosic elastomers.
2 This review systematically examines design strategies for ordered self-assembled structures in cellulosic elastomers and investigates their structure-property relationships.
3 It presents a comprehensive review of performance design strategies for self-assembled cellulosic elastomers across mechanical and electrical domains, focusing on electromechanical conversion and self-powered sensing applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Qi, Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters. Energy 171, 721–730 (2019). https://doi.org/10.1016/j.energy.2019.01.047
- X. Le, X. Guo, C. Lee, Evolution of micro-nano energy harvesting technology: scavenging energy from diverse sources towards self-sustained micro/nano systems. Nanoenergy Adv. 3(2), 101–125 (2023). https://doi.org/10.3390/nanoenergyadv3020006
- X. Liu, B. Cui, X. Wang, M. Zheng, Z. Bai et al., Nature-skin-derived e-skin as versatile “wound therapy-health monitoring” bioelectronic skin-scaffolds: skin to bio-e-skin. Adv. Healthc. Mater. 12(20), 2202971 (2023). https://doi.org/10.1002/adhm.202202971
- B. Zhang, Y. Jiang, B. Chen, H. Li, Y. Mao, Recent progress of bioinspired triboelectric nanogenerators for electronic skins and human–machine interaction. Nanoenergy Adv. 4(1), 45–69 (2024). https://doi.org/10.3390/nanoenergyadv4010003
- D. Zhang, T. Huang, L. Duan, Emerging self-emissive technologies for flexible displays. Adv. Mater. 32(15), 1902391 (2020). https://doi.org/10.1002/adma.201902391
- P. Zhang, B. Zhu, P. Du, J. Travas-Sejdic, Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials. Chem. Rev. 124(3), 722–767 (2024). https://doi.org/10.1021/acs.chemrev.3c00392
- Z. Wang, N. Li, Z. Zhang, X. Cui, H. Zhang, Hydrogel-based energy harvesters and self-powered sensors for wearable applications. Nanoenergy Adv. 3(4), 315–342 (2023). https://doi.org/10.3390/nanoenergyadv3040017
- M. Qi, R. Yang, Z. Wang, Y. Liu, Q. Zhang et al., Bioinspired self-healing soft electronics. Adv. Funct. Mater. 33(17), 2214479 (2023). https://doi.org/10.1002/adfm.202214479
- F. Kazemi, S.M. Naghib, Z. Mohammadpour, Multifunctional micro/nanoscaled structures based on polyaniline: an overview of modern emerging devices. Mater. Today Chem. 16, 100249 (2020). https://doi.org/10.1016/j.mtchem.2020.100249
- T. Feng, D. Ling, C. Li, W. Zheng, S. Zhang et al., Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 17(5), 4462–4470 (2024). https://doi.org/10.1007/s12274-023-6365-8
- J. Li, C. Carlos, H. Zhou, J. Sui, Y. Wang et al., Stretchable piezoelectric biocrystal thin films. Nat. Commun. 14(1), 6562 (2023). https://doi.org/10.1038/s41467-023-42184-8
- L. He, J. Shi, B. Tian, H. Zhu, W. Wu, Self-healing materials for flexible and stretchable electronics. Mater. Today Phys. 44, 101448 (2024). https://doi.org/10.1016/j.mtphys.2024.101448
- M. Vogt, M. Langecker, M. Gouder, E. Kopperger, F. Rothfischer et al., Storage of mechanical energy in DNA nanorobotics using molecular torsion springs. Nat. Phys. 19(5), 741–751 (2023). https://doi.org/10.1038/s41567-023-01938-3
- J.D. Sandt, M. Moudio, J.K. Clark, J. Hardin, C. Argenti et al., Stretchable optomechanical fiber sensors for pressure determination in compressive medical textiles. Adv. Healthc. Mater. 7(15), 1800293 (2018). https://doi.org/10.1002/adhm.201800293
- X. Cui, G. Du, T. Liu, Z. Ye, Y. Liu et al., Cellulosic triboelectric elastomers for energy harvesting and emerging applications. Adv. Funct. Mater. 35(48), 2507912 (2025). https://doi.org/10.1002/adfm.202507912
- M.A.M. Hasan, W. Zhu, C.R. Bowen, Z.L. Wang, Y. Yang, Triboelectric nanogenerators for wind energy harvesting. Nat. Rev. Electr. Eng. 1(7), 453–465 (2024). https://doi.org/10.1038/s44287-024-00061-6
- A. Segkos, C. Tsamis, Rotating triboelectric nanogenerators for energy harvesting and their applications. Nanoenergy Adv. 3(3), 170–219 (2023). https://doi.org/10.3390/nanoenergyadv3030010
- L. Liu, T. Hu, X. Zhao, C. Lee, Recent progress in blue energy harvesting based on triboelectric nanogenerators. Nanoenergy Adv. 4(2), 156–173 (2024). https://doi.org/10.3390/nanoenergyadv4020010
- B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17(1), 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
- C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
- S. Li, C. Liu, W. Chen, J. Huang, L. Gan, Negative Poisson’s ratio in cellulose nanocrystal aerogels for enhanced sports piezoelectric sensing. Adv. Funct. Mater. 35(29), 2418425 (2025). https://doi.org/10.1002/adfm.202418425
- Z. Wang, S. Liu, Z. Yang, S. Dong, Perspective on development of piezoelectric micro-power generators. Nanoenergy Advances 3(2), 73–100 (2023). https://doi.org/10.3390/nanoenergyadv3020005
- Y. Zhou, J.-H. Zhang, F. Wang, J. Hua, W. Cheng et al., Recent advances in flexible self-powered sensors in piezoelectric, triboelectric, and pyroelectric fields. Nanoenergy Adv. 4(3), 235–257 (2024). https://doi.org/10.3390/nanoenergyadv4030015
- S. Jafarzadeh, A.L. Skov, Beyond planar: enhanced performance of hollow fiber dielectric elastomer actuators. Adv. Sci. 12(33), e04803 (2025). https://doi.org/10.1002/advs.202504803
- D. Zhang, D. Wang, Z. Xu, X. Zhang, Y. Yang et al., Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 427, 213597 (2021). https://doi.org/10.1016/j.ccr.2020.213597
- W.-Y. Guo, M.-G. Ma, Conductive nanocomposite hydrogels for flexible wearable sensors. J. Mater. Chem. A 12(16), 9371–9399 (2024). https://doi.org/10.1039/d3ta08069b
- S. Chen, Z. Wu, C. Chu, Y. Ni, R.E. Neisiany et al., Biodegradable elastomers and gels for elastic electronics. Adv. Sci. 9(13), 2105146 (2022). https://doi.org/10.1002/advs.202105146
- K. Mishra, S.S. Siwal, V.K. Thakur, E-waste recycling and utilization: a review of current technologies and future perspectives. Curr. Opin. Green Sustain. Chem. 47, 100900 (2024). https://doi.org/10.1016/j.cogsc.2024.100900
- Y. Shi, F. Wang, J. Tian, S. Li, E. Fu et al., Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 7(6), eabe2943 (2021). https://doi.org/10.1126/sciadv.abe2943
- T. Liu, Z. Zhao, R. Liang, H. He, Y. Liu et al., Tough and elastic anisotropic triboelectric materials enabled by layer-by-layer assembly. Adv. Funct. Mater. 35(26), 2500207 (2025). https://doi.org/10.1002/adfm.202500207
- Y. Liu, J. Wang, T. Liu, Z. Wei, B. Luo et al., Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 16(1), 383 (2025). https://doi.org/10.1038/s41467-024-55771-0
- X. Li, M. Weng, T. Liu, K. Yu, S. Zhang et al., Bioinspired heterogeneous wettability triboelectric sensors for sweat collection and monitoring. Adv. Mater. 38, e09920 (2026) https://doi.org/10.1002/adma.202509920
- P. Yang, Y. Shi, S. Li, X. Tao, Z. Liu et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3), 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
- Y. Shi, P. Yang, R. Lei, Z. Liu, X. Dong et al., Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat. Commun. 14(1), 3315 (2023). https://doi.org/10.1038/s41467-023-39068-2
- C. Jiao, C. Li, J. Yue, L. Li, H. Yang et al., Structurally robust cellulosic triboelectric materials under high moisture conditions for self-powered sensing. Nano Energy 122, 109311 (2024). https://doi.org/10.1016/j.nanoen.2024.109311
- C. Lu, C. Wang, J. Yu, J. Wang, F. Chu, Metal-free ATRP “grafting from” technique for renewable cellulose graft copolymers. Green Chem. 21(10), 2759–2770 (2019). https://doi.org/10.1039/c9gc00138g
- Y. Nie, R. Yan, M. Li, S. Li, M. Lin et al., Flexible, recyclable, shape memory biomass supramolecular composite films from Castor oil and ethyl cellulose. Cellulose 31(2), 1115–1137 (2024). https://doi.org/10.1007/s10570-023-05690-y
- R. Zhang, The opportunities of cellulose for triboelectric nanogenerators: a critical review. Nanoenergy Advances 4(3), 209–220 (2024). https://doi.org/10.3390/nanoenergyadv4030013
- I.C.M. Candido, A.L. Freire, C.A.R. Costa, H.P. de Oliveira, Doped-cellulose acetate membranes as friction layers for triboelectric nanogenerators: the influence of roughness degree and surface potential on electrical performance. Nanoenergy Adv. 4(2), 196–208 (2024). https://doi.org/10.3390/nanoenergyadv4020012
- T. Blachowicz, N.S. Mpofu, A. Ehrmann, Measuring physical and chemical properties of single nanofibers for energy applications: possibilities and limits. Nanoenergy Adv. 4(4), 300–317 (2024). https://doi.org/10.3390/nanoenergyadv4040018
- A.R.B.K. Arasi, J. Bengtsson, M. Haque, H. Theliander, P. Enoksson et al., Influence of hardwood lignin blending on the electrical and mechanical properties of cellulose based carbon fibers. ACS Sustainable Chem. Eng. 12(30), 11206–11217 (2024). https://doi.org/10.1021/acssuschemeng.4c02052
- Y. Xu, A. Atrens, J.R. Stokes, A review of nanocrystalline cellulose suspensions: rheology, liquid crystal ordering and colloidal phase behaviour. Adv. Colloid Interface Sci. 275, 102076 (2020). https://doi.org/10.1016/j.cis.2019.102076
- Y. Li, W. Liang, W. Huang, M. Huang, J. Feng, Complexation between burdock holocellulose nanocrystals and corn starch: gelatinization properties, microstructure, and digestibility in vitro. Food Funct. 13(2), 548–560 (2022). https://doi.org/10.1039/D1FO03418A
- S.-M. Chen, G.-Z. Wang, Y. Hou, X.-N. Yang, S.-C. Zhang et al., Hierarchical and reconfigurable interfibrous interface of bioinspired Bouligand structure enabled by moderate orderliness. Sci. Adv. 10(14), eadl1884 (2024). https://doi.org/10.1126/sciadv.adl1884
- X. Xie, R. Luo, D. Sun, Y. Chen, X. Qi et al., Polymethyl methacrylate substrate-inducing highly ordered regenerated cellulose films toward ultra-high breakdown strength and charge–discharge efficiency. Macromolecules 57(18), 8889–8904 (2024). https://doi.org/10.1021/acs.macromol.4c00416
- Y. Zhang, L. Tao, L. Zhao, C. Dong, Y. Liu et al., Fabrication of flame-retardant and water-resistant nanopapers through electrostatic complexation of phosphorylated cellulose nanofibers and chitin nanocrystals. J. Colloid Interface Sci. 676, 61–71 (2024). https://doi.org/10.1016/j.jcis.2024.07.111
- X. Song, L. Wang, X. Ma, Y. Zeng, Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl. Surf. Sci. 396, 870–878 (2017). https://doi.org/10.1016/j.apsusc.2016.11.050
- Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
- Y. Li, Z. Wang, Q. Wei, M. Luo, G. Huang et al., Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polym. Chem. 7(38), 5949–5956 (2016). https://doi.org/10.1039/C6PY01104G
- C. Wang, C. Tang, Y. Wang, Y. Shen, W. Qi et al., Chiral photonic materials self-assembled by cellulose nanocrystals. Curr. Opin. Solid State Mater. Sci. 26(5), 101017 (2022). https://doi.org/10.1016/j.cossms.2022.101017
- Z.-X. Liu, H.-B. Yang, Z.-M. Han, W.-B. Sun, X.-X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24(3), 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
- J. Zhao, W. Zhang, T. Liu, Y. Liu, Y. Qin et al., Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods 6(9), e2200664 (2022). https://doi.org/10.1002/smtd.202200664
- X. He, H. Zou, Z. Geng, X. Wang, W. Ding et al., A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 28(45), 1805540 (2018). https://doi.org/10.1002/adfm.201805540
- C.E. Boott, A. Tran, W.Y. Hamad, M.J. MacLachlan, Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem. Int. Ed. 59(1), 226–231 (2020). https://doi.org/10.1002/anie.201911468
- S. Kang, G.M. Biesold, H. Lee, D. Bukharina, Z. Lin et al., Dynamic chiro-optics of bio-inorganic nanomaterials via seamless co-assembly of semiconducting nanorods and polysaccharide nanocrystals. Adv. Funct. Mater. 31(42), 2104596 (2021). https://doi.org/10.1002/adfm.202104596
- O. Kose, A. Tran, L. Lewis, W.Y. Hamad, M.J. MacLachlan, Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat. Commun. 10, 510 (2019). https://doi.org/10.1038/s41467-019-08351-6
- H. Zhang, Y. Cao, Y. Hu, Z. Liu, R.-A. Li, Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers. Int. J. Biol. Macromol. 296, 139681 (2025). https://doi.org/10.1016/j.ijbiomac.2025.139681
- C. Huang, H. Yu, Y. Gao, Y. Chen, S.Y.H. Abdalkarim et al., Recent advances in green and efficient cellulose utilization through structure deconstruction and regeneration. Adv. Funct. Mater. 35(30), 2424591 (2025). https://doi.org/10.1002/adfm.202424591
- Y. Zhang, L. Zhao, Y. Liu, C. Dong, K. Zhang, Production of flame-retardant phosphorylated cellulose nanofibrils by choline chloride based reactive deep eutectic solvent. Carbohydr. Polym. 348, 122931 (2025). https://doi.org/10.1016/j.carbpol.2024.122931
- X. Yu, H. Huang, P. Zhang, X. Nong, N. Xiong et al., Crosslinking/spinning strategies of nanocellulose enhances the performances for self-powered wearable sensors. Nano Energy 135, 110649 (2025). https://doi.org/10.1016/j.nanoen.2025.110649
- M. Zhong, X. Li, X. Chu, H. Gui, S. Zuo et al., Solar driven catalytic conversion of cellulose biomass into lactic acid over copper reconstructed natural mineral. Appl. Catal. B Environ. 317, 121718 (2022). https://doi.org/10.1016/j.apcatb.2022.121718
- Y. Su, X. Wang, S. Zhou, H. Sun, B. Wang et al., Porous rigid-flexible polymer membrane interface towards high-rate and stable zinc-ion battery. J. Power. Sources 560, 232685 (2023). https://doi.org/10.1016/j.jpowsour.2023.232685
- W. Jia, J.A. Kharraz, P.J. Choi, J. Guo, B.J. Deka et al., Superhydrophobic membrane by hierarchically structured PDMS-POSS electrospray coating with cauliflower-shaped beads for enhanced MD performance. J. Membr. Sci. 597, 117638 (2020). https://doi.org/10.1016/j.memsci.2019.117638
- V. Chibrikov, P.M. Pieczywek, J. Cybulska, A. Zdunek, Evaluation of elasto-plastic properties of bacterial cellulose-hemicellulose composite films. Ind. Crops Prod. 205, 117578 (2023). https://doi.org/10.1016/j.indcrop.2023.117578
- F. Ayadi, B. Martín-García, M. Colombo, A. Polovitsyn, A. Scarpellini et al., Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose. Carbohydr. Polym. 149, 217–223 (2016). https://doi.org/10.1016/j.carbpol.2016.04.103
- T. Nakamura, T. Ishiyama, Molecular dynamics study of hydrogen bond structure and tensile strength for hydrated amorphous cellulose. Biomacromol 25(11), 7249–7259 (2024). https://doi.org/10.1021/acs.biomac.4c00950
- Y. Shen, Q. Jia, S. Xu, J. Yu, C. Huang et al., Fast-photocurable, mechanically robust, and malleable cellulosic bio-thermosets based on hindered urea bond for multifunctional electronics. Adv. Funct. Mater. 34(7), 2310599 (2024). https://doi.org/10.1002/adfm.202310599
- Q. Chen, Y. Chen, C. Wu, Probing the evolutionary mechanism of the hydrogen bond network of cellulose nanofibrils using three DESs. Int. J. Biol. Macromol. 234, 123694 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123694
- H.-N. Li, C. Qu, L. Huo, S. Nagarajaiah, Equivalent bilinear elastic single degree of freedom system of multi-degree of freedom structure with negative stiffness. J. Sound Vib. 365, 1–14 (2016). https://doi.org/10.1016/j.jsv.2015.11.005
