Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting
Corresponding Author: Qingyu Yan
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 67
Abstract
Due to the rapidly increasing demand for energy and environmental sustainability, stable and economical hydrogen production has received increasing attention in the past decades. In this regard, hydrogen production through photo- or electrocatalytic water splitting has continued to gain ever-growing interest. However, the existing catalysts are still unable to fulfill the demands of high-efficiency, low-cost, and sustainable hydrogen production. Layered metal trichalcogenidophosphate (MPQ3) is a newly developed two-dimensional material with tunable composition and electronic structure. Recently, MPQ3 has been considered a promising candidate for clean energy generation and related water splitting applications. In this minireview, we firstly introduce the structure and methods for the synthesis of MPQ3 materials. In the following sections, recent developments of MPQ3 materials for photo- and electrocatalytic water splitting are briefly summarized. The roles of MPQ3 materials in different reaction systems are also discussed. Finally, the challenges related to and prospects of MPQ3 materials are presented on the basis of the current developments.
Highlights:
1 Layered metal trichalcogenidophosphate (MPQ3) is a newly developed 2D material with tunable composition and electronic structure, and is a promising candidate for clean energy generation and related water splitting applications.
2 There are no comprehensive studies on layered MPQ3 materials for photo- and electrocatalytic water splitting; here, we provide a brief summary of recent work and offer an overview of this promising field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235–264 (2002). https://doi.org/10.1016/s0360-3199(01)00131-8
- M. Momirlan, T. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 30(7), 795–802 (2005). https://doi.org/10.1016/j.ijhydene.2004.10.011
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
- F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20(1), 35–54 (2008). https://doi.org/10.1021/cm7024203
- X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010). https://doi.org/10.1021/cr1001645
- S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
- Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45(6), 1529–1541 (2016). https://doi.org/10.1039/C5CS00434A
- J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
- J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23–J26 (2005). https://doi.org/10.1149/1.1856988
- M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–1251 (2015). https://doi.org/10.1038/nmat4410
- W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E.I. Altman, H. Wang, A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 7, 10771 (2016). https://doi.org/10.1038/ncomms10771
- Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. Wang, Q. Yan, Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11), 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050
- M.C. Friedel, Soufre et ses composés—sur une nouvelle série de sulfophosphures, les thiohypophosphates. C. R. l’Academie. Sci. Ser. III. 119, 260 (1894)
- H. Hahn, W. Klingen, Uber einige ternäre verbindungen vom typ des arsenopyrits. Naturwissenschaften 52(17), 494 (1965). https://doi.org/10.1007/bf00646574
- W. Klingen, G. Eulenberger, H. Hahn, Uber hexathio- und hexaselenohypodiphosphate vom typ M2 II P2X6. Naturwissenschaften 55(5), 229–230 (1968). https://doi.org/10.1007/bf00606219