- X. Zhang, X. Dai, L. Gao, D. Xu, H. Wan et al., The entropy-controlled strategy in self-assembling systems. Chem. Soc. Rev. 52(19), 6806–6837 (2023). https://doi.org/10.1039/d3cs00347g
- D. Marenduzzo, K. Finan, P.R. Cook, The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175(5), 681–686 (2006). https://doi.org/10.1083/jcb.200609066
- Z. Wu, X. Wu, Z. Yang, L. Ouyang, Internal energy ratios as ecological indicators for description of the phytoremediation process on a manganese tailing site. Ecol. Model. 374, 14–21 (2018). https://doi.org/10.1016/j.ecolmodel.2018.02.009
- D. Chandler, Interfaces and the driving force of hydrophobic assembly. Nature 437(7059), 640–647 (2005). https://doi.org/10.1038/nature04162
- K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales. J. Phys. Chem. B 103(22), 4570–4577 (1999). https://doi.org/10.1021/jp984327m
- Y. Chen, T. Zhang, F. Long, R. Wang, Methodology for describing the whole process to accident based on entropy increase principle and Darwin’s natural selection. Process. Saf. Environ. Prot. 172, 165–183 (2023). https://doi.org/10.1016/j.psep.2023.02.011
- D. Schick, M. Weißenhofer, L. Rózsa, U. Nowak, Skyrmions as quasips: free energy and entropy. Phys. Rev. B 103(21), 214417 (2021). https://doi.org/10.1103/physrevb.103.214417
- S.M. Aguilera-Segura, F. Di Renzo, T. Mineva, Molecular insight into the cosolvent effect on lignin-cellulose adhesion. Langmuir 36(47), 14403–14416 (2020). https://doi.org/10.1021/acs.langmuir.0c02794
- S.G. Fine, S.E. Branovsky, C.A.C. Chazot, Structural color out of the blue: a quantitative framework for the self-assembly kinetics of cholesteric cellulosic mesophases. Biomacromol 25(8), 4977–4990 (2024). https://doi.org/10.1021/acs.biomac.4c00411
- L. Brunsveld, B.J.B. Folmer, E.W. Meijer, R.P. Sijbesma, Supramolecular polymers. Chem. Rev. 101(12), 4071–4098 (2001). https://doi.org/10.1021/cr990125q
- L. Ma, H. Huang, E. Vargo, J. Huang, C.L. Anderson et al., Diversifying composition leads to hierarchical composites with design flexibility and structural fidelity. ACS Nano 15(9), 14095–14104 (2021). https://doi.org/10.1021/acsnano.1c04606
- H. Dong, S. Wei, W. Chen, B. Lu, Z. Cai et al., Bioinspired lignocellulose foam: exceptional toughness and thermal insulation. ACS Nano 19(12), 11712–11727 (2025). https://doi.org/10.1021/acsnano.4c11945
- B. Frka-Petesic, T.G. Parton, C. Honorato-Rios, A. Narkevicius, K. Ballu et al., Structural color from cellulose nanocrystals or chitin nanocrystals: self-assembly, optics, and applications. Chem. Rev. 123(23), 12595–12756 (2023). https://doi.org/10.1021/acs.chemrev.2c00836
- R.M. Parker, B. Frka-Petesic, G. Guidetti, G. Kamita, G. Consani et al., Hierarchical self-assembly of cellulose nanocrystals in a confined geometry. ACS Nano 10(9), 8443–8449 (2016). https://doi.org/10.1021/acsnano.6b03355
- E.E. Jaekel, J.A. Sirviö, M. Antonietti, S. Filonenko, One-step method for the preparation of cationic nanocellulose in reactive eutectic media. Green Chem. 23(6), 2317–2323 (2021). https://doi.org/10.1039/D0GC04282J
- F. Liu, Z. He, T. Takarada, M. Maeda, G. Wang, DNA breathing at the nanointerface: molecular fundamentals and nanomaterials applications. Acc. Mater. Res. 6(9), 1105–1119 (2025). https://doi.org/10.1021/accountsmr.5c00123
- B. Ilhan, F. Mugele, M.H.G. Duits, Roughness induced rotational slowdown near the colloidal glass transition. J. Colloid Interface Sci. 607(2), 1709–1716 (2022). https://doi.org/10.1016/j.jcis.2021.08.212
- T. Willhammar, K. Daicho, D.N. Johnstone, K. Kobayashi, Y. Liu et al., Local crystallinity in twisted cellulose nanofibers. ACS Nano 15(2), 2730–2737 (2021). https://doi.org/10.1021/acsnano.0c08295
- Z. Li, Q. Fan, Y. Yin, Colloidal self-assembly approaches to smart nanostructured materials. Chem. Rev. 122(5), 4976–5067 (2022). https://doi.org/10.1021/acs.chemrev.1c00482
- Y. Zheng, J. Ren, N. Zhang, J. Li, Preparation of carbon nitride from different precursors through pyrolysis: correlating the photocatalytic activity to the crystallinity and disorder. J. Environ. Chem. Eng. 9(6), 106410 (2021). https://doi.org/10.1016/j.jece.2021.106410
- M. Park, D. Lee, S. Shin, J. Hyun, Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanops for scaffolds in bone tissue engineering. Colloids Surf. B Biointerfaces 130, 222–228 (2015). https://doi.org/10.1016/j.colsurfb.2015.04.014
- Y. Qin, Z. Song, L. Miao, C. Hu, Y. Chen et al., Hydrogen-bond-mediated micelle aggregating self-assembly towards carbon nanofiber networks for high-energy and long-life zinc ion capacitors. Chem. Eng. J. 470, 144256 (2023). https://doi.org/10.1016/j.cej.2023.144256
- P. de Andrade, J.C. Muñoz-García, G. Pergolizzi, V. Gabrielli, S.A. Nepogodiev et al., Chemoenzymatic synthesis of fluorinated cellodextrins identifies a new allomorph for cellulose-like materials. Chem. 27(4), 1374–1382 (2021). https://doi.org/10.1002/chem.202003604
- B. Lindman, B. Medronho, L. Alves, M. Norgren, L. Nordenskiöld, Hydrophobic interactions control the self-assembly of DNA and cellulose. Quart. Rev. Biophys. 54, e3 (2021). https://doi.org/10.1017/s0033583521000019
- A.P. Sgouros, C.J. Revelas, A.T. Lakkas, D.N. Theodorou, Solvation free energy of dilute grafted (nano)ps in polymer melts via the self-consistent field theory. J. Phys. Chem. B 126(38), 7454–7474 (2022). https://doi.org/10.1021/acs.jpcb.2c05306
- X. Yao, S. Zhang, N. Wei, L. Qian, S. Coseri, Cellulose-based conductive hydrogels for emerging intelligent sensors. Adv. Fiber Mater. 6(5), 1256–1305 (2024). https://doi.org/10.1007/s42765-024-00418-4
- M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L.A. Berglund et al., Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 29(1), 1–23 (2022). https://doi.org/10.1007/s10570-021-04325-4
- M.C. Jarvis, Hydrogen bonding and other non-covalent interactions at the surfaces of cellulose microfibrils. Cellulose 30(2), 667–687 (2023). https://doi.org/10.1007/s10570-022-04954-3
- Z.-H. Guo, P.-L. Wang, Y.-T. Jiang, M.-G. Ma, 3D dual-network structure poly (vinyl alcohol)/cellulose nanofibers/MXene hydrogel evaporator with high-efficiency desalination for solar-driven water purification. Int. J. Biol. Macromol. 307(Pt 3), 142176 (2025). https://doi.org/10.1016/j.ijbiomac.2025.142176
- M.S. Reid, M. Villalobos, E.D. Cranston, The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr. Opin. Colloid Interface Sci. 29, 76–82 (2017). https://doi.org/10.1016/j.cocis.2017.03.005
- L. Zhang, H. Liu, Y. Liu, Z. Wu, Thermodynamic stability of cis-azobenzene containing DNA materials based on van der Waals forces. Chem. Commun. 58(23), 3811–3814 (2022). https://doi.org/10.1039/D2CC00035K
- P. Zhu, M. Niu, S. Liang, W. Yang, Y. Zhang et al., Non-hand-worn, load-free VR hand rehabilitation system assisted by deep learning based on ionic hydrogel. Nano Res. 18(4), 94907301 (2025). https://doi.org/10.26599/nr.2025.94907301
- J. Wu, X. Wu, F. Yang, X. Liu, F. Meng et al., Multiply cross-linked poly(vinyl alcohol)/cellulose nanofiber composite ionic conductive hydrogels for strain sensors. Int. J. Biol. Macromol. 225, 1119–1128 (2023). https://doi.org/10.1016/j.ijbiomac.2022.11.173
- I. Hussain, S.M. Sayed, S. Liu, F. Yao, O. Oderinde et al., Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions. Eur. Polym. J. 100, 219–227 (2018). https://doi.org/10.1016/j.eurpolymj.2018.01.002
- Y. Zhou, M. Ye, C. Hu, H. Qian, B.J. Nelson et al., Stimuli-responsive functional micro-/nanorobots: a review. ACS Nano 17(16), 15254–15276 (2023). https://doi.org/10.1021/acsnano.3c01942
- J. Sun, H. He, K. Zhao, W. Cheng, Y. Li et al., Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat. Commun. 14(1), 5348 (2023). https://doi.org/10.1038/s41467-023-41084-1
- S.M. Ali, S. Sk, S. Sarkar, S. Das, N. Sepay et al., Entropically and enthalpically driven self-assembly of a naphthalimide-based luminescent organic π-amphiphile in water. Soft Matter 20(43), 8684–8691 (2024). https://doi.org/10.1039/D4SM00986J
- X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu et al., Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121(8), 4309–4372 (2021). https://doi.org/10.1021/acs.chemrev.0c01088
- M. Esmaeili, S. Norouzi, K. George, G. Rezvan, N. Taheri-Qazvini et al., 3D printing-assisted self-assembly to bio-inspired bouligand nanostructures. Small 19(19), e2206847 (2023). https://doi.org/10.1002/smll.202206847
- Y. Luo, Y. Li, K. Liu, L. Li, W. Wen et al., Modulating of bouligand structure and chirality constructed bionically based on the self-assembly of chitin whiskers. Biomacromol 24(6), 2942–2954 (2023). https://doi.org/10.1021/acs.biomac.3c00419
- L. Zhang, L. Chen, S. Wang, S. Wang, D. Wang et al., Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15, 3859 (2024). https://doi.org/10.1038/s41467-024-47986-y
- T. Wu, H. Jiang, Y. Zheng, C. Zhao, K. Shi et al., Superior impact resistance in bionic nanocellulose composite supramolecular elastomers via multiple hydrogen bonding interactions. Adv. Funct. Mater. 35(4), 2414221 (2025). https://doi.org/10.1002/adfm.202414221
- S. Wang, Z. Yu, X. Sun, M. Panahi-Sarmad, P. Yang et al., A universal strategy to mitigate microphase separation via cellulose nanocrystal hydration in fabricating strong, tough, and fatigue-resistant hydrogels. Adv. Mater. 37(7), 2416916 (2025). https://doi.org/10.1002/adma.202416916
- G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
- J. Zhao, W. Zhang, T. Liu, B. Luo, Y. Qin et al., Multiscale structural triboelectric aerogels enabled by self-assembly driven supramolecular winding. Adv. Funct. Mater. 34(29), 2400476 (2024). https://doi.org/10.1002/adfm.202400476
- W. Peng, J. Zhao, Q. Li, Y. Sun, G. Du et al., A strong and tough ion-gel enabled by hierarchical meshing and ion hybridizations collaboration. Adv. Funct. Mater. 35(5), 2414682 (2025). https://doi.org/10.1002/adfm.202414682
- P. Cui, J. Chen, K. Fu, J. Deng, T. Sun et al., Bioinspired bouligand-structured cellulose nanocrystals/poly(vinyl alcohol) composite hydrogel for enhanced impact resistance. ACS Appl. Mater. Interf. 16(39), 53022–53032 (2024). https://doi.org/10.1021/acsami.4c13264
- Y. Tang, C. Lu, R. Xiong, Biomimetic mechanically robust chiroptical hydrogel enabled by hierarchical bouligand structure engineering. ACS Nano 18(22), 14629–14639 (2024). https://doi.org/10.1021/acsnano.4c02677
- M. He, X. Lv, Z. Li, H. Li, W. Qian et al., Research on efficient electromagnetic shielding performance and modulation mechanism of aero/organo/hydrogels with gravity-induced asymmetric gradient structure. Small 20(51), 2403210 (2024). https://doi.org/10.1002/smll.202403210
- B. Wang, K. Nan, H. Rao, Y. Chen, R. Pei et al., Integrated design of multifunctional lightweight magnetic cellulose-based aerogel with 1D/2D/3D hierarchical network for efficient microwave absorption. Compos. Commun. 49, 101987 (2024). https://doi.org/10.1016/j.coco.2024.101987
- S. Dolui, B. Sahu, S. Banerjee, Stimuli-responsive functional polymeric materials: recent advances and future perspectives. Macromol. Chem. Phys. 226(12), 2400472 (2025). https://doi.org/10.1002/macp.202400472
- R. Nasseri, N. Bouzari, J. Huang, H. Golzar, S. Jankhani et al., Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics. Nat. Commun. 14(1), 6108 (2023). https://doi.org/10.1038/s41467-023-41874-7
- X. Tang, G.B. Thompson, K. Ma, C.R. Weinberger, The role of entropy and enthalpy in high entropy carbides. Comput. Mater. Sci. 210, 111474 (2022). https://doi.org/10.1016/j.commatsci.2022.111474
- S.R. Lee, K.M. Evans, J.W. Woodcock, J. Obrzut, L. Huang et al., Controlling impact mitigation via Bouligand nanostructures. Proc. Natl. Acad. Sci. U. S. A. 122(20), e2425191122 (2025). https://doi.org/10.1073/pnas.2425191122
- B. Chen, W. Zhu, X. Huang, H. Huang, S. Shi et al., Flexible regenerated cellulose films with nanofiber-oriented structure as green dielectrics for dielectric energy storage. Ind. Crops Prod. 223, 120055 (2025). https://doi.org/10.1016/j.indcrop.2024.120055
- Z. He, J. Xie, Z. Liao, Y. Ma, M. Zhang et al., Hierarchical porous structure contained composite polyimide film with enhanced dielectric and water resistance properties for dielectric material. Prog. Org. Coat. 151, 106030 (2021). https://doi.org/10.1016/j.porgcoat.2020.106030
- H. Quan, A. Pirosa, W. Yang, R.O. Ritchie, M.A. Meyers, Hydration-induced reversible deformation of the pine cone. Acta Biomater. 128, 370–383 (2021). https://doi.org/10.1016/j.actbio.2021.04.049
- W. Wang, F. Bai, K. Chu, M. Cai, X. Xu et al., Proton flux engineering via built-in electric fields in N-doped CuO@Co3O4@Ni(OH)2 heterostructure for rechargeable Zn-NO3−/5-hydroxymethylfurfural multielectron transfer systems. Angew. Chem. Int. Ed. 64(44), e202514438 (2025). https://doi.org/10.1002/anie.202514438
- Y. Tang, B. Wu, J. Li, C. Lu, J. Wu et al., Biomimetic structural hydrogels reinforced by gradient twisted plywood architectures. Adv. Mater. 37(1), e2411372 (2025). https://doi.org/10.1002/adma.202411372
- S. Wang, L. Yu, S. Wang, L. Zhang, L. Chen et al., Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nat. Commun. 13(1), 3408 (2022). https://doi.org/10.1038/s41467-022-30224-8
- W. Yang, Y. Zhu, T. Liu, D. Puglia, J.M. Kenny et al., Multiple structure reconstruction by dual dynamic crosslinking strategy inducing self-reinforcing and toughening the polyurethane/nanocellulose elastomers. Adv. Funct. Mater. 33(12), 2213294 (2023). https://doi.org/10.1002/adfm.202213294
- J. Huang, X. Zhang, R. Liu, Y. Ding, D. Guo, Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing. Nat. Commun. 14(1), 1483 (2023). https://doi.org/10.1038/s41467-023-37178-5
- Y. Yang, L. Shao, J. Wang, Z. Ji, T. Zhang et al., An asymmetric layer structure enables robust multifunctional wearable bacterial cellulose composite film with excellent electrothermal/photothermal and EMI shielding performance. Small 20(22), 2308514 (2024). https://doi.org/10.1002/smll.202308514
- M.B.K. Niazi, Z. Jahan, S.S. Berg, Ø.W. Gregersen, Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohydr. Polym. 177, 258–268 (2017). https://doi.org/10.1016/j.carbpol.2017.08.125
- F. Wahid, F.-P. Wang, Y.-Y. Xie, L.-Q. Chu, S.-R. Jia et al., Reusable ternary PVA films containing bacterial cellulose fibers and ε-polylysine with improved mechanical and antibacterial properties. Colloids Surf. B Biointerf. 183, 110486 (2019). https://doi.org/10.1016/j.colsurfb.2019.110486
- W. Wang, X. Ma, J. Si, Z. Cui, Q. Wang et al., Deacetylated cellulose acetate/polyurethane composite nanofiber membranes with highly efficient oil/water separation and excellent mechanical properties. Macromol. Mater. Eng. 306(10), 2100270 (2021). https://doi.org/10.1002/mame.202100270
- J. Cai, J. Chen, Q. Zhang, M. Lei, J. He et al., Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties. Carbohydr. Polym. 140, 238–245 (2016). https://doi.org/10.1016/j.carbpol.2015.12.039
- S.-A. Jin, E.G. Facchine, O.J. Rojas, S.A. Khan, R.J. Spontak, Cellulose nanofibers and the film-formation dilemma: drying temperature and tunable optical, mechanical and wetting properties of nanocomposite films composed of waterborne sulfopolyesters. J. Colloid Interface Sci. 598, 369–378 (2021). https://doi.org/10.1016/j.jcis.2021.04.032
- X. Wang, M. Li, Y. Xiong, H. Qin, Q. Li et al., Cellulose nanocrystal composite membrane enhanced with in situ grown metal–organic frameworks for osmotic energy conversion. Small 21(3), 2408695 (2025). https://doi.org/10.1002/smll.202408695
- R. Xue, H. Zhao, Z.-W. An, W. Wu, Y. Jiang et al., Self-healable, solvent response cellulose nanocrystal/waterborne polyurethane nanocomposites with encryption capability. ACS Nano 17(6), 5653–5662 (2023). https://doi.org/10.1021/acsnano.2c11809
- X. Yang, S.K. Biswas, H. Yano, K. Abe, Fabrication of ultrastiff and strong hydrogels by in situ polymerization in layered cellulose nanofibers. Cellulose 27(2), 693–702 (2020). https://doi.org/10.1007/s10570-019-02822-1
- W. Chen, D. Li, Y. Bu, G. Chen, X. Wan et al., Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts. Cellulose 27(3), 1113–1126 (2020). https://doi.org/10.1007/s10570-019-02871-6
- Y. Zhang, Q. He, K. Kobayashi, R. Kusumi, M. Wada, Hydrogels from dextran/carboxymethyl cellulose exhibiting high post-drying swelling ratios and recovery. Cellulose 30(1), 263–276 (2023). https://doi.org/10.1007/s10570-022-04886-y
- X. Li, H. Jiang, Y. Zhang, Q. Long, G. Jiang et al., Stimulation-reinforced cellulose–protein ionogels with superior mechanical strength and temperature resistance. Adv. Funct. Mater. 34(48), 2408160 (2024). https://doi.org/10.1002/adfm.202408160
- H. Jiang, R. Bai, Y. Zhao, S. Shi, G. Jiang et al., Mechanically robust, highly conductive, wide-voltage cellulose ionogels enabled by molecular network reconstruction. Adv. Funct. Mater. 35(36), 2503512 (2025). https://doi.org/10.1002/adfm.202503512
- Y. Wang, Z. Wang, K. Wu, J. Wu, G. Meng et al., Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr. Polym. 168, 112–120 (2017). https://doi.org/10.1016/j.carbpol.2017.03.070
- Y. Wang, X. Li, H. Cheng, B. Wang, X. Feng et al., Facile fabrication of robust and stretchable cellulose nanofibers/polyurethane hybrid aerogels. ACS Sustain. Chem. Eng. 8(24), 8977–8985 (2020). https://doi.org/10.1021/acssuschemeng.0c01564
- J.C.H. Wong, H. Kaymak, P. Tingaut, S. Brunner, M.M. Koebel, Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous Mesoporous Mater. 217, 150–158 (2015). https://doi.org/10.1016/j.micromeso.2015.06.025
- N. Ning, Z. Wang, Y. Yao, L. Zhang, M. Tian, Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals. Carbohydr. Polym. 130, 262–267 (2015). https://doi.org/10.1016/j.carbpol.2015.03.083
- H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad et al., Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132, 368–393 (2017). https://doi.org/10.1016/j.polymer.2017.09.043
- H. Luo, J. Dong, F. Yao, Z. Yang, W. Li et al., Layer-by-layer assembled bacterial cellulose/graphene oxide hydrogels with extremely enhanced mechanical properties. Nano-Micro Lett. 10(3), 42 (2018). https://doi.org/10.1007/s40820-018-0195-3
- Y. Wang, P. Chen, Y. Ding, P. Zhu, Y. Liu et al., Multifunctional nano-conductive hydrogels with high mechanical strength, toughness and fatigue resistance as self-powered wearable sensors and deep learning-assisted recognition system. Adv. Funct. Mater. 34(49), 2409081 (2024). https://doi.org/10.1002/adfm.202409081
- P. Lu, Y. Yang, B. Luo, C. Cai, T. Liu et al., Multiscale structural strong yet tough triboelectric materials enabled by in situ microphase separation. Adv. Funct. Mater. 35(17), 2418336 (2025). https://doi.org/10.1002/adfm.202418336
- C. Zeng, X. Zeng, X. Cheng, Y. Pang, J. Xu et al., Design of thermal interface materials with excellent interfacial heat/force transfer ability via hierarchical energy dissipation. Adv. Funct. Mater. 34(41), 2406075 (2024). https://doi.org/10.1002/adfm.202406075
- C.H. Lu, C.H. Yu, Y.C. Yeh, Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomater. 130, 66–79 (2021). https://doi.org/10.1016/j.actbio.2021.05.055
- X. Li, X. Qiu, X. Yang, P. Zhou, Q. Guo et al., Multi-modal melt-processing of birefringent cellulosic materials for eco-friendly anti-counterfeiting. Adv. Mater. 36(36), 2407170 (2024). https://doi.org/10.1002/adma.202407170
- G. Zhou, H. Zhang, Z. Su, X. Zhang, H. Zhou et al., A biodegradable, waterproof, and thermally processable cellulosic bioplastic enabled by dynamic covalent modification. Adv. Mater. 35(25), 2301398 (2023). https://doi.org/10.1002/adma.202301398
- L. Qiao, Y. Liang, J. Chen, Y. Huang, S.A. Alsareii et al., Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioact. Mater. 30, 129–141 (2023). https://doi.org/10.1016/j.bioactmat.2023.07.015
- X. Zhang, F. Dong, M. Yu, X. Xu, H. Liu et al., Multifunctional waterborne polyurethane-cellulose nanofiber composite: realizing ultrarobust, photoluminescence and swift self-healing via multi-dynamic bonding. Chem. Eng. J. 507, 160302 (2025). https://doi.org/10.1016/j.cej.2025.160302
- B. Lu, F. Lin, X. Jiang, J. Cheng, Q. Lu et al., One-pot assembly of microfibrillated cellulose reinforced PVA–borax hydrogels with self-healing and pH-responsive properties. ACS Sustainable Chem. Eng. 5(1), 948–956 (2017). https://doi.org/10.1021/acssuschemeng.6b02279
- Z. Yang, R. Ni, Y. Yang, J. Qi, X. Lin et al., Carboxymethyl cellulose-based supramolecular hydrogel with thermo-responsive gel-sol transition for temporary plugging of oil pipeline in hot work. Carbohydr. Polym. 324, 121556 (2024). https://doi.org/10.1016/j.carbpol.2023.121556
- T. Zhao, J. Wang, Y. Liu, X. Li, Y. Bai et al., Self-healing and toughness triboelectric materials enabled by dynamic nanoconfinement quenching. Adv. Funct. Mater. 34(51), 2410096 (2024). https://doi.org/10.1002/adfm.202410096
- Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32(27), 2201846 (2022). https://doi.org/10.1002/adfm.202201846
- J. Qiu, Q. Gu, Y. Sha, Y. Huang, M. Zhang et al., Preparation and application of dielectric polymers with high permittivity and low energy loss: a mini review. J. Appl. Polym. Sci. 139(24), 52367 (2022). https://doi.org/10.1002/app.52367
- S.-D. Tsai, H.-Y. Yao, T.-H. Chang, Exploring relaxation behaviors in Hydrogen-Bond networks within binary mixtures of propylene carbonate and primary alcohols through broadband dielectric spectroscopy and molecular dynamic simulation. J. Mol. Liq. 405, 125043 (2024). https://doi.org/10.1016/j.molliq.2024.125043
- A. Lahrichi, Y. El Issmaeli, E.E.N. Madila, S. Rousselot, M. Dollé et al., Tuning dielectric performance in novel Na1/2Er1/2Cu3Ti4O12 ceramics: the interplay of sintering temperature, grain size, and grain boundary resistance. Mater. Chem. Phys. 318, 129237 (2024). https://doi.org/10.1016/j.matchemphys.2024.129237
- Z. Wang, J. Fan, Y. Li, X. Wang, H. Chen, High-k composites with sandwich structure by introducing a negative permittivity layer with Ni as conductive filler. Ceram. Int. 45(16), 20128–20132 (2019). https://doi.org/10.1016/j.ceramint.2019.06.278
- Y. Wang, X. Tuo, G. Ye, Self-healing heterocyclic aramid nanofibers as dynamic interfacial cement for fabricating hybrid aramid paper. Chem. Eng. J. 511, 161662 (2025). https://doi.org/10.1016/j.cej.2025.161662
- J. Chen, F. Ren, N. Yin, J. Mao, Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings. Chem. Eng. J. 479, 147581 (2024). https://doi.org/10.1016/j.cej.2023.147581
- W. Chen, L. Gan, J. Xiong, G. Liu, T. Yang et al., Enhancing electromechanical conversion and motion-monitoring application of pore-oriented cellulose nanocrystal/agarose aerogel modified with flexible heterojunction structures. Carbohydr. Polym. 348, 122828 (2025). https://doi.org/10.1016/j.carbpol.2024.122828
- T. Chen, J. Wang, X. Li, Y. Chen, S. Liu et al., High dielectric transparent polymer composite with well-organized carboxymethyl cellulose microfibers in silicon elastomer fabricated under direct current electric field. Carbohydr. Polym. 329, 121803 (2024). https://doi.org/10.1016/j.carbpol.2024.121803
- S.-C. Shi, C. Chen, J.-L. Zhu, Y. Li, X. Meng et al., Environmentally friendly regenerated cellulose films with improved dielectric properties via manipulating the hydrogen bonding network. Appl. Phys. Lett. 119(2), 022903 (2021). https://doi.org/10.1063/5.0056164
- Y.-C. Zhang, W.-D. Li, X. Zhao, F.-B. Meng, P. Sun et al., Epoxy-based high-k composite vitrimer: with low dielectric loss, high breakdown strength and surface electrical damage repairability. Chem. Eng. J. 473, 145199 (2023). https://doi.org/10.1016/j.cej.2023.145199
- J. Qi, M. Cao, Y. Chen, Z. He, C. Tao et al., Cerium doped strontium titanate with stable high permittivity and low dielectric loss. J. Alloys Compd. 772, 1105–1112 (2019). https://doi.org/10.1016/j.jallcom.2018.09.061
- S.P. Raghunathan, S. Narayanan, A.C. Poulose, R. Joseph, Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr. Polym. 157, 1024–1032 (2017). https://doi.org/10.1016/j.carbpol.2016.10.065
- X. Zheng, Y. Yin, P. Wang, C. Sun, Q. Yang et al., High-performance dielectric film capacitors based on cellulose/Al2O3 nanosheets/PVDF composites. Int. J. Biol. Macromol. 243, 125220 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125220
- P. Wang, Y. Yin, L. Fang, J. He, Y. Wang et al., Flexible cellulose/PVDF composite films with improved breakdown strength and energy density for dielectric capacitors. Compos. Part A Appl. Sci. Manuf. 164, 107325 (2023). https://doi.org/10.1016/j.compositesa.2022.107325
- F. Zhang, X. Li, Z.-Y. Lan, N. Zhang, J.-H. Yang et al., Sandwich-structured cellulose acetate dielectric films toward high-temperature energy storage application. Carbohydr. Polym. 366, 123934 (2025). https://doi.org/10.1016/j.carbpol.2025.123934
- H. Zhang, C. Fu, L.C. Yong, N. Sun, F.G. Liu, Flexible and transparent PVA/CNF hydrogel with ultrahigh dielectric constant. ACS Appl. Polym. Mater. 6(10), 5706–5713 (2024). https://doi.org/10.1021/acsapm.4c00302
- L.L. Santoso, S.P. Prakoso, H.-K. Bui, Q.-A. Hong, S.-Y. Huang et al., A green high-k dielectric from modified carboxymethyl cellulose-based with dextrin. Macromol. Rapid Commun. 45(12), e2400059 (2024). https://doi.org/10.1002/marc.202400059
- Z. Huang, R. Qin, H. Zhang, M. Guo, D. Zhang et al., Ambient-drying to construct unidirectional cellulose nanofibers/carbon nanotubes aerogel with ultra-lightweight, robust, and superior microwave absorption performance. Carbon 212, 118150 (2023). https://doi.org/10.1016/j.carbon.2023.118150
- L. Du, Y. Li, Q. Zhou, L. Zhang, T. Shi et al., Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications. J. Colloid Interface Sci. 679(Pt A), 987–994 (2025). https://doi.org/10.1016/j.jcis.2024.10.057
- Y.-Y. Wang, Z.-H. Zhou, J.-L. Zhu, W.-J. Sun, D.-X. Yan et al., Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B Eng. 220, 108985 (2021). https://doi.org/10.1016/j.compositesb.2021.108985
- S. Feng, J. Deng, L. Yu, Y. Dong, Y. Zhu et al., Development of lightweight polypyrrole/cellulose aerogel composite with adjustable dielectric properties for controllable microwave absorption performance. Cellulose 27(17), 10213–10224 (2020). https://doi.org/10.1007/s10570-020-03497-9
- H. Huang, X. Nong, P. Zhang, Y. Xu, J. Chen et al., Multiscale confinement-modulated cellulosic dielectric materials for energy harvesting and self-powered devices. Adv. Funct. Mater. 35(12), 2417509 (2025). https://doi.org/10.1002/adfm.202417509
- S. Sriphan, T. Charoonsuk, S. Khaisaat, O. Sawanakarn, U. Pharino et al., Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. Nanotechnology 32(15), 155502 (2021). https://doi.org/10.1088/1361-6528/abd8ae
- L.-F. Yang, X.-S. Zhang, X.-Y. Huang, J. Chen, Y.-F. Mao et al., Biomimetic bouligand structure assisted mechanical enhancement of highly p-filled polymer composites. Addit. Manuf. 100, 104666 (2025). https://doi.org/10.1016/j.addma.2025.104666
- X. Bu, B. Zhou, J. Li, C. Gao, J. Guo, Orange peel-like triboelectric nanogenerators with multiscale micro-nano structure for energy harvesting and touch sensing applications. Nano Energy 122, 109280 (2024). https://doi.org/10.1016/j.nanoen.2024.109280
- J. He, T. Lyu, D. Song, Z. Song, X. Fan et al., A universal orientation-engineering strategy for enhancing mechano-electric conversion performance in semi-crystalline biopolymers. Adv. Mater. 37(44), e10157 (2025). https://doi.org/10.1002/adma.202510157
- J. Lin, Y. Mao, T. Zheng, Y. Cui, S. Li et al., Electric field-induced dual-gradient heterojunction diodes toward ultrasensitive self-powered ionic skin. Adv. Mater. 37(21), e2500949 (2025). https://doi.org/10.1002/adma.202500949
- H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang et al., Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 8(37), 19631–19640 (2020). https://doi.org/10.1039/D0TA03054F
- X. Fu, L. Si, Z. Zhang, T. Yang, Q. Feng et al., Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat. Commun. 16(1), 2357 (2025). https://doi.org/10.1038/s41467-025-57646-4
- K. Zhang, J. Chen, X. Shi, H. Qian, G. Wu et al., Bioinspired self-healing and robust elastomer via tailored slipping semi-crystalline arrays for multifunctional electronics. Chem. Eng. J. 454, 139982 (2023). https://doi.org/10.1016/j.cej.2022.139982
- H. Tong, Z. Pan, X. Fu, Y. Zhou, X. Zhang et al., An oriented interpenetrating network structure multi-stimuli responsive hydrogel. Macromol. Rapid Commun. 46(5), e2400841 (2025). https://doi.org/10.1002/marc.202400841
- V.A. Burmistrov, V.V. Alexandriysky, I.V. Novikov, O.I. Koifman, Dielectric and orientation effects of ‘classical’ and supramolecular liquid crystals self-assembly. Liq. Cryst. 46(2), 193–202 (2019). https://doi.org/10.1080/02678292.2018.1483036
- D.-L. Li, S.-C. Shi, K.-Y. Lan, C.-Y. Liu, Y. Li et al., Enhanced dielectric properties of all-cellulose composite film via modulating hydroxymethyl conformation and hydrogen bonding network. ACS Macro Lett. 12(7), 880–887 (2023). https://doi.org/10.1021/acsmacrolett.3c00224
- Q. Luo, H. Shen, G. Zhou, X. Xu, A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components. Carbohydr. Polym. 303, 120449 (2023). https://doi.org/10.1016/j.carbpol.2022.120449
- B. Jiang, W. Yang, H. Bai, C. Zhang, S. Li et al., Multiscale structure and interface engineering of Fe/Fe3C in situ encapsulated in nitrogen-doped carbon for stable and efficient multi-band electromagnetic wave absorption. J. Mater. Sci. Technol. 158, 9–20 (2023). https://doi.org/10.1016/j.jmst.2023.02.030