- W. Klingen, G. Eulenberger, H. Hahn, Uber hexachalkogeno-hypodiphosphate vom typ M2P2X6. Naturwissenschaften 57(2), 88 (1970). https://doi.org/10.1007/bf00590690
- R. Nitsche, P. Wild, Crystal growth of metal-phosphorus-sulfur compounds by vapor transport. Mater. Res. Bull. 5(6), 419–423 (1970). https://doi.org/10.1016/0025-5408(70)90080-2
- W. Klingen, G. Eulenberger, H. Hahn, Uber die kristallstrukturen von Fe2P2Se6 und Fe2P2S6. Z. Anorg. Allg. Chem. 401(1), 97–112 (1973). https://doi.org/10.1002/zaac.19734010113
- W. Klingen, R. Ott, H. Hahn, Uber die darstellung und eigenschaften von hexathio- und hexaselenohypodiphosphaten. Z. Anorg. Allg. Chem. 396(3), 271–278 (1973). https://doi.org/10.1002/zaac.19733960305
- R. Nitsche, Crystal chemistry, growth and properties of multi-cation chalcogenides. J. Phys. Colloq. 36(C3), 9–15 (1975). https://doi.org/10.1051/jphyscol:1975302
- M.Z. Jandali, G. Eulenberger, H. Hahn, Die kristallstrukturen von Hg2P2S6 und Hg2P2Se6. Z. Anorg. Allg. Chem. 447(1), 105–118 (1978). https://doi.org/10.1002/zaac.19784470110
- A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3. Solid State Commun. 40(12), 1067–1072 (1981). https://doi.org/10.1016/0038-1098(81)90253-2
- G. Ouvrard, R. Brec, J. Rouxel, Structural determination of some MPS3 layered phases (M = Mn, Fe Co, Ni and Cd). Mater. Res. Bull. 20(10), 1181–1189 (1985). https://doi.org/10.1016/0025-5408(85)90092-3
- G. Ouvrard, R. Fréour, R. Brec, J. Rouxel, A mixed valence compound in the two dimensional MPS3 family: V0.78PS3 structure and physical properties. Mater. Res. Bull. 20(9), 1053–1062 (1985). https://doi.org/10.1016/0025-5408(85)90204-1
- R. Brec, Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ionics 22(1), 3–30 (1986). https://doi.org/10.1016/0167-2738(86)90055-x
- E. Prouzet, G. Ouvrard, R. Brec, Structure determination of ZnPS3. Mater. Res. Bull. 21(2), 195–200 (1986). https://doi.org/10.1016/0025-5408(86)90206-0
- P.J.S. Foot, T. Katz, S.N. Patel, B.A. Nevett, A.R. Pieecy, A.A. Balchin, The structures and conduction mechanisms of lithium-intercalated and lithium-substituted nickel phosphorus trisulphide (NiPS3), and the use of the material as a secondary battery electrode. Phys. Status Solidi A 100(1), 11–29 (1987). https://doi.org/10.1002/pssa.2211000102
- Z. Ouili, A. Leblanc, P. Colombet, Crystal structure of a new lamellar compound: Ag1/2In1/2PS3. J. Solid State Chem. 66(1), 86–94 (1987). https://doi.org/10.1016/0022-4596(87)90223-4
- S. Lee, P. Colombet, G. Ouvrard, R. Brec, General trends observed in the substituted thiophosphate family. Synthesis and structure of silver scandium thiophosphate, AgScP2S6, and cadmium iron thiophosphate, CdFeP2S6. Inorg. Chem. 27(7), 1291–1294 (1988). https://doi.org/10.1021/ic00280a041
- A. Aruchamy, Photoelectrochemical investigation of n- and p-doped nickel phosphorous trisulfide(NiPS3). J. Electrochem. Soc. 136(8), 2261 (1989). https://doi.org/10.1149/1.2097288
- A. Bhowmick, B. Bal, S. Ganguly, M. Bhattacharya, M.L. Kundu, Investigation of the layered compound fe0.5cd0.5ps3. J. Phys. Chem. Solids 53(10), 1279–1284 (1992). https://doi.org/10.1016/0022-3697(92)90246-A
- P.A. Joy, S. Vasudevan, Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992). https://doi.org/10.1103/PhysRevB.46.5425
- R. Pfeiff, R. Kniep, Quaternary selenodiphosphates(iv): MIMIII[P2Se6], (MI = Cu, Ag; MIII = Cr, Al, Ga, In). J. Alloys Compd. 186(1), 111–133 (1992). https://doi.org/10.1016/0925-8388(92)90626-K
- F. Boucher, M. Evain, R. Brec, Second-order jahn—teller effect in CdPS3 and ZnPS3 demonstrated by a non-harmonic behaviour of Cd2+ and Zn2+ d10 ions. J. Alloys Compd. 215(1–2), 63–70 (1994). https://doi.org/10.1016/0925-8388(94)90819-2