- M. Latif, Y. Jiang, J. Kim, Additively manufactured flexible piezoelectric lead zirconate titanate-nanocellulose films with outstanding mechanical strength, dielectric and piezoelectric properties. Mater. Today Adv. 21, 100478 (2024). https://doi.org/10.1016/j.mtadv.2024.100478
- Y. Lu, Q. Qin, J. Meng, Y. Mi, X. Wang et al., Constructing highly flexible dielectric sponge for enhancing triboelectric performance. Chem. Eng. J. 468, 143802 (2023). https://doi.org/10.1016/j.cej.2023.143802
- G. Du, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 10(15), 2206243 (2023). https://doi.org/10.1002/advs.202206243
- N. Luo, G. Xu, Y. Feng, D. Yang, Y. Wu et al., Ice-based triboelectric nanogenerator with low friction and self-healing properties for energy harvesting and ice broken warning. Nano Energy 97, 107144 (2022). https://doi.org/10.1016/j.nanoen.2022.107144
- W. Peng, Y. Zhang, Z. Zhang, H. Zhao, H. Huang et al., Liquid metal-promoted supramolecular interactions enable ultrafast self-healing triboelectric materials with high performance at room temperature. Nano Lett. 25(16), 6622–6630 (2025). https://doi.org/10.1021/acs.nanolett.5c00665
- S.S. Nardekar, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.J. Kim, MoS2 quantum sheets-PVDF nanocomposite film based self-poled piezoelectric nanogenerators and photovoltaically self-charging power cell. Nano Energy 93, 106869 (2022). https://doi.org/10.1016/j.nanoen.2021.106869
- Z. He, B. Gao, T. Li, J. Liao, B. Liu et al., Piezoelectric-driven self-powered patterned electrochromic supercapacitor for human motion energy harvesting. ACS Sustainable Chem. Eng. 7(1), 1745–1752 (2019). https://doi.org/10.1021/acssuschemeng.8b05606
- C. Li, W. Pang, Z. Li, C. Chen, Z. Long et al., Droplet-piezoelectric nanogenerators for simultaneous harvesting of droplet electrostatic and mechanical energy. Chem. Eng. J. 518, 164565 (2025). https://doi.org/10.1016/j.cej.2025.164565
- K.K. Meena, I. Arief, A.K. Ghosh, A. Knapp, M. Nitschke et al., Transfer-printed wrinkled PVDF-based tactile sensor-nanogenerator bundle for hybrid piezoelectric-triboelectric potential generation. Small 21(26), 2502767 (2025). https://doi.org/10.1002/smll.202502767
- X. Chou, J. Zhu, S. Qian, X. Niu, J. Qian et al., All-in-one filler-elastomer-based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring. Nano Energy 53, 550–558 (2018). https://doi.org/10.1016/j.nanoen.2018.09.006
- Y. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007). https://doi.org/10.1021/nl071310j
- Q. Xu, J. Wen, Y. Qin, Development and outlook of high output piezoelectric nanogenerators. Nano Energy 86, 106080 (2021). https://doi.org/10.1016/j.nanoen.2021.106080
- E.J. Lee, T.Y. Kim, S.-W. Kim, S. Jeong, Y. Choi et al., High-performance piezoelectric nanogenerators based on chemically-reinforced composites. Energy Environ. Sci. 11(6), 1425–1430 (2018). https://doi.org/10.1039/c8ee00014j
- Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- G. Muscalu, B. Firtat, A. Anghelescu, C. Moldovan, S. Dinulescu et al., Piezoelectric MEMS energy harvester for low-power applications. Electronics 13(11), 2087 (2024). https://doi.org/10.3390/electronics13112087
- W. Li, T. Yang, C. Liu, Y. Huang, C. Chen et al., Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv. Sci. 9(13), 2105550 (2022). https://doi.org/10.1002/advs.202105550
- Y. Xue, T. Yang, Y. Zheng, K. Wang, E. Wang et al., Heterojunction engineering enhanced self-polarization of PVDF/CsPbBr3/Ti3C2Tx composite fiber for ultra-high voltage piezoelectric nanogenerator. Adv. Sci. 10(18), 2300650 (2023). https://doi.org/10.1002/advs.202300650
- S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh et al., Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463(7282), 789–792 (2010). https://doi.org/10.1038/nature08731
- Y. Yan, L.D. Geng, L.-F. Zhu, H. Leng, X. Li et al., Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Adv. Sci. 9(14), 2105715 (2022). https://doi.org/10.1002/advs.202105715
- Y. Li, W. Tong, J. Yang, Z. Wang, D. Wang et al., Electrode-free piezoelectric nanogenerator based on carbon black/polyvinylidene fluoride–hexafluoropropylene composite achieved via interface polarization effect. Chem. Eng. J. 457, 141356 (2023). https://doi.org/10.1016/j.cej.2023.141356
- C. Yang, S. Song, F. Chen, N. Chen, Fabrication of PVDF/BaTiO3/CNT piezoelectric energy harvesters with bionic Balsa wood structures through 3D printing and supercritical carbon dioxide foaming. ACS Appl. Mater. Interfaces 13(35), 41723–41734 (2021). https://doi.org/10.1021/acsami.1c11843
- Y. Han, L. Song, H. Du, G. Wang, T. Zhang et al., Enhancing structural response via macro-micro hierarchy for piezoelectric nanogenerator and self-powered wearable controller. Chem. Eng. J. 481, 148729 (2024). https://doi.org/10.1016/j.cej.2024.148729
- S. Ye, C. Cheng, X. Chen, X. Chen, J. Shao et al., High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 60, 701–714 (2019). https://doi.org/10.1016/j.nanoen.2019.03.096
- X. Chen, H. Tian, X. Li, J. Shao, Y. Ding et al., A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale 7(27), 11536–11544 (2015). https://doi.org/10.1039/c5nr01746g
- S.K. Ghosh, D. Mandal, Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018). https://doi.org/10.1016/j.nanoen.2018.08.036
- Z. Niu, Q. Wang, J. Lu, Y. Hu, J. Huang et al., Electrospun cellulose nanocrystals reinforced flexible sensing paper for triboelectric energy harvesting and dynamic self-powered tactile perception. Small 20(17), 2307810 (2024). https://doi.org/10.1002/smll.202307810
- J. Su, Z. Niu, Y. Hu, Y. Chen, C. Zeng et al., Superelastic triboelectric aerogel enabled by cross-scale fibers and heterojunction ps for wearable intelligent neck guard. Adv. Funct. Mater. e15065 (2025). https://doi.org/10.1002/adfm.202515065
- A. Ahmed, I. Hassan, M.F. El-Kady, A. Radhi, C.K. Jeong et al., Integrated triboelectric nanogenerators in the era of the Internet of Things. Adv. Sci. 6(24), 1802230 (2019). https://doi.org/10.1002/advs.201802230
- Y.-M. Wang, X. Zhang, Y. Ran, C. Liu, D. Wang et al., Advances in metal–organic framework-based triboelectric nanogenerators. ACS Mater. Lett. 6(8), 3883–3898 (2024). https://doi.org/10.1021/acsmaterialslett.4c00773
- P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
- Z. Peng, Z. Niu, C. Zeng, W. Zhao, J. Leng et al., Design and functional verification of a flexible wireless spinal cord stimulator with spinal motion monitoring function. Nano Energy 139, 110895 (2025). https://doi.org/10.1016/j.nanoen.2025.110895
- H. Guo, X. Jia, L. Liu, X. Cao, N. Wang et al., Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano 12(4), 3461–3467 (2018). https://doi.org/10.1021/acsnano.8b00140
- Y. Yu, Q. Gao, X. Zhang, D. Zhao, X. Xia et al., Contact-sliding-separation mode triboelectric nanogenerator. Energy Environ. Sci. 16(9), 3932–3941 (2023). https://doi.org/10.1039/d3ee01290e
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
- S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
- S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184–6193 (2013). https://doi.org/10.1002/adma.201302808
- V. Harnchana, H.V. Ngoc, W. He, A. Rasheed, H. Park et al., Enhanced power output of a triboelectric nanogenerator using poly(dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate. ACS Appl. Mater. Interfaces 10(30), 25263–25272 (2018). https://doi.org/10.1021/acsami.8b02495
- Y. Yang, H. Zhang, J. Chen, S. Lee, T.-C. Hou et al., Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6(6), 1744–1749 (2013). https://doi.org/10.1039/C3EE40764K
- C. Zhang, W. Zhang, G. Du, Q. Fu, J. Mo et al., Superhydrophobic cellulosic triboelectric materials for distributed energy harvesting. Chem. Eng. J. 452, 139259 (2023). https://doi.org/10.1016/j.cej.2022.139259
- D. Lu, T. Liu, X. Meng, B. Luo, J. Yuan et al., Wearable triboelectric visual sensors for tactile perception. Adv. Mater. 35(7), 2209117 (2023). https://doi.org/10.1002/adma.202209117
- W. Zhao, N. Li, X. Liu, L. Liu, C. Yue et al., 4D printed shape memory metamaterials with sensing capability derived from the origami concept. Nano Energy 115, 108697 (2023). https://doi.org/10.1016/j.nanoen.2023.108697
- S. Liu, Z. Niu, W. Zhao, C. Zeng, Y. Liu et al., 4D printed kirigami metamaterial with reconfigurability for dual-mode displacement-pressure sensing. Chem. Eng. J. 519, 165392 (2025). https://doi.org/10.1016/j.cej.2025.165392
- F. Wang, C. Jia, S. Wang, Y. Liu, S. Ouyang et al., Ultrahigh charge density of cellulose-based triboelectric materials based on built-in electric field and deep trap synergy. Nano Lett. 25(20), 8360–8368 (2025). https://doi.org/10.1021/acs.nanolett.5c01627
- Z. Liu, Y. Huang, Y. Shi, X. Tao, H. He et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13(1), 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
- Z. Liu, Y.-Z. Huang, Y. Shi, X. Tao, P. Yang et al., Creating ultrahigh and long-persistent triboelectric charge density on weak polar polymer via quenching polarization. Adv. Funct. Mater. 33(34), 2302164 (2023). https://doi.org/10.1002/adfm.202302164
- P. Yang, Y. Shi, X. Tao, Z. Liu, X. Dong et al., Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator. Matter 6(4), 1295–1311 (2023). https://doi.org/10.1016/j.matt.2023.02.006
- X. Tao, P. Yang, Z. Liu, S. Qin, J. Hu et al., Acid-doped pyridine-based polybenzimidazole as a positive triboelectric material with superior charge retention capability. ACS Nano 18(5), 4467–4477 (2024). https://doi.org/10.1021/acsnano.3c11087
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/C4FD00159A
- S. Qin, J. Chen, P. Yang, Z. Liu, X. Tao et al., A piezo-tribovoltaic nanogenerator with ultrahigh output power density and dynamic sensory functions. Adv. Energy Mater. 14(2), 2303080 (2024). https://doi.org/10.1002/aenm.202303080
- X. Wang, P. Yang, S. Qin, H. Gong, Z. Meng et al., Dual-functional sensor with contact-based and contactless motion detection using magnetic and electrostatic induction. Device 3(12), 100930 (2025). https://doi.org/10.1016/j.device.2025.100930
- Y. Jiang, X. Liu, Y. Wang, C. Tian, D. Wu et al., High energy harvesting performances silicone elastomer via filling soft dielectric with stretching deformability. Adv. Mater. 35(22), 2300246 (2023). https://doi.org/10.1002/adma.202300246
- J.-H. Zhang, Z. Li, Z. Liu, M. Li, J. Guo et al., Inorganic dielectric materials coupling micro-/nanoarchitectures for state-of-the-art biomechanical-to-electrical energy conversion devices. Adv. Mater. 37(28), 2419081 (2025). https://doi.org/10.1002/adma.202419081
- W. Wu, Z. Dong, Y. Wang, W. Zang, Y. Jiang et al., Largely enhanced energy harvesting performance of silicone-based dielectric elastomer generators through controlling the uniaxial device structure. ACS Sustain. Chem. Eng. 12(14), 5447–5458 (2024). https://doi.org/10.1021/acssuschemeng.3c07155
- Z. Wang, C. Tang, Y. Wang, L. Zhou, X. Dong et al., Enhancing the energy conversion efficiency of dielectric elastomer generators via elastic energy storage and recovery. Appl. Energy 379, 124854 (2025). https://doi.org/10.1016/j.apenergy.2024.124854
- Z. Xu, K. Bao, K. Di, H. Chen, J. Tan et al., High-performance dielectric elastomer nanogenerator for efficient energy harvesting and sensing via alternative current method. Adv. Sci. 9(18), 2201098 (2022). https://doi.org/10.1002/advs.202201098
- X. Du, L. Du, P. Li, X. Liu, Y. Han et al., A dielectric elastomer and electret hybrid ocean wave power generator with oscillating water column. Nano Energy 111, 108417 (2023). https://doi.org/10.1016/j.nanoen.2023.108417
- Z. Lai, M. Wu, J. Zhang, Z. Wang, A. Feng et al., A pendulum-type annular dielectric elastomer generator for multi-directional ultra-low-frequency vibration energy harvesting. Mech. Syst. Signal Process. 220, 111704 (2024). https://doi.org/10.1016/j.ymssp.2024.111704
- C.L. Zhang, Z.H. Lai, X.X. Rao, J.W. Zhang, D. Yurchenko, Energy harvesting from a novel contact-type dielectric elastomer generator. Energy Convers. Manage. 205, 112351 (2020). https://doi.org/10.1016/j.enconman.2019.112351
- Z. Xu, J. Tan, H. Chen, K. Di, K. Bao et al., Fatigue-resistant high-performance dielectric elastomer generator in alternating current method. Nano Energy 109, 108314 (2023). https://doi.org/10.1016/j.nanoen.2023.108314
- D. Min, H. Cui, Y. Hai, P. Li, Z. Xing et al., Interfacial regions and network dynamics in epoxy/POSS nanocomposites unravelling through their effects on the motion of molecular chains. Compos. Sci. Technol. 199, 108329 (2020). https://doi.org/10.1016/j.compscitech.2020.108329
- S. Qin, P. Yang, Z. Liu, J. Hu, N. Li et al., Triboelectric sensor with ultra-wide linear range based on water-containing elastomer and ion-rich interface. Nat. Commun. 15(1), 10640 (2024). https://doi.org/10.1038/s41467-024-54980-x
- S.A. Graham, B. Dudem, H. Patnam, A.R. Mule, J.S. Yu, Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters. ACS Energy Lett. 5(7), 2140–2148 (2020). https://doi.org/10.1021/acsenergylett.0c00635
- Z. Yu, Z. Zhu, Y. Zhang, X. Li, X. Liu et al., Biodegradable and flame-retardant cellulose-based wearable triboelectric nanogenerator for mechanical energy harvesting in firefighting clothing. Carbohydr. Polym. 334, 122040 (2024). https://doi.org/10.1016/j.carbpol.2024.122040
- D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b
- H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang et al., High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018). https://doi.org/10.1016/j.nanoen.2018.03.050
- Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28(13), 1706365 (2018). https://doi.org/10.1002/adfm.201706365
- Z. Liu, S. Li, S. Lin, Y. Shi, P. Yang et al., Crystallization-induced shift in a triboelectric series and even polarity reversal for elastic triboelectric materials. Nano Lett. 22(10), 4074–4082 (2022). https://doi.org/10.1021/acs.nanolett.2c00767
- C.H. Barty-King, C.L.C. Chan, R.M. Parker, M.M. Bay, R. Vadrucci et al., Mechanochromic, structurally colored, and edible hydrogels prepared from hydroxypropyl cellulose and gelatin. Adv. Mater. 33(37), 2102112 (2021). https://doi.org/10.1002/adma.202102112
- C. Lu, X. Wang, Y. Shen, S. Xu, C. Huang et al., Skin-like transparent, high resilience, low hysteresis, fatigue-resistant cellulose-based eutectogel for self-powered E-skin and human–machine interaction. Adv. Funct. Mater. 34(13), 2311502 (2024). https://doi.org/10.1002/adfm.202311502
- J. Seong, B.-U. Bak, D. Lee, J. Jin, J. Kim, Tribo-piezoelectric synergistic BaTiO3/PDMS micropyramidal structure for high-performance energy harvester and high-sensitivity tactile sensing. Nano Energy 122, 109264 (2024). https://doi.org/10.1016/j.nanoen.2024.109264
- J. Imbrogno, K. Maruyama, F. Rivers, J.R. Baltzegar, Z. Zhang et al., Relationship between ionic conductivity, glass transition temperature, and dielectric constant in poly(vinyl ether) lithium electrolytes. ACS Macro Lett. 10(8), 1002–1007 (2021). https://doi.org/10.1021/acsmacrolett.1c00305