- A. Simon, J. Ravez, V. Maisonneuve, C. Payen, V.B. Cajipe, Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater. 6(9), 1575–1580 (1994). https://doi.org/10.1021/cm00045a016
- F. Boucher, M. Evain, R. Brec, Phase transition upon d10 Cd2+ ordering in CdPS3. Acta Crystallogr. B 51, 952–961 (1995). https://doi.org/10.1107/s0108768195004824
- T. Coradin, R. Clément, P.G. Lacroix, K. Nakatani, From intercalation to aggregation: nonlinear optical properties of stilbazolium chromophores-mps3 layered hybrid materials. Chem. Mater. 8(8), 2153–2158 (1996). https://doi.org/10.1021/cm960060x
- X. Bourdon, V. Maisonneuve, V.B. Cajipe, C. Payen, J.E. Fischer, Copper sublattice ordering in layered CuMP2Se6 (M = In, Cr). J. Alloys Compd. 283(1–2), 122–127 (1999). https://doi.org/10.1016/S0925-8388(98)00899-8
- D. Gonbeau, T. Coradin, R. Clement, Xps study of stilbazolium chromophores and their intercalation compounds in the MnPS3 layered phase. J. Phys. Chem. B 103(18), 3545–3551 (1999). https://doi.org/10.1021/jp9843196
- T.V. Misuryaev, T.V. Murzina, O.A. Aktsipetrov, N.E. Sherstyuk, V.B. Cajipe, X. Bourdon, Second harmonic generation in the lamellar ferrielectric CuInP2S6. Solid State Commun. 115, 605–608 (2000). https://doi.org/10.1016/S0038-1098(00)00257-X
- S. Jörgens, A. Mewis, Die kristallstrukturen von hexachalcogeno-hypodiphosphaten des magnesiums und zinks. Z. Anorg. Allg. Chem. 630(1), 51–57 (2004). https://doi.org/10.1002/zaac.200300244
- R.F. Frindt, D. Yang, P. Westreich, Exfoliated single molecular layers of Mn0.8PS3 and Cd0.8PS3. J. Mater. Res. 20(5), 1107–1112 (2005). https://doi.org/10.1557/JMR.2005.0161
- A.R. Wildes, H.M. Rønnow, B. Roessli, M.J. Harris, K.W. Godfrey, Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.094422
- K.C. Rule, G.J. McIntyre, S.J. Kennedy, T.J. Hicks, Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007). https://doi.org/10.1103/PhysRevB.76.134402
- L. Silipigni, T. Quattrone, L. Schirò, V. Grasso, L.M. Scolaro, G. De Luca, G. Salvato, X-ray photoelectron spectroscopy and X-ray excited auger spectroscopy studies of manganese thiophosphate intercalated with sodium ions. J. Appl. Phys. 104, 123711 (2008). https://doi.org/10.1063/1.3048546
- A. Pfitzner, S. Seidlmayer, Synthesis and structure determination of AgScP2Se6, AgErP2Se6 and AgTmP2Se6. Z. Anorg. Allg. Chem. 635(4–5), 704–707 (2009). https://doi.org/10.1002/zaac.200900004
- B. Konkena, J. Masa, A.J.R. Botz, I. Sinev, W. Xia, J. Kossmann, R. Drautz, M. Muhler, W. Schuhmann, Metallic NiPS3@NiOOH core-shell heterostructures as highly efficient and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 7(1), 229–237 (2017). https://doi.org/10.1021/acscatal.6b02203
- J. Liu, X.B. Li, D. Wang, W.M. Lau, P. Peng, L.M. Liu, Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting. J. Chem. Phys. 140, 054707 (2014). https://doi.org/10.1063/1.4863695
- K.Z. Du, X.Z. Wang, Y. Liu, P. Hu, M.I. Utama, C.K. Gan, Q. Xiong, C. Kloc, Weak van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10(2), 1738–1743 (2016). https://doi.org/10.1021/acsnano.5b05927
- R. Dangol, Z. Dai, A. Chaturvedi, Y. Zheng, Y. Zhang, K.N. Dinh, B. Li, Y. Zong, Q. Yan, Few-layer NiPS3 nanosheets as bifunctional materials for Li-ion storage and oxygen evolution reaction. Nanoscale 10(10), 4890–4896 (2018). https://doi.org/10.1039/C7NR08745D
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
- H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101
- Y. Tingting, A. Xiurui, H. Hongxian, C.J. Qianjun, L. Can, Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 8(21), 1800210 (2018). https://doi.org/10.1002/aenm.201800210