- H. Zhang, D. Zhang, H. Cai, Y. Ma, K. Li et al., A bacterial cellulose-based multifunctional conductive hydrogel for flexible strain sensors and supercapacitors. Carbohydr. Polym. 360, 123601 (2025). https://doi.org/10.1016/j.carbpol.2025.123601
- H. Du, Z. Cheng, Y. Liu, M. Hu, M. Xia et al., Polydopamine-modified cellulose nanofiber composite hydrogel with strong toughness and high adhesion for human motion detection and wireless sensing. Cellulose 31(10)
References
L. Qi, Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters. Energy 171, 721–730 (2019). https://doi.org/10.1016/j.energy.2019.01.047
X. Le, X. Guo, C. Lee, Evolution of micro-nano energy harvesting technology: scavenging energy from diverse sources towards self-sustained micro/nano systems. Nanoenergy Adv. 3(2), 101–125 (2023). https://doi.org/10.3390/nanoenergyadv3020006
X. Liu, B. Cui, X. Wang, M. Zheng, Z. Bai et al., Nature-skin-derived e-skin as versatile “wound therapy-health monitoring” bioelectronic skin-scaffolds: skin to bio-e-skin. Adv. Healthc. Mater. 12(20), 2202971 (2023). https://doi.org/10.1002/adhm.202202971
B. Zhang, Y. Jiang, B. Chen, H. Li, Y. Mao, Recent progress of bioinspired triboelectric nanogenerators for electronic skins and human–machine interaction. Nanoenergy Adv. 4(1), 45–69 (2024). https://doi.org/10.3390/nanoenergyadv4010003
D. Zhang, T. Huang, L. Duan, Emerging self-emissive technologies for flexible displays. Adv. Mater. 32(15), 1902391 (2020). https://doi.org/10.1002/adma.201902391
P. Zhang, B. Zhu, P. Du, J. Travas-Sejdic, Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials. Chem. Rev. 124(3), 722–767 (2024). https://doi.org/10.1021/acs.chemrev.3c00392
Z. Wang, N. Li, Z. Zhang, X. Cui, H. Zhang, Hydrogel-based energy harvesters and self-powered sensors for wearable applications. Nanoenergy Adv. 3(4), 315–342 (2023). https://doi.org/10.3390/nanoenergyadv3040017
M. Qi, R. Yang, Z. Wang, Y. Liu, Q. Zhang et al., Bioinspired self-healing soft electronics. Adv. Funct. Mater. 33(17), 2214479 (2023). https://doi.org/10.1002/adfm.202214479
F. Kazemi, S.M. Naghib, Z. Mohammadpour, Multifunctional micro/nanoscaled structures based on polyaniline: an overview of modern emerging devices. Mater. Today Chem. 16, 100249 (2020). https://doi.org/10.1016/j.mtchem.2020.100249
T. Feng, D. Ling, C. Li, W. Zheng, S. Zhang et al., Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 17(5), 4462–4470 (2024). https://doi.org/10.1007/s12274-023-6365-8
J. Li, C. Carlos, H. Zhou, J. Sui, Y. Wang et al., Stretchable piezoelectric biocrystal thin films. Nat. Commun. 14(1), 6562 (2023). https://doi.org/10.1038/s41467-023-42184-8
L. He, J. Shi, B. Tian, H. Zhu, W. Wu, Self-healing materials for flexible and stretchable electronics. Mater. Today Phys. 44, 101448 (2024). https://doi.org/10.1016/j.mtphys.2024.101448
M. Vogt, M. Langecker, M. Gouder, E. Kopperger, F. Rothfischer et al., Storage of mechanical energy in DNA nanorobotics using molecular torsion springs. Nat. Phys. 19(5), 741–751 (2023). https://doi.org/10.1038/s41567-023-01938-3
J.D. Sandt, M. Moudio, J.K. Clark, J. Hardin, C. Argenti et al., Stretchable optomechanical fiber sensors for pressure determination in compressive medical textiles. Adv. Healthc. Mater. 7(15), 1800293 (2018). https://doi.org/10.1002/adhm.201800293
X. Cui, G. Du, T. Liu, Z. Ye, Y. Liu et al., Cellulosic triboelectric elastomers for energy harvesting and emerging applications. Adv. Funct. Mater. 35(48), 2507912 (2025). https://doi.org/10.1002/adfm.202507912
M.A.M. Hasan, W. Zhu, C.R. Bowen, Z.L. Wang, Y. Yang, Triboelectric nanogenerators for wind energy harvesting. Nat. Rev. Electr. Eng. 1(7), 453–465 (2024). https://doi.org/10.1038/s44287-024-00061-6
A. Segkos, C. Tsamis, Rotating triboelectric nanogenerators for energy harvesting and their applications. Nanoenergy Adv. 3(3), 170–219 (2023). https://doi.org/10.3390/nanoenergyadv3030010
L. Liu, T. Hu, X. Zhao, C. Lee, Recent progress in blue energy harvesting based on triboelectric nanogenerators. Nanoenergy Adv. 4(2), 156–173 (2024). https://doi.org/10.3390/nanoenergyadv4020010
B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17(1), 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
S. Li, C. Liu, W. Chen, J. Huang, L. Gan, Negative Poisson’s ratio in cellulose nanocrystal aerogels for enhanced sports piezoelectric sensing. Adv. Funct. Mater. 35(29), 2418425 (2025). https://doi.org/10.1002/adfm.202418425
Z. Wang, S. Liu, Z. Yang, S. Dong, Perspective on development of piezoelectric micro-power generators. Nanoenergy Advances 3(2), 73–100 (2023). https://doi.org/10.3390/nanoenergyadv3020005
Y. Zhou, J.-H. Zhang, F. Wang, J. Hua, W. Cheng et al., Recent advances in flexible self-powered sensors in piezoelectric, triboelectric, and pyroelectric fields. Nanoenergy Adv. 4(3), 235–257 (2024). https://doi.org/10.3390/nanoenergyadv4030015
S. Jafarzadeh, A.L. Skov, Beyond planar: enhanced performance of hollow fiber dielectric elastomer actuators. Adv. Sci. 12(33), e04803 (2025). https://doi.org/10.1002/advs.202504803
D. Zhang, D. Wang, Z. Xu, X. Zhang, Y. Yang et al., Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 427, 213597 (2021). https://doi.org/10.1016/j.ccr.2020.213597
W.-Y. Guo, M.-G. Ma, Conductive nanocomposite hydrogels for flexible wearable sensors. J. Mater. Chem. A 12(16), 9371–9399 (2024). https://doi.org/10.1039/d3ta08069b
S. Chen, Z. Wu, C. Chu, Y. Ni, R.E. Neisiany et al., Biodegradable elastomers and gels for elastic electronics. Adv. Sci. 9(13), 2105146 (2022). https://doi.org/10.1002/advs.202105146
K. Mishra, S.S. Siwal, V.K. Thakur, E-waste recycling and utilization: a review of current technologies and future perspectives. Curr. Opin. Green Sustain. Chem. 47, 100900 (2024). https://doi.org/10.1016/j.cogsc.2024.100900
Y. Shi, F. Wang, J. Tian, S. Li, E. Fu et al., Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 7(6), eabe2943 (2021). https://doi.org/10.1126/sciadv.abe2943
T. Liu, Z. Zhao, R. Liang, H. He, Y. Liu et al., Tough and elastic anisotropic triboelectric materials enabled by layer-by-layer assembly. Adv. Funct. Mater. 35(26), 2500207 (2025). https://doi.org/10.1002/adfm.202500207
Y. Liu, J. Wang, T. Liu, Z. Wei, B. Luo et al., Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 16(1), 383 (2025). https://doi.org/10.1038/s41467-024-55771-0
X. Li, M. Weng, T. Liu, K. Yu, S. Zhang et al., Bioinspired heterogeneous wettability triboelectric sensors for sweat collection and monitoring. Adv. Mater. 38, e09920 (2026) https://doi.org/10.1002/adma.202509920
P. Yang, Y. Shi, S. Li, X. Tao, Z. Liu et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3), 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
Y. Shi, P. Yang, R. Lei, Z. Liu, X. Dong et al., Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat. Commun. 14(1), 3315 (2023). https://doi.org/10.1038/s41467-023-39068-2
C. Jiao, C. Li, J. Yue, L. Li, H. Yang et al., Structurally robust cellulosic triboelectric materials under high moisture conditions for self-powered sensing. Nano Energy 122, 109311 (2024). https://doi.org/10.1016/j.nanoen.2024.109311
C. Lu, C. Wang, J. Yu, J. Wang, F. Chu, Metal-free ATRP “grafting from” technique for renewable cellulose graft copolymers. Green Chem. 21(10), 2759–2770 (2019). https://doi.org/10.1039/c9gc00138g
Y. Nie, R. Yan, M. Li, S. Li, M. Lin et al., Flexible, recyclable, shape memory biomass supramolecular composite films from Castor oil and ethyl cellulose. Cellulose 31(2), 1115–1137 (2024). https://doi.org/10.1007/s10570-023-05690-y
R. Zhang, The opportunities of cellulose for triboelectric nanogenerators: a critical review. Nanoenergy Advances 4(3), 209–220 (2024). https://doi.org/10.3390/nanoenergyadv4030013
I.C.M. Candido, A.L. Freire, C.A.R. Costa, H.P. de Oliveira, Doped-cellulose acetate membranes as friction layers for triboelectric nanogenerators: the influence of roughness degree and surface potential on electrical performance. Nanoenergy Adv. 4(2), 196–208 (2024). https://doi.org/10.3390/nanoenergyadv4020012
T. Blachowicz, N.S. Mpofu, A. Ehrmann, Measuring physical and chemical properties of single nanofibers for energy applications: possibilities and limits. Nanoenergy Adv. 4(4), 300–317 (2024). https://doi.org/10.3390/nanoenergyadv4040018
A.R.B.K. Arasi, J. Bengtsson, M. Haque, H. Theliander, P. Enoksson et al., Influence of hardwood lignin blending on the electrical and mechanical properties of cellulose based carbon fibers. ACS Sustainable Chem. Eng. 12(30), 11206–11217 (2024). https://doi.org/10.1021/acssuschemeng.4c02052
Y. Xu, A. Atrens, J.R. Stokes, A review of nanocrystalline cellulose suspensions: rheology, liquid crystal ordering and colloidal phase behaviour. Adv. Colloid Interface Sci. 275, 102076 (2020). https://doi.org/10.1016/j.cis.2019.102076
Y. Li, W. Liang, W. Huang, M. Huang, J. Feng, Complexation between burdock holocellulose nanocrystals and corn starch: gelatinization properties, microstructure, and digestibility in vitro. Food Funct. 13(2), 548–560 (2022). https://doi.org/10.1039/D1FO03418A
S.-M. Chen, G.-Z. Wang, Y. Hou, X.-N. Yang, S.-C. Zhang et al., Hierarchical and reconfigurable interfibrous interface of bioinspired Bouligand structure enabled by moderate orderliness. Sci. Adv. 10(14), eadl1884 (2024). https://doi.org/10.1126/sciadv.adl1884
X. Xie, R. Luo, D. Sun, Y. Chen, X. Qi et al., Polymethyl methacrylate substrate-inducing highly ordered regenerated cellulose films toward ultra-high breakdown strength and charge–discharge efficiency. Macromolecules 57(18), 8889–8904 (2024). https://doi.org/10.1021/acs.macromol.4c00416
Y. Zhang, L. Tao, L. Zhao, C. Dong, Y. Liu et al., Fabrication of flame-retardant and water-resistant nanopapers through electrostatic complexation of phosphorylated cellulose nanofibers and chitin nanocrystals. J. Colloid Interface Sci. 676, 61–71 (2024). https://doi.org/10.1016/j.jcis.2024.07.111
X. Song, L. Wang, X. Ma, Y. Zeng, Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl. Surf. Sci. 396, 870–878 (2017). https://doi.org/10.1016/j.apsusc.2016.11.050
Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
Y. Li, Z. Wang, Q. Wei, M. Luo, G. Huang et al., Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polym. Chem. 7(38), 5949–5956 (2016). https://doi.org/10.1039/C6PY01104G
C. Wang, C. Tang, Y. Wang, Y. Shen, W. Qi et al., Chiral photonic materials self-assembled by cellulose nanocrystals. Curr. Opin. Solid State Mater. Sci. 26(5), 101017 (2022). https://doi.org/10.1016/j.cossms.2022.101017
Z.-X. Liu, H.-B. Yang, Z.-M. Han, W.-B. Sun, X.-X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24(3), 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
J. Zhao, W. Zhang, T. Liu, Y. Liu, Y. Qin et al., Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods 6(9), e2200664 (2022). https://doi.org/10.1002/smtd.202200664
X. He, H. Zou, Z. Geng, X. Wang, W. Ding et al., A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 28(45), 1805540 (2018). https://doi.org/10.1002/adfm.201805540
C.E. Boott, A. Tran, W.Y. Hamad, M.J. MacLachlan, Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem. Int. Ed. 59(1), 226–231 (2020). https://doi.org/10.1002/anie.201911468
S. Kang, G.M. Biesold, H. Lee, D. Bukharina, Z. Lin et al., Dynamic chiro-optics of bio-inorganic nanomaterials via seamless co-assembly of semiconducting nanorods and polysaccharide nanocrystals. Adv. Funct. Mater. 31(42), 2104596 (2021). https://doi.org/10.1002/adfm.202104596
O. Kose, A. Tran, L. Lewis, W.Y. Hamad, M.J. MacLachlan, Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat. Commun. 10, 510 (2019). https://doi.org/10.1038/s41467-019-08351-6
H. Zhang, Y. Cao, Y. Hu, Z. Liu, R.-A. Li, Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers. Int. J. Biol. Macromol. 296, 139681 (2025). https://doi.org/10.1016/j.ijbiomac.2025.139681
C. Huang, H. Yu, Y. Gao, Y. Chen, S.Y.H. Abdalkarim et al., Recent advances in green and efficient cellulose utilization through structure deconstruction and regeneration. Adv. Funct. Mater. 35(30), 2424591 (2025). https://doi.org/10.1002/adfm.202424591
Y. Zhang, L. Zhao, Y. Liu, C. Dong, K. Zhang, Production of flame-retardant phosphorylated cellulose nanofibrils by choline chloride based reactive deep eutectic solvent. Carbohydr. Polym. 348, 122931 (2025). https://doi.org/10.1016/j.carbpol.2024.122931
X. Yu, H. Huang, P. Zhang, X. Nong, N. Xiong et al., Crosslinking/spinning strategies of nanocellulose enhances the performances for self-powered wearable sensors. Nano Energy 135, 110649 (2025). https://doi.org/10.1016/j.nanoen.2025.110649
M. Zhong, X. Li, X. Chu, H. Gui, S. Zuo et al., Solar driven catalytic conversion of cellulose biomass into lactic acid over copper reconstructed natural mineral. Appl. Catal. B Environ. 317, 121718 (2022). https://doi.org/10.1016/j.apcatb.2022.121718
Y. Su, X. Wang, S. Zhou, H. Sun, B. Wang et al., Porous rigid-flexible polymer membrane interface towards high-rate and stable zinc-ion battery. J. Power. Sources 560, 232685 (2023). https://doi.org/10.1016/j.jpowsour.2023.232685
W. Jia, J.A. Kharraz, P.J. Choi, J. Guo, B.J. Deka et al., Superhydrophobic membrane by hierarchically structured PDMS-POSS electrospray coating with cauliflower-shaped beads for enhanced MD performance. J. Membr. Sci. 597, 117638 (2020). https://doi.org/10.1016/j.memsci.2019.117638
V. Chibrikov, P.M. Pieczywek, J. Cybulska, A. Zdunek, Evaluation of elasto-plastic properties of bacterial cellulose-hemicellulose composite films. Ind. Crops Prod. 205, 117578 (2023). https://doi.org/10.1016/j.indcrop.2023.117578
F. Ayadi, B. Martín-García, M. Colombo, A. Polovitsyn, A. Scarpellini et al., Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose. Carbohydr. Polym. 149, 217–223 (2016). https://doi.org/10.1016/j.carbpol.2016.04.103
T. Nakamura, T. Ishiyama, Molecular dynamics study of hydrogen bond structure and tensile strength for hydrated amorphous cellulose. Biomacromol 25(11), 7249–7259 (2024). https://doi.org/10.1021/acs.biomac.4c00950
Y. Shen, Q. Jia, S. Xu, J. Yu, C. Huang et al., Fast-photocurable, mechanically robust, and malleable cellulosic bio-thermosets based on hindered urea bond for multifunctional electronics. Adv. Funct. Mater. 34(7), 2310599 (2024). https://doi.org/10.1002/adfm.202310599
Q. Chen, Y. Chen, C. Wu, Probing the evolutionary mechanism of the hydrogen bond network of cellulose nanofibrils using three DESs. Int. J. Biol. Macromol. 234, 123694 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123694
H.-N. Li, C. Qu, L. Huo, S. Nagarajaiah, Equivalent bilinear elastic single degree of freedom system of multi-degree of freedom structure with negative stiffness. J. Sound Vib. 365, 1–14 (2016). https://doi.org/10.1016/j.jsv.2015.11.005
X. Zhang, X. Dai, L. Gao, D. Xu, H. Wan et al., The entropy-controlled strategy in self-assembling systems. Chem. Soc. Rev. 52(19), 6806–6837 (2023). https://doi.org/10.1039/d3cs00347g
D. Marenduzzo, K. Finan, P.R. Cook, The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175(5), 681–686 (2006). https://doi.org/10.1083/jcb.200609066
Z. Wu, X. Wu, Z. Yang, L. Ouyang, Internal energy ratios as ecological indicators for description of the phytoremediation process on a manganese tailing site. Ecol. Model. 374, 14–21 (2018). https://doi.org/10.1016/j.ecolmodel.2018.02.009
D. Chandler, Interfaces and the driving force of hydrophobic assembly. Nature 437(7059), 640–647 (2005). https://doi.org/10.1038/nature04162
K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales. J. Phys. Chem. B 103(22), 4570–4577 (1999). https://doi.org/10.1021/jp984327m
Y. Chen, T. Zhang, F. Long, R. Wang, Methodology for describing the whole process to accident based on entropy increase principle and Darwin’s natural selection. Process. Saf. Environ. Prot. 172, 165–183 (2023). https://doi.org/10.1016/j.psep.2023.02.011
D. Schick, M. Weißenhofer, L. Rózsa, U. Nowak, Skyrmions as quasips: free energy and entropy. Phys. Rev. B 103(21), 214417 (2021). https://doi.org/10.1103/physrevb.103.214417
S.M. Aguilera-Segura, F. Di Renzo, T. Mineva, Molecular insight into the cosolvent effect on lignin-cellulose adhesion. Langmuir 36(47), 14403–14416 (2020). https://doi.org/10.1021/acs.langmuir.0c02794
S.G. Fine, S.E. Branovsky, C.A.C. Chazot, Structural color out of the blue: a quantitative framework for the self-assembly kinetics of cholesteric cellulosic mesophases. Biomacromol 25(8), 4977–4990 (2024). https://doi.org/10.1021/acs.biomac.4c00411
L. Brunsveld, B.J.B. Folmer, E.W. Meijer, R.P. Sijbesma, Supramolecular polymers. Chem. Rev. 101(12), 4071–4098 (2001). https://doi.org/10.1021/cr990125q
L. Ma, H. Huang, E. Vargo, J. Huang, C.L. Anderson et al., Diversifying composition leads to hierarchical composites with design flexibility and structural fidelity. ACS Nano 15(9), 14095–14104 (2021). https://doi.org/10.1021/acsnano.1c04606
H. Dong, S. Wei, W. Chen, B. Lu, Z. Cai et al., Bioinspired lignocellulose foam: exceptional toughness and thermal insulation. ACS Nano 19(12), 11712–11727 (2025). https://doi.org/10.1021/acsnano.4c11945
B. Frka-Petesic, T.G. Parton, C. Honorato-Rios, A. Narkevicius, K. Ballu et al., Structural color from cellulose nanocrystals or chitin nanocrystals: self-assembly, optics, and applications. Chem. Rev. 123(23), 12595–12756 (2023). https://doi.org/10.1021/acs.chemrev.2c00836
R.M. Parker, B. Frka-Petesic, G. Guidetti, G. Kamita, G. Consani et al., Hierarchical self-assembly of cellulose nanocrystals in a confined geometry. ACS Nano 10(9), 8443–8449 (2016). https://doi.org/10.1021/acsnano.6b03355
E.E. Jaekel, J.A. Sirviö, M. Antonietti, S. Filonenko, One-step method for the preparation of cationic nanocellulose in reactive eutectic media. Green Chem. 23(6), 2317–2323 (2021). https://doi.org/10.1039/D0GC04282J
F. Liu, Z. He, T. Takarada, M. Maeda, G. Wang, DNA breathing at the nanointerface: molecular fundamentals and nanomaterials applications. Acc. Mater. Res. 6(9), 1105–1119 (2025). https://doi.org/10.1021/accountsmr.5c00123
B. Ilhan, F. Mugele, M.H.G. Duits, Roughness induced rotational slowdown near the colloidal glass transition. J. Colloid Interface Sci. 607(2), 1709–1716 (2022). https://doi.org/10.1016/j.jcis.2021.08.212
T. Willhammar, K. Daicho, D.N. Johnstone, K. Kobayashi, Y. Liu et al., Local crystallinity in twisted cellulose nanofibers. ACS Nano 15(2), 2730–2737 (2021). https://doi.org/10.1021/acsnano.0c08295
Z. Li, Q. Fan, Y. Yin, Colloidal self-assembly approaches to smart nanostructured materials. Chem. Rev. 122(5), 4976–5067 (2022). https://doi.org/10.1021/acs.chemrev.1c00482
Y. Zheng, J. Ren, N. Zhang, J. Li, Preparation of carbon nitride from different precursors through pyrolysis: correlating the photocatalytic activity to the crystallinity and disorder. J. Environ. Chem. Eng. 9(6), 106410 (2021). https://doi.org/10.1016/j.jece.2021.106410
M. Park, D. Lee, S. Shin, J. Hyun, Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanops for scaffolds in bone tissue engineering. Colloids Surf. B Biointerfaces 130, 222–228 (2015). https://doi.org/10.1016/j.colsurfb.2015.04.014
Y. Qin, Z. Song, L. Miao, C. Hu, Y. Chen et al., Hydrogen-bond-mediated micelle aggregating self-assembly towards carbon nanofiber networks for high-energy and long-life zinc ion capacitors. Chem. Eng. J. 470, 144256 (2023). https://doi.org/10.1016/j.cej.2023.144256
P. de Andrade, J.C. Muñoz-García, G. Pergolizzi, V. Gabrielli, S.A. Nepogodiev et al., Chemoenzymatic synthesis of fluorinated cellodextrins identifies a new allomorph for cellulose-like materials. Chem. 27(4), 1374–1382 (2021). https://doi.org/10.1002/chem.202003604
B. Lindman, B. Medronho, L. Alves, M. Norgren, L. Nordenskiöld, Hydrophobic interactions control the self-assembly of DNA and cellulose. Quart. Rev. Biophys. 54, e3 (2021). https://doi.org/10.1017/s0033583521000019
A.P. Sgouros, C.J. Revelas, A.T. Lakkas, D.N. Theodorou, Solvation free energy of dilute grafted (nano)ps in polymer melts via the self-consistent field theory. J. Phys. Chem. B 126(38), 7454–7474 (2022). https://doi.org/10.1021/acs.jpcb.2c05306
X. Yao, S. Zhang, N. Wei, L. Qian, S. Coseri, Cellulose-based conductive hydrogels for emerging intelligent sensors. Adv. Fiber Mater. 6(5), 1256–1305 (2024). https://doi.org/10.1007/s42765-024-00418-4
M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L.A. Berglund et al., Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 29(1), 1–23 (2022). https://doi.org/10.1007/s10570-021-04325-4
M.C. Jarvis, Hydrogen bonding and other non-covalent interactions at the surfaces of cellulose microfibrils. Cellulose 30(2), 667–687 (2023). https://doi.org/10.1007/s10570-022-04954-3
Z.-H. Guo, P.-L. Wang, Y.-T. Jiang, M.-G. Ma, 3D dual-network structure poly (vinyl alcohol)/cellulose nanofibers/MXene hydrogel evaporator with high-efficiency desalination for solar-driven water purification. Int. J. Biol. Macromol. 307(Pt 3), 142176 (2025). https://doi.org/10.1016/j.ijbiomac.2025.142176
M.S. Reid, M. Villalobos, E.D. Cranston, The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr. Opin. Colloid Interface Sci. 29, 76–82 (2017). https://doi.org/10.1016/j.cocis.2017.03.005
L. Zhang, H. Liu, Y. Liu, Z. Wu, Thermodynamic stability of cis-azobenzene containing DNA materials based on van der Waals forces. Chem. Commun. 58(23), 3811–3814 (2022). https://doi.org/10.1039/D2CC00035K
P. Zhu, M. Niu, S. Liang, W. Yang, Y. Zhang et al., Non-hand-worn, load-free VR hand rehabilitation system assisted by deep learning based on ionic hydrogel. Nano Res. 18(4), 94907301 (2025). https://doi.org/10.26599/nr.2025.94907301
J. Wu, X. Wu, F. Yang, X. Liu, F. Meng et al., Multiply cross-linked poly(vinyl alcohol)/cellulose nanofiber composite ionic conductive hydrogels for strain sensors. Int. J. Biol. Macromol. 225, 1119–1128 (2023). https://doi.org/10.1016/j.ijbiomac.2022.11.173
I. Hussain, S.M. Sayed, S. Liu, F. Yao, O. Oderinde et al., Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions. Eur. Polym. J. 100, 219–227 (2018). https://doi.org/10.1016/j.eurpolymj.2018.01.002
Y. Zhou, M. Ye, C. Hu, H. Qian, B.J. Nelson et al., Stimuli-responsive functional micro-/nanorobots: a review. ACS Nano 17(16), 15254–15276 (2023). https://doi.org/10.1021/acsnano.3c01942
J. Sun, H. He, K. Zhao, W. Cheng, Y. Li et al., Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat. Commun. 14(1), 5348 (2023). https://doi.org/10.1038/s41467-023-41084-1
S.M. Ali, S. Sk, S. Sarkar, S. Das, N. Sepay et al., Entropically and enthalpically driven self-assembly of a naphthalimide-based luminescent organic π-amphiphile in water. Soft Matter 20(43), 8684–8691 (2024). https://doi.org/10.1039/D4SM00986J
X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu et al., Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121(8), 4309–4372 (2021). https://doi.org/10.1021/acs.chemrev.0c01088
M. Esmaeili, S. Norouzi, K. George, G. Rezvan, N. Taheri-Qazvini et al., 3D printing-assisted self-assembly to bio-inspired bouligand nanostructures. Small 19(19), e2206847 (2023). https://doi.org/10.1002/smll.202206847
Y. Luo, Y. Li, K. Liu, L. Li, W. Wen et al., Modulating of bouligand structure and chirality constructed bionically based on the self-assembly of chitin whiskers. Biomacromol 24(6), 2942–2954 (2023). https://doi.org/10.1021/acs.biomac.3c00419
L. Zhang, L. Chen, S. Wang, S. Wang, D. Wang et al., Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15, 3859 (2024). https://doi.org/10.1038/s41467-024-47986-y
T. Wu, H. Jiang, Y. Zheng, C. Zhao, K. Shi et al., Superior impact resistance in bionic nanocellulose composite supramolecular elastomers via multiple hydrogen bonding interactions. Adv. Funct. Mater. 35(4), 2414221 (2025). https://doi.org/10.1002/adfm.202414221
S. Wang, Z. Yu, X. Sun, M. Panahi-Sarmad, P. Yang et al., A universal strategy to mitigate microphase separation via cellulose nanocrystal hydration in fabricating strong, tough, and fatigue-resistant hydrogels. Adv. Mater. 37(7), 2416916 (2025). https://doi.org/10.1002/adma.202416916
G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
J. Zhao, W. Zhang, T. Liu, B. Luo, Y. Qin et al., Multiscale structural triboelectric aerogels enabled by self-assembly driven supramolecular winding. Adv. Funct. Mater. 34(29), 2400476 (2024). https://doi.org/10.1002/adfm.202400476
W. Peng, J. Zhao, Q. Li, Y. Sun, G. Du et al., A strong and tough ion-gel enabled by hierarchical meshing and ion hybridizations collaboration. Adv. Funct. Mater. 35(5), 2414682 (2025). https://doi.org/10.1002/adfm.202414682
P. Cui, J. Chen, K. Fu, J. Deng, T. Sun et al., Bioinspired bouligand-structured cellulose nanocrystals/poly(vinyl alcohol) composite hydrogel for enhanced impact resistance. ACS Appl. Mater. Interf. 16(39), 53022–53032 (2024). https://doi.org/10.1021/acsami.4c13264
Y. Tang, C. Lu, R. Xiong, Biomimetic mechanically robust chiroptical hydrogel enabled by hierarchical bouligand structure engineering. ACS Nano 18(22), 14629–14639 (2024). https://doi.org/10.1021/acsnano.4c02677
M. He, X. Lv, Z. Li, H. Li, W. Qian et al., Research on efficient electromagnetic shielding performance and modulation mechanism of aero/organo/hydrogels with gravity-induced asymmetric gradient structure. Small 20(51), 2403210 (2024). https://doi.org/10.1002/smll.202403210
B. Wang, K. Nan, H. Rao, Y. Chen, R. Pei et al., Integrated design of multifunctional lightweight magnetic cellulose-based aerogel with 1D/2D/3D hierarchical network for efficient microwave absorption. Compos. Commun. 49, 101987 (2024). https://doi.org/10.1016/j.coco.2024.101987
S. Dolui, B. Sahu, S. Banerjee, Stimuli-responsive functional polymeric materials: recent advances and future perspectives. Macromol. Chem. Phys. 226(12), 2400472 (2025). https://doi.org/10.1002/macp.202400472
R. Nasseri, N. Bouzari, J. Huang, H. Golzar, S. Jankhani et al., Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics. Nat. Commun. 14(1), 6108 (2023). https://doi.org/10.1038/s41467-023-41874-7
X. Tang, G.B. Thompson, K. Ma, C.R. Weinberger, The role of entropy and enthalpy in high entropy carbides. Comput. Mater. Sci. 210, 111474 (2022). https://doi.org/10.1016/j.commatsci.2022.111474
S.R. Lee, K.M. Evans, J.W. Woodcock, J. Obrzut, L. Huang et al., Controlling impact mitigation via Bouligand nanostructures. Proc. Natl. Acad. Sci. U. S. A. 122(20), e2425191122 (2025). https://doi.org/10.1073/pnas.2425191122
B. Chen, W. Zhu, X. Huang, H. Huang, S. Shi et al., Flexible regenerated cellulose films with nanofiber-oriented structure as green dielectrics for dielectric energy storage. Ind. Crops Prod. 223, 120055 (2025). https://doi.org/10.1016/j.indcrop.2024.120055
Z. He, J. Xie, Z. Liao, Y. Ma, M. Zhang et al., Hierarchical porous structure contained composite polyimide film with enhanced dielectric and water resistance properties for dielectric material. Prog. Org. Coat. 151, 106030 (2021). https://doi.org/10.1016/j.porgcoat.2020.106030
H. Quan, A. Pirosa, W. Yang, R.O. Ritchie, M.A. Meyers, Hydration-induced reversible deformation of the pine cone. Acta Biomater. 128, 370–383 (2021). https://doi.org/10.1016/j.actbio.2021.04.049
W. Wang, F. Bai, K. Chu, M. Cai, X. Xu et al., Proton flux engineering via built-in electric fields in N-doped CuO@Co3O4@Ni(OH)2 heterostructure for rechargeable Zn-NO3−/5-hydroxymethylfurfural multielectron transfer systems. Angew. Chem. Int. Ed. 64(44), e202514438 (2025). https://doi.org/10.1002/anie.202514438
Y. Tang, B. Wu, J. Li, C. Lu, J. Wu et al., Biomimetic structural hydrogels reinforced by gradient twisted plywood architectures. Adv. Mater. 37(1), e2411372 (2025). https://doi.org/10.1002/adma.202411372
S. Wang, L. Yu, S. Wang, L. Zhang, L. Chen et al., Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nat. Commun. 13(1), 3408 (2022). https://doi.org/10.1038/s41467-022-30224-8
W. Yang, Y. Zhu, T. Liu, D. Puglia, J.M. Kenny et al., Multiple structure reconstruction by dual dynamic crosslinking strategy inducing self-reinforcing and toughening the polyurethane/nanocellulose elastomers. Adv. Funct. Mater. 33(12), 2213294 (2023). https://doi.org/10.1002/adfm.202213294
J. Huang, X. Zhang, R. Liu, Y. Ding, D. Guo, Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing. Nat. Commun. 14(1), 1483 (2023). https://doi.org/10.1038/s41467-023-37178-5
Y. Yang, L. Shao, J. Wang, Z. Ji, T. Zhang et al., An asymmetric layer structure enables robust multifunctional wearable bacterial cellulose composite film with excellent electrothermal/photothermal and EMI shielding performance. Small 20(22), 2308514 (2024). https://doi.org/10.1002/smll.202308514
M.B.K. Niazi, Z. Jahan, S.S. Berg, Ø.W. Gregersen, Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohydr. Polym. 177, 258–268 (2017). https://doi.org/10.1016/j.carbpol.2017.08.125
F. Wahid, F.-P. Wang, Y.-Y. Xie, L.-Q. Chu, S.-R. Jia et al., Reusable ternary PVA films containing bacterial cellulose fibers and ε-polylysine with improved mechanical and antibacterial properties. Colloids Surf. B Biointerf. 183, 110486 (2019). https://doi.org/10.1016/j.colsurfb.2019.110486
W. Wang, X. Ma, J. Si, Z. Cui, Q. Wang et al., Deacetylated cellulose acetate/polyurethane composite nanofiber membranes with highly efficient oil/water separation and excellent mechanical properties. Macromol. Mater. Eng. 306(10), 2100270 (2021). https://doi.org/10.1002/mame.202100270
J. Cai, J. Chen, Q. Zhang, M. Lei, J. He et al., Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties. Carbohydr. Polym. 140, 238–245 (2016). https://doi.org/10.1016/j.carbpol.2015.12.039