- X. Zhang, X. Zhao, D. Wu, Y. Jing, Z. Zhou, MnPSe3 monolayer: a promising 2d visible-light photohydrolytic catalyst with high carrier mobility. Adv. Sci. 3(10), 1600062 (2016). https://doi.org/10.1002/advs.201600062
- Q. Pei, Y. Song, X. Wang, J. Zou, W. Mi, Superior electronic structure in two-dimensional MnPSe3/MoS2 van der waals heterostructures. Sci. Rep. 7, 9504 (2017). https://doi.org/10.1038/s41598-017-10145-z
- N. Gheshlaghi, H.S. Pisheh, H. Ünlü, Composition and strain effects in type i and type ii heterostructure ZnSe/Cd(Zn)S and ZnSe/Cd1−xZnxS core/shell quantum dots. Superlattice Microstruct. 111, 156–165 (2017). https://doi.org/10.1016/j.spmi.2017.06.026
- D. Dirk, F. Thomas, O. Ruth, B. Maya, L. Efrat, A.K. Thomas, E. Alexander, Type-I and type-II nanoscale heterostructures based on cdte nanocrystals: a comparative study. Small 4(8), 1148–1152 (2008). https://doi.org/10.1002/smll.200800287
- M. Landmann, E. Rauls, W.G. Schmidt, Understanding band alignments in semiconductor heterostructures: composition dependence and type-I–type-II transition of natural band offsets in nonpolar zinc-blende AlxGa1−xN/AlyGa1−yN composites. Phys. Rev. B 95, 155310 (2017). https://doi.org/10.1103/PhysRevB.95.155310
- P. Qi, W. Xiaocha, Z. Jijun, M. Wenbo, Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der waals heterostructures. Nanotechnology 29, 214001 (2018). https://doi.org/10.1088/1361-6528/aab5ab
- G. Long, T. Zhang, X. Cai, J. Hu, C.-W. Cho et al., Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11(11), 11330–11336 (2017). https://doi.org/10.1021/acsnano.7b05856
- F. Wang, T.A. Shifa, P. He, Z. Cheng, J. Chu et al., Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity. Nano Energy 40, 673–680 (2017). https://doi.org/10.1016/j.nanoen.2017.09.017
- C. Zhongzhou, S.T. Ahmed, W. Fengmei, G. Yi, H. Peng, Z. Kai, J. Chao, L. Quanlin, H. Jun, High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv. Mater. 30(26), e1707433 (2018). https://doi.org/10.1002/adma.201707433
- H. Bing, H.Y. Hang, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4(5), 285–304 (2016). https://doi.org/10.1002/ese3.128
- A.T. Montoya, E.G. Gillan, Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2. ACS Omega 3(3), 2947–2955 (2018). https://doi.org/10.1021/acsomega.7b02021
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on moni4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
- R.N. Jenjeti, M.P. Austeria, S. Sampath, Alternate to molybdenum disulfide: a 2d, few-layer transition-metal thiophosphate and its hydrogen evolution reaction activity over a wide pH range. ChemElectroChem 3(9), 1392–1399 (2016). https://doi.org/10.1002/celc.201600235
- C.C. Mayorga-Martinez, Z. Sofer, D. Sedmidubsky, S. Huber, A.Y.S. Eng, M. Pumera, Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces 9(14), 12563–12573 (2017). https://doi.org/10.1021/acsami.6b16553
- E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
- P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-Y. Wang, K.H. Lim, X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7(8), 2624–2629 (2014). https://doi.org/10.1039/C4EE00957F
- D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide ph range. ACS Energy Lett. 1(2), 367–372 (2016). https://doi.org/10.1021/acsenergylett.6b00184
- K. Li, D. Rakov, W. Zhang, P. Xu, Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping. Chem. Commun. 53(58), 8199–8202 (2017). https://doi.org/10.1039/c7cc03173d
- B. Song, K. Li, Y. Yin, T. Wu, L. Dang et al., Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017). https://doi.org/10.1021/acscatal.7b02575
- S. Giménez, J. Bisquert, Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices, 1st edn. (Springer, Berlin, 2016), pp. 549–559. https://doi.org/10.1007/978-3-319-29641-8
- X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D. Yu, A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 10(10), 893–899 (2017). https://doi.org/10.1039/C6EE03145E
- P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu, Y. Wang, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 9(3), 2500–2508 (2017). https://doi.org/10.1021/acsami.6b13984
- H. Peilei, Y. Xin-Yao, L.X. Wen, Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Edit. 56(14), 3897–3900 (2017). https://doi.org/10.1002/anie.201612635
- F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
- A. Michas, F. Andolfatto, M.E.G. Lyons, R. Durand, Gas evolution reactions at conductive metallic oxide electrodes for solid polymer electrolyte water electrolysis. Key Eng. Mater. 72–74, 535–550 (1992)
- Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng, S. Li, Q. Yan, Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2d Fe-doped nickel thiophosphate nanosheets. Nano Energy 47, 257–265 (2018). https://doi.org/10.1016/j.nanoen.2018.02.048
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- C.-F. Du, K.N. Dinh, Q. Liang, Y. Zheng, Y. Luo, J. Zhang, Q. Yan, Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated Mxene hybrids for overall water splitting. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801127
- D. Xiong, X. Wang, W. Li, L. Liu, Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution. Chem. Commun. 52(56), 8711–8714 (2016). https://doi.org/10.1039/C6CC04151E
- D. Li, H. Baydoun, C.N. Verani, S.L. Brock, Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138(12), 4006–4009 (2016). https://doi.org/10.1021/jacs.6b01543
- K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, Q. Yan, Ultrathin porous nifev ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14(8), 1703257 (2017). https://doi.org/10.1002/smll.201703257
- L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
References
S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235–264 (2002). https://doi.org/10.1016/s0360-3199(01)00131-8
M. Momirlan, T. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 30(7), 795–802 (2005). https://doi.org/10.1016/j.ijhydene.2004.10.011
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20(1), 35–54 (2008). https://doi.org/10.1021/cm7024203
X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010). https://doi.org/10.1021/cr1001645
S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45(6), 1529–1541 (2016). https://doi.org/10.1039/C5CS00434A
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23–J26 (2005). https://doi.org/10.1149/1.1856988
M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–1251 (2015). https://doi.org/10.1038/nmat4410
W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E.I. Altman, H. Wang, A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 7, 10771 (2016). https://doi.org/10.1038/ncomms10771
Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. Wang, Q. Yan, Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11), 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050
M.C. Friedel, Soufre et ses composés—sur une nouvelle série de sulfophosphures, les thiohypophosphates. C. R. l’Academie. Sci. Ser. III. 119, 260 (1894)
H. Hahn, W. Klingen, Uber einige ternäre verbindungen vom typ des arsenopyrits. Naturwissenschaften 52(17), 494 (1965). https://doi.org/10.1007/bf00646574
W. Klingen, G. Eulenberger, H. Hahn, Uber hexathio- und hexaselenohypodiphosphate vom typ M2 II P2X6. Naturwissenschaften 55(5), 229–230 (1968). https://doi.org/10.1007/bf00606219