S.-A. Jin, E.G. Facchine, O.J. Rojas, S.A. Khan, R.J. Spontak, Cellulose nanofibers and the film-formation dilemma: drying temperature and tunable optical, mechanical and wetting properties of nanocomposite films composed of waterborne sulfopolyesters. J. Colloid Interface Sci. 598, 369–378 (2021). https://doi.org/10.1016/j.jcis.2021.04.032
X. Wang, M. Li, Y. Xiong, H. Qin, Q. Li et al., Cellulose nanocrystal composite membrane enhanced with in situ grown metal–organic frameworks for osmotic energy conversion. Small 21(3), 2408695 (2025). https://doi.org/10.1002/smll.202408695
R. Xue, H. Zhao, Z.-W. An, W. Wu, Y. Jiang et al., Self-healable, solvent response cellulose nanocrystal/waterborne polyurethane nanocomposites with encryption capability. ACS Nano 17(6), 5653–5662 (2023). https://doi.org/10.1021/acsnano.2c11809
X. Yang, S.K. Biswas, H. Yano, K. Abe, Fabrication of ultrastiff and strong hydrogels by in situ polymerization in layered cellulose nanofibers. Cellulose 27(2), 693–702 (2020). https://doi.org/10.1007/s10570-019-02822-1
W. Chen, D. Li, Y. Bu, G. Chen, X. Wan et al., Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts. Cellulose 27(3), 1113–1126 (2020). https://doi.org/10.1007/s10570-019-02871-6
Y. Zhang, Q. He, K. Kobayashi, R. Kusumi, M. Wada, Hydrogels from dextran/carboxymethyl cellulose exhibiting high post-drying swelling ratios and recovery. Cellulose 30(1), 263–276 (2023). https://doi.org/10.1007/s10570-022-04886-y
X. Li, H. Jiang, Y. Zhang, Q. Long, G. Jiang et al., Stimulation-reinforced cellulose–protein ionogels with superior mechanical strength and temperature resistance. Adv. Funct. Mater. 34(48), 2408160 (2024). https://doi.org/10.1002/adfm.202408160
H. Jiang, R. Bai, Y. Zhao, S. Shi, G. Jiang et al., Mechanically robust, highly conductive, wide-voltage cellulose ionogels enabled by molecular network reconstruction. Adv. Funct. Mater. 35(36), 2503512 (2025). https://doi.org/10.1002/adfm.202503512
Y. Wang, Z. Wang, K. Wu, J. Wu, G. Meng et al., Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr. Polym. 168, 112–120 (2017). https://doi.org/10.1016/j.carbpol.2017.03.070
Y. Wang, X. Li, H. Cheng, B. Wang, X. Feng et al., Facile fabrication of robust and stretchable cellulose nanofibers/polyurethane hybrid aerogels. ACS Sustain. Chem. Eng. 8(24), 8977–8985 (2020). https://doi.org/10.1021/acssuschemeng.0c01564
J.C.H. Wong, H. Kaymak, P. Tingaut, S. Brunner, M.M. Koebel, Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous Mesoporous Mater. 217, 150–158 (2015). https://doi.org/10.1016/j.micromeso.2015.06.025
N. Ning, Z. Wang, Y. Yao, L. Zhang, M. Tian, Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals. Carbohydr. Polym. 130, 262–267 (2015). https://doi.org/10.1016/j.carbpol.2015.03.083
H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad et al., Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132, 368–393 (2017). https://doi.org/10.1016/j.polymer.2017.09.043
H. Luo, J. Dong, F. Yao, Z. Yang, W. Li et al., Layer-by-layer assembled bacterial cellulose/graphene oxide hydrogels with extremely enhanced mechanical properties. Nano-Micro Lett. 10(3), 42 (2018). https://doi.org/10.1007/s40820-018-0195-3
Y. Wang, P. Chen, Y. Ding, P. Zhu, Y. Liu et al., Multifunctional nano-conductive hydrogels with high mechanical strength, toughness and fatigue resistance as self-powered wearable sensors and deep learning-assisted recognition system. Adv. Funct. Mater. 34(49), 2409081 (2024). https://doi.org/10.1002/adfm.202409081
P. Lu, Y. Yang, B. Luo, C. Cai, T. Liu et al., Multiscale structural strong yet tough triboelectric materials enabled by in situ microphase separation. Adv. Funct. Mater. 35(17), 2418336 (2025). https://doi.org/10.1002/adfm.202418336
C. Zeng, X. Zeng, X. Cheng, Y. Pang, J. Xu et al., Design of thermal interface materials with excellent interfacial heat/force transfer ability via hierarchical energy dissipation. Adv. Funct. Mater. 34(41), 2406075 (2024). https://doi.org/10.1002/adfm.202406075
C.H. Lu, C.H. Yu, Y.C. Yeh, Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomater. 130, 66–79 (2021). https://doi.org/10.1016/j.actbio.2021.05.055
X. Li, X. Qiu, X. Yang, P. Zhou, Q. Guo et al., Multi-modal melt-processing of birefringent cellulosic materials for eco-friendly anti-counterfeiting. Adv. Mater. 36(36), 2407170 (2024). https://doi.org/10.1002/adma.202407170
G. Zhou, H. Zhang, Z. Su, X. Zhang, H. Zhou et al., A biodegradable, waterproof, and thermally processable cellulosic bioplastic enabled by dynamic covalent modification. Adv. Mater. 35(25), 2301398 (2023). https://doi.org/10.1002/adma.202301398
L. Qiao, Y. Liang, J. Chen, Y. Huang, S.A. Alsareii et al., Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioact. Mater. 30, 129–141 (2023). https://doi.org/10.1016/j.bioactmat.2023.07.015
X. Zhang, F. Dong, M. Yu, X. Xu, H. Liu et al., Multifunctional waterborne polyurethane-cellulose nanofiber composite: realizing ultrarobust, photoluminescence and swift self-healing via multi-dynamic bonding. Chem. Eng. J. 507, 160302 (2025). https://doi.org/10.1016/j.cej.2025.160302
B. Lu, F. Lin, X. Jiang, J. Cheng, Q. Lu et al., One-pot assembly of microfibrillated cellulose reinforced PVA–borax hydrogels with self-healing and pH-responsive properties. ACS Sustainable Chem. Eng. 5(1), 948–956 (2017). https://doi.org/10.1021/acssuschemeng.6b02279
Z. Yang, R. Ni, Y. Yang, J. Qi, X. Lin et al., Carboxymethyl cellulose-based supramolecular hydrogel with thermo-responsive gel-sol transition for temporary plugging of oil pipeline in hot work. Carbohydr. Polym. 324, 121556 (2024). https://doi.org/10.1016/j.carbpol.2023.121556
T. Zhao, J. Wang, Y. Liu, X. Li, Y. Bai et al., Self-healing and toughness triboelectric materials enabled by dynamic nanoconfinement quenching. Adv. Funct. Mater. 34(51), 2410096 (2024). https://doi.org/10.1002/adfm.202410096
Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32(27), 2201846 (2022). https://doi.org/10.1002/adfm.202201846
J. Qiu, Q. Gu, Y. Sha, Y. Huang, M. Zhang et al., Preparation and application of dielectric polymers with high permittivity and low energy loss: a mini review. J. Appl. Polym. Sci. 139(24), 52367 (2022). https://doi.org/10.1002/app.52367
S.-D. Tsai, H.-Y. Yao, T.-H. Chang, Exploring relaxation behaviors in Hydrogen-Bond networks within binary mixtures of propylene carbonate and primary alcohols through broadband dielectric spectroscopy and molecular dynamic simulation. J. Mol. Liq. 405, 125043 (2024). https://doi.org/10.1016/j.molliq.2024.125043
A. Lahrichi, Y. El Issmaeli, E.E.N. Madila, S. Rousselot, M. Dollé et al., Tuning dielectric performance in novel Na1/2Er1/2Cu3Ti4O12 ceramics: the interplay of sintering temperature, grain size, and grain boundary resistance. Mater. Chem. Phys. 318, 129237 (2024). https://doi.org/10.1016/j.matchemphys.2024.129237
Z. Wang, J. Fan, Y. Li, X. Wang, H. Chen, High-k composites with sandwich structure by introducing a negative permittivity layer with Ni as conductive filler. Ceram. Int. 45(16), 20128–20132 (2019). https://doi.org/10.1016/j.ceramint.2019.06.278
Y. Wang, X. Tuo, G. Ye, Self-healing heterocyclic aramid nanofibers as dynamic interfacial cement for fabricating hybrid aramid paper. Chem. Eng. J. 511, 161662 (2025). https://doi.org/10.1016/j.cej.2025.161662
J. Chen, F. Ren, N. Yin, J. Mao, Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings. Chem. Eng. J. 479, 147581 (2024). https://doi.org/10.1016/j.cej.2023.147581
W. Chen, L. Gan, J. Xiong, G. Liu, T. Yang et al., Enhancing electromechanical conversion and motion-monitoring application of pore-oriented cellulose nanocrystal/agarose aerogel modified with flexible heterojunction structures. Carbohydr. Polym. 348, 122828 (2025). https://doi.org/10.1016/j.carbpol.2024.122828
T. Chen, J. Wang, X. Li, Y. Chen, S. Liu et al., High dielectric transparent polymer composite with well-organized carboxymethyl cellulose microfibers in silicon elastomer fabricated under direct current electric field. Carbohydr. Polym. 329, 121803 (2024). https://doi.org/10.1016/j.carbpol.2024.121803
S.-C. Shi, C. Chen, J.-L. Zhu, Y. Li, X. Meng et al., Environmentally friendly regenerated cellulose films with improved dielectric properties via manipulating the hydrogen bonding network. Appl. Phys. Lett. 119(2), 022903 (2021). https://doi.org/10.1063/5.0056164
Y.-C. Zhang, W.-D. Li, X. Zhao, F.-B. Meng, P. Sun et al., Epoxy-based high-k composite vitrimer: with low dielectric loss, high breakdown strength and surface electrical damage repairability. Chem. Eng. J. 473, 145199 (2023). https://doi.org/10.1016/j.cej.2023.145199
J. Qi, M. Cao, Y. Chen, Z. He, C. Tao et al., Cerium doped strontium titanate with stable high permittivity and low dielectric loss. J. Alloys Compd. 772, 1105–1112 (2019). https://doi.org/10.1016/j.jallcom.2018.09.061
S.P. Raghunathan, S. Narayanan, A.C. Poulose, R. Joseph, Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr. Polym. 157, 1024–1032 (2017). https://doi.org/10.1016/j.carbpol.2016.10.065
X. Zheng, Y. Yin, P. Wang, C. Sun, Q. Yang et al., High-performance dielectric film capacitors based on cellulose/Al2O3 nanosheets/PVDF composites. Int. J. Biol. Macromol. 243, 125220 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125220
P. Wang, Y. Yin, L. Fang, J. He, Y. Wang et al., Flexible cellulose/PVDF composite films with improved breakdown strength and energy density for dielectric capacitors. Compos. Part A Appl. Sci. Manuf. 164, 107325 (2023). https://doi.org/10.1016/j.compositesa.2022.107325
F. Zhang, X. Li, Z.-Y. Lan, N. Zhang, J.-H. Yang et al., Sandwich-structured cellulose acetate dielectric films toward high-temperature energy storage application. Carbohydr. Polym. 366, 123934 (2025). https://doi.org/10.1016/j.carbpol.2025.123934
H. Zhang, C. Fu, L.C. Yong, N. Sun, F.G. Liu, Flexible and transparent PVA/CNF hydrogel with ultrahigh dielectric constant. ACS Appl. Polym. Mater. 6(10), 5706–5713 (2024). https://doi.org/10.1021/acsapm.4c00302
L.L. Santoso, S.P. Prakoso, H.-K. Bui, Q.-A. Hong, S.-Y. Huang et al., A green high-k dielectric from modified carboxymethyl cellulose-based with dextrin. Macromol. Rapid Commun. 45(12), e2400059 (2024). https://doi.org/10.1002/marc.202400059
Z. Huang, R. Qin, H. Zhang, M. Guo, D. Zhang et al., Ambient-drying to construct unidirectional cellulose nanofibers/carbon nanotubes aerogel with ultra-lightweight, robust, and superior microwave absorption performance. Carbon 212, 118150 (2023). https://doi.org/10.1016/j.carbon.2023.118150
L. Du, Y. Li, Q. Zhou, L. Zhang, T. Shi et al., Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications. J. Colloid Interface Sci. 679(Pt A), 987–994 (2025). https://doi.org/10.1016/j.jcis.2024.10.057
Y.-Y. Wang, Z.-H. Zhou, J.-L. Zhu, W.-J. Sun, D.-X. Yan et al., Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B Eng. 220, 108985 (2021). https://doi.org/10.1016/j.compositesb.2021.108985
S. Feng, J. Deng, L. Yu, Y. Dong, Y. Zhu et al., Development of lightweight polypyrrole/cellulose aerogel composite with adjustable dielectric properties for controllable microwave absorption performance. Cellulose 27(17), 10213–10224 (2020). https://doi.org/10.1007/s10570-020-03497-9
H. Huang, X. Nong, P. Zhang, Y. Xu, J. Chen et al., Multiscale confinement-modulated cellulosic dielectric materials for energy harvesting and self-powered devices. Adv. Funct. Mater. 35(12), 2417509 (2025). https://doi.org/10.1002/adfm.202417509
S. Sriphan, T. Charoonsuk, S. Khaisaat, O. Sawanakarn, U. Pharino et al., Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. Nanotechnology 32(15), 155502 (2021). https://doi.org/10.1088/1361-6528/abd8ae
L.-F. Yang, X.-S. Zhang, X.-Y. Huang, J. Chen, Y.-F. Mao et al., Biomimetic bouligand structure assisted mechanical enhancement of highly p-filled polymer composites. Addit. Manuf. 100, 104666 (2025). https://doi.org/10.1016/j.addma.2025.104666
X. Bu, B. Zhou, J. Li, C. Gao, J. Guo, Orange peel-like triboelectric nanogenerators with multiscale micro-nano structure for energy harvesting and touch sensing applications. Nano Energy 122, 109280 (2024). https://doi.org/10.1016/j.nanoen.2024.109280
J. He, T. Lyu, D. Song, Z. Song, X. Fan et al., A universal orientation-engineering strategy for enhancing mechano-electric conversion performance in semi-crystalline biopolymers. Adv. Mater. 37(44), e10157 (2025). https://doi.org/10.1002/adma.202510157
J. Lin, Y. Mao, T. Zheng, Y. Cui, S. Li et al., Electric field-induced dual-gradient heterojunction diodes toward ultrasensitive self-powered ionic skin. Adv. Mater. 37(21), e2500949 (2025). https://doi.org/10.1002/adma.202500949
H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang et al., Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 8(37), 19631–19640 (2020). https://doi.org/10.1039/D0TA03054F
X. Fu, L. Si, Z. Zhang, T. Yang, Q. Feng et al., Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat. Commun. 16(1), 2357 (2025). https://doi.org/10.1038/s41467-025-57646-4
K. Zhang, J. Chen, X. Shi, H. Qian, G. Wu et al., Bioinspired self-healing and robust elastomer via tailored slipping semi-crystalline arrays for multifunctional electronics. Chem. Eng. J. 454, 139982 (2023). https://doi.org/10.1016/j.cej.2022.139982
H. Tong, Z. Pan, X. Fu, Y. Zhou, X. Zhang et al., An oriented interpenetrating network structure multi-stimuli responsive hydrogel. Macromol. Rapid Commun. 46(5), e2400841 (2025). https://doi.org/10.1002/marc.202400841
V.A. Burmistrov, V.V. Alexandriysky, I.V. Novikov, O.I. Koifman, Dielectric and orientation effects of ‘classical’ and supramolecular liquid crystals self-assembly. Liq. Cryst. 46(2), 193–202 (2019). https://doi.org/10.1080/02678292.2018.1483036
D.-L. Li, S.-C. Shi, K.-Y. Lan, C.-Y. Liu, Y. Li et al., Enhanced dielectric properties of all-cellulose composite film via modulating hydroxymethyl conformation and hydrogen bonding network. ACS Macro Lett. 12(7), 880–887 (2023). https://doi.org/10.1021/acsmacrolett.3c00224
Q. Luo, H. Shen, G. Zhou, X. Xu, A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components. Carbohydr. Polym. 303, 120449 (2023). https://doi.org/10.1016/j.carbpol.2022.120449
B. Jiang, W. Yang, H. Bai, C. Zhang, S. Li et al., Multiscale structure and interface engineering of Fe/Fe3C in situ encapsulated in nitrogen-doped carbon for stable and efficient multi-band electromagnetic wave absorption. J. Mater. Sci. Technol. 158, 9–20 (2023). https://doi.org/10.1016/j.jmst.2023.02.030
M. Latif, Y. Jiang, J. Kim, Additively manufactured flexible piezoelectric lead zirconate titanate-nanocellulose films with outstanding mechanical strength, dielectric and piezoelectric properties. Mater. Today Adv. 21, 100478 (2024). https://doi.org/10.1016/j.mtadv.2024.100478
Y. Lu, Q. Qin, J. Meng, Y. Mi, X. Wang et al., Constructing highly flexible dielectric sponge for enhancing triboelectric performance. Chem. Eng. J. 468, 143802 (2023). https://doi.org/10.1016/j.cej.2023.143802
G. Du, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 10(15), 2206243 (2023). https://doi.org/10.1002/advs.202206243
N. Luo, G. Xu, Y. Feng, D. Yang, Y. Wu et al., Ice-based triboelectric nanogenerator with low friction and self-healing properties for energy harvesting and ice broken warning. Nano Energy 97, 107144 (2022). https://doi.org/10.1016/j.nanoen.2022.107144
W. Peng, Y. Zhang, Z. Zhang, H. Zhao, H. Huang et al., Liquid metal-promoted supramolecular interactions enable ultrafast self-healing triboelectric materials with high performance at room temperature. Nano Lett. 25(16), 6622–6630 (2025). https://doi.org/10.1021/acs.nanolett.5c00665
S.S. Nardekar, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.J. Kim, MoS2 quantum sheets-PVDF nanocomposite film based self-poled piezoelectric nanogenerators and photovoltaically self-charging power cell. Nano Energy 93, 106869 (2022). https://doi.org/10.1016/j.nanoen.2021.106869
Z. He, B. Gao, T. Li, J. Liao, B. Liu et al., Piezoelectric-driven self-powered patterned electrochromic supercapacitor for human motion energy harvesting. ACS Sustainable Chem. Eng. 7(1), 1745–1752 (2019). https://doi.org/10.1021/acssuschemeng.8b05606
C. Li, W. Pang, Z. Li, C. Chen, Z. Long et al., Droplet-piezoelectric nanogenerators for simultaneous harvesting of droplet electrostatic and mechanical energy. Chem. Eng. J. 518, 164565 (2025). https://doi.org/10.1016/j.cej.2025.164565
K.K. Meena, I. Arief, A.K. Ghosh, A. Knapp, M. Nitschke et al., Transfer-printed wrinkled PVDF-based tactile sensor-nanogenerator bundle for hybrid piezoelectric-triboelectric potential generation. Small 21(26), 2502767 (2025). https://doi.org/10.1002/smll.202502767
X. Chou, J. Zhu, S. Qian, X. Niu, J. Qian et al., All-in-one filler-elastomer-based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring. Nano Energy 53, 550–558 (2018). https://doi.org/10.1016/j.nanoen.2018.09.006
Y. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007). https://doi.org/10.1021/nl071310j
Q. Xu, J. Wen, Y. Qin, Development and outlook of high output piezoelectric nanogenerators. Nano Energy 86, 106080 (2021). https://doi.org/10.1016/j.nanoen.2021.106080
E.J. Lee, T.Y. Kim, S.-W. Kim, S. Jeong, Y. Choi et al., High-performance piezoelectric nanogenerators based on chemically-reinforced composites. Energy Environ. Sci. 11(6), 1425–1430 (2018). https://doi.org/10.1039/c8ee00014j
Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
G. Muscalu, B. Firtat, A. Anghelescu, C. Moldovan, S. Dinulescu et al., Piezoelectric MEMS energy harvester for low-power applications. Electronics 13(11), 2087 (2024). https://doi.org/10.3390/electronics13112087
W. Li, T. Yang, C. Liu, Y. Huang, C. Chen et al., Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv. Sci. 9(13), 2105550 (2022). https://doi.org/10.1002/advs.202105550
Y. Xue, T. Yang, Y. Zheng, K. Wang, E. Wang et al., Heterojunction engineering enhanced self-polarization of PVDF/CsPbBr3/Ti3C2Tx composite fiber for ultra-high voltage piezoelectric nanogenerator. Adv. Sci. 10(18), 2300650 (2023). https://doi.org/10.1002/advs.202300650
S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh et al., Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463(7282), 789–792 (2010). https://doi.org/10.1038/nature08731
Y. Yan, L.D. Geng, L.-F. Zhu, H. Leng, X. Li et al., Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Adv. Sci. 9(14), 2105715 (2022). https://doi.org/10.1002/advs.202105715
Y. Li, W. Tong, J. Yang, Z. Wang, D. Wang et al., Electrode-free piezoelectric nanogenerator based on carbon black/polyvinylidene fluoride–hexafluoropropylene composite achieved via interface polarization effect. Chem. Eng. J. 457, 141356 (2023). https://doi.org/10.1016/j.cej.2023.141356
C. Yang, S. Song, F. Chen, N. Chen, Fabrication of PVDF/BaTiO3/CNT piezoelectric energy harvesters with bionic Balsa wood structures through 3D printing and supercritical carbon dioxide foaming. ACS Appl. Mater. Interfaces 13(35), 41723–41734 (2021). https://doi.org/10.1021/acsami.1c11843
Y. Han, L. Song, H. Du, G. Wang, T. Zhang et al., Enhancing structural response via macro-micro hierarchy for piezoelectric nanogenerator and self-powered wearable controller. Chem. Eng. J. 481, 148729 (2024). https://doi.org/10.1016/j.cej.2024.148729
S. Ye, C. Cheng, X. Chen, X. Chen, J. Shao et al., High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 60, 701–714 (2019). https://doi.org/10.1016/j.nanoen.2019.03.096
X. Chen, H. Tian, X. Li, J. Shao, Y. Ding et al., A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale 7(27), 11536–11544 (2015). https://doi.org/10.1039/c5nr01746g
S.K. Ghosh, D. Mandal, Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018). https://doi.org/10.1016/j.nanoen.2018.08.036
Z. Niu, Q. Wang, J. Lu, Y. Hu, J. Huang et al., Electrospun cellulose nanocrystals reinforced flexible sensing paper for triboelectric energy harvesting and dynamic self-powered tactile perception. Small 20(17), 2307810 (2024). https://doi.org/10.1002/smll.202307810
J. Su, Z. Niu, Y. Hu, Y. Chen, C. Zeng et al., Superelastic triboelectric aerogel enabled by cross-scale fibers and heterojunction ps for wearable intelligent neck guard. Adv. Funct. Mater. e15065 (2025). https://doi.org/10.1002/adfm.202515065
A. Ahmed, I. Hassan, M.F. El-Kady, A. Radhi, C.K. Jeong et al., Integrated triboelectric nanogenerators in the era of the Internet of Things. Adv. Sci. 6(24), 1802230 (2019). https://doi.org/10.1002/advs.201802230
Y.-M. Wang, X. Zhang, Y. Ran, C. Liu, D. Wang et al., Advances in metal–organic framework-based triboelectric nanogenerators. ACS Mater. Lett. 6(8), 3883–3898 (2024). https://doi.org/10.1021/acsmaterialslett.4c00773
P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
Z. Peng, Z. Niu, C. Zeng, W. Zhao, J. Leng et al., Design and functional verification of a flexible wireless spinal cord stimulator with spinal motion monitoring function. Nano Energy 139, 110895 (2025). https://doi.org/10.1016/j.nanoen.2025.110895
H. Guo, X. Jia, L. Liu, X. Cao, N. Wang et al., Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano 12(4), 3461–3467 (2018). https://doi.org/10.1021/acsnano.8b00140
Y. Yu, Q. Gao, X. Zhang, D. Zhao, X. Xia et al., Contact-sliding-separation mode triboelectric nanogenerator. Energy Environ. Sci. 16(9), 3932–3941 (2023). https://doi.org/10.1039/d3ee01290e
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184–6193 (2013). https://doi.org/10.1002/adma.201302808
V. Harnchana, H.V. Ngoc, W. He, A. Rasheed, H. Park et al., Enhanced power output of a triboelectric nanogenerator using poly(dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate. ACS Appl. Mater. Interfaces 10(30), 25263–25272 (2018). https://doi.org/10.1021/acsami.8b02495
Y. Yang, H. Zhang, J. Chen, S. Lee, T.-C. Hou et al., Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6(6), 1744–1749 (2013). https://doi.org/10.1039/C3EE40764K
C. Zhang, W. Zhang, G. Du, Q. Fu, J. Mo et al., Superhydrophobic cellulosic triboelectric materials for distributed energy harvesting. Chem. Eng. J. 452, 139259 (2023). https://doi.org/10.1016/j.cej.2022.139259
D. Lu, T. Liu, X. Meng, B. Luo, J. Yuan et al., Wearable triboelectric visual sensors for tactile perception. Adv. Mater. 35(7), 2209117 (2023). https://doi.org/10.1002/adma.202209117
W. Zhao, N. Li, X. Liu, L. Liu, C. Yue et al., 4D printed shape memory metamaterials with sensing capability derived from the origami concept. Nano Energy 115, 108697 (2023). https://doi.org/10.1016/j.nanoen.2023.108697
S. Liu, Z. Niu, W. Zhao, C. Zeng, Y. Liu et al., 4D printed kirigami metamaterial with reconfigurability for dual-mode displacement-pressure sensing. Chem. Eng. J. 519, 165392 (2025). https://doi.org/10.1016/j.cej.2025.165392
F. Wang, C. Jia, S. Wang, Y. Liu, S. Ouyang et al., Ultrahigh charge density of cellulose-based triboelectric materials based on built-in electric field and deep trap synergy. Nano Lett. 25(20), 8360–8368 (2025). https://doi.org/10.1021/acs.nanolett.5c01627
Z. Liu, Y. Huang, Y. Shi, X. Tao, H. He et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13(1), 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
Z. Liu, Y.-Z. Huang, Y. Shi, X. Tao, P. Yang et al., Creating ultrahigh and long-persistent triboelectric charge density on weak polar polymer via quenching polarization. Adv. Funct. Mater. 33(34), 2302164 (2023). https://doi.org/10.1002/adfm.202302164
P. Yang, Y. Shi, X. Tao, Z. Liu, X. Dong et al., Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator. Matter 6(4), 1295–1311 (2023). https://doi.org/10.1016/j.matt.2023.02.006
X. Tao, P. Yang, Z. Liu, S. Qin, J. Hu et al., Acid-doped pyridine-based polybenzimidazole as a positive triboelectric material with superior charge retention capability. ACS Nano 18(5), 4467–4477 (2024). https://doi.org/10.1021/acsnano.3c11087
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/C4FD00159A
S. Qin, J. Chen, P. Yang, Z. Liu, X. Tao et al., A piezo-tribovoltaic nanogenerator with ultrahigh output power density and dynamic sensory functions. Adv. Energy Mater. 14(2), 2303080 (2024). https://doi.org/10.1002/aenm.202303080
X. Wang, P. Yang, S. Qin, H. Gong, Z. Meng et al., Dual-functional sensor with contact-based and contactless motion detection using magnetic and electrostatic induction. Device 3(12), 100930 (2025). https://doi.org/10.1016/j.device.2025.100930
Y. Jiang, X. Liu, Y. Wang, C. Tian, D. Wu et al., High energy harvesting performances silicone elastomer via filling soft dielectric with stretching deformability. Adv. Mater. 35(22), 2300246 (2023). https://doi.org/10.1002/adma.202300246
J.-H. Zhang, Z. Li, Z. Liu, M. Li, J. Guo et al., Inorganic dielectric materials coupling micro-/nanoarchitectures for state-of-the-art biomechanical-to-electrical energy conversion devices. Adv. Mater. 37(28), 2419081 (2025). https://doi.org/10.1002/adma.202419081
W. Wu, Z. Dong, Y. Wang, W. Zang, Y. Jiang et al., Largely enhanced energy harvesting performance of silicone-based dielectric elastomer generators through controlling the uniaxial device structure. ACS Sustain. Chem. Eng. 12(14), 5447–5458 (2024). https://doi.org/10.1021/acssuschemeng.3c07155
Z. Wang, C. Tang, Y. Wang, L. Zhou, X. Dong et al., Enhancing the energy conversion efficiency of dielectric elastomer generators via elastic energy storage and recovery. Appl. Energy 379, 124854 (2025). https://doi.org/10.1016/j.apenergy.2024.124854
Z. Xu, K. Bao, K. Di, H. Chen, J. Tan et al., High-performance dielectric elastomer nanogenerator for efficient energy harvesting and sensing via alternative current method. Adv. Sci. 9(18), 2201098 (2022). https://doi.org/10.1002/advs.202201098
X. Du, L. Du, P. Li, X. Liu, Y. Han et al., A dielectric elastomer and electret hybrid ocean wave power generator with oscillating water column. Nano Energy 111, 108417 (2023). https://doi.org/10.1016/j.nanoen.2023.108417
Z. Lai, M. Wu, J. Zhang, Z. Wang, A. Feng et al., A pendulum-type annular dielectric elastomer generator for multi-directional ultra-low-frequency vibration energy harvesting. Mech. Syst. Signal Process. 220, 111704 (2024). https://doi.org/10.1016/j.ymssp.2024.111704
C.L. Zhang, Z.H. Lai, X.X. Rao, J.W. Zhang, D. Yurchenko, Energy harvesting from a novel contact-type dielectric elastomer generator. Energy Convers. Manage. 205, 112351 (2020). https://doi.org/10.1016/j.enconman.2019.112351
Z. Xu, J. Tan, H. Chen, K. Di, K. Bao et al., Fatigue-resistant high-performance dielectric elastomer generator in alternating current method. Nano Energy 109, 108314 (2023). https://doi.org/10.1016/j.nanoen.2023.108314
D. Min, H. Cui, Y. Hai, P. Li, Z. Xing et al., Interfacial regions and network dynamics in epoxy/POSS nanocomposites unravelling through their effects on the motion of molecular chains. Compos. Sci. Technol. 199, 108329 (2020). https://doi.org/10.1016/j.compscitech.2020.108329
S. Qin, P. Yang, Z. Liu, J. Hu, N. Li et al., Triboelectric sensor with ultra-wide linear range based on water-containing elastomer and ion-rich interface. Nat. Commun. 15(1), 10640 (2024). https://doi.org/10.1038/s41467-024-54980-x
S.A. Graham, B. Dudem, H. Patnam, A.R. Mule, J.S. Yu, Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters. ACS Energy Lett. 5(7), 2140–2148 (2020). https://doi.org/10.1021/acsenergylett.0c00635
Z. Yu, Z. Zhu, Y. Zhang, X. Li, X. Liu et al., Biodegradable and flame-retardant cellulose-based wearable triboelectric nanogenerator for mechanical energy harvesting in firefighting clothing. Carbohydr. Polym. 334, 122040 (2024). https://doi.org/10.1016/j.carbpol.2024.122040
D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b
H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang et al., High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018). https://doi.org/10.1016/j.nanoen.2018.03.050
Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28(13), 1706365 (2018). https://doi.org/10.1002/adfm.201706365
Z. Liu, S. Li, S. Lin, Y. Shi, P. Yang et al., Crystallization-induced shift in a triboelectric series and even polarity reversal for elastic triboelectric materials. Nano Lett. 22(10), 4074–4082 (2022). https://doi.org/10.1021/acs.nanolett.2c00767
C.H. Barty-King, C.L.C. Chan, R.M. Parker, M.M. Bay, R. Vadrucci et al., Mechanochromic, structurally colored, and edible hydrogels prepared from hydroxypropyl cellulose and gelatin. Adv. Mater. 33(37), 2102112 (2021). https://doi.org/10.1002/adma.202102112
C. Lu, X. Wang, Y. Shen, S. Xu, C. Huang et al., Skin-like transparent, high resilience, low hysteresis, fatigue-resistant cellulose-based eutectogel for self-powered E-skin and human–machine interaction. Adv. Funct. Mater. 34(13), 2311502 (2024). https://doi.org/10.1002/adfm.202311502
J. Seong, B.-U. Bak, D. Lee, J. Jin, J. Kim, Tribo-piezoelectric synergistic BaTiO3/PDMS micropyramidal structure for high-performance energy harvester and high-sensitivity tactile sensing. Nano Energy 122, 109264 (2024). https://doi.org/10.1016/j.nanoen.2024.109264
J. Imbrogno, K. Maruyama, F. Rivers, J.R. Baltzegar, Z. Zhang et al., Relationship between ionic conductivity, glass transition temperature, and dielectric constant in poly(vinyl ether) lithium electrolytes. ACS Macro Lett. 10(8), 1002–1007 (2021). https://doi.org/10.1021/acsmacrolett.1c00305
H. Zhang, D. Zhang, H. Cai, Y. Ma, K. Li et al., A bacterial cellulose-based multifunctional conductive hydrogel for flexible strain sensors and supercapacitors. Carbohydr. Polym. 360, 123601 (2025). https://doi.org/10.1016/j.carbpol.2025.123601
H. Du, Z. Cheng, Y. Liu, M. Hu, M. Xia et al., Polydopamine-modified cellulose nanofiber composite hydrogel with strong toughness and high adhesion for human motion detection and wireless sensing. Cellulose 31(10)