W. Klingen, G. Eulenberger, H. Hahn, Uber hexachalkogeno-hypodiphosphate vom typ M2P2X6. Naturwissenschaften 57(2), 88 (1970). https://doi.org/10.1007/bf00590690
R. Nitsche, P. Wild, Crystal growth of metal-phosphorus-sulfur compounds by vapor transport. Mater. Res. Bull. 5(6), 419–423 (1970). https://doi.org/10.1016/0025-5408(70)90080-2
W. Klingen, G. Eulenberger, H. Hahn, Uber die kristallstrukturen von Fe2P2Se6 und Fe2P2S6. Z. Anorg. Allg. Chem. 401(1), 97–112 (1973). https://doi.org/10.1002/zaac.19734010113
W. Klingen, R. Ott, H. Hahn, Uber die darstellung und eigenschaften von hexathio- und hexaselenohypodiphosphaten. Z. Anorg. Allg. Chem. 396(3), 271–278 (1973). https://doi.org/10.1002/zaac.19733960305
R. Nitsche, Crystal chemistry, growth and properties of multi-cation chalcogenides. J. Phys. Colloq. 36(C3), 9–15 (1975). https://doi.org/10.1051/jphyscol:1975302
M.Z. Jandali, G. Eulenberger, H. Hahn, Die kristallstrukturen von Hg2P2S6 und Hg2P2Se6. Z. Anorg. Allg. Chem. 447(1), 105–118 (1978). https://doi.org/10.1002/zaac.19784470110
A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3. Solid State Commun. 40(12), 1067–1072 (1981). https://doi.org/10.1016/0038-1098(81)90253-2
G. Ouvrard, R. Brec, J. Rouxel, Structural determination of some MPS3 layered phases (M = Mn, Fe Co, Ni and Cd). Mater. Res. Bull. 20(10), 1181–1189 (1985). https://doi.org/10.1016/0025-5408(85)90092-3
G. Ouvrard, R. Fréour, R. Brec, J. Rouxel, A mixed valence compound in the two dimensional MPS3 family: V0.78PS3 structure and physical properties. Mater. Res. Bull. 20(9), 1053–1062 (1985). https://doi.org/10.1016/0025-5408(85)90204-1
R. Brec, Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ionics 22(1), 3–30 (1986). https://doi.org/10.1016/0167-2738(86)90055-x
E. Prouzet, G. Ouvrard, R. Brec, Structure determination of ZnPS3. Mater. Res. Bull. 21(2), 195–200 (1986). https://doi.org/10.1016/0025-5408(86)90206-0
P.J.S. Foot, T. Katz, S.N. Patel, B.A. Nevett, A.R. Pieecy, A.A. Balchin, The structures and conduction mechanisms of lithium-intercalated and lithium-substituted nickel phosphorus trisulphide (NiPS3), and the use of the material as a secondary battery electrode. Phys. Status Solidi A 100(1), 11–29 (1987). https://doi.org/10.1002/pssa.2211000102
Z. Ouili, A. Leblanc, P. Colombet, Crystal structure of a new lamellar compound: Ag1/2In1/2PS3. J. Solid State Chem. 66(1), 86–94 (1987). https://doi.org/10.1016/0022-4596(87)90223-4
S. Lee, P. Colombet, G. Ouvrard, R. Brec, General trends observed in the substituted thiophosphate family. Synthesis and structure of silver scandium thiophosphate, AgScP2S6, and cadmium iron thiophosphate, CdFeP2S6. Inorg. Chem. 27(7), 1291–1294 (1988). https://doi.org/10.1021/ic00280a041
A. Aruchamy, Photoelectrochemical investigation of n- and p-doped nickel phosphorous trisulfide(NiPS3). J. Electrochem. Soc. 136(8), 2261 (1989). https://doi.org/10.1149/1.2097288
A. Bhowmick, B. Bal, S. Ganguly, M. Bhattacharya, M.L. Kundu, Investigation of the layered compound fe0.5cd0.5ps3. J. Phys. Chem. Solids 53(10), 1279–1284 (1992). https://doi.org/10.1016/0022-3697(92)90246-A
P.A. Joy, S. Vasudevan, Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992). https://doi.org/10.1103/PhysRevB.46.5425
R. Pfeiff, R. Kniep, Quaternary selenodiphosphates(iv): MIMIII[P2Se6], (MI = Cu, Ag; MIII = Cr, Al, Ga, In). J. Alloys Compd. 186(1), 111–133 (1992). https://doi.org/10.1016/0925-8388(92)90626-K
F. Boucher, M. Evain, R. Brec, Second-order jahn—teller effect in CdPS3 and ZnPS3 demonstrated by a non-harmonic behaviour of Cd2+ and Zn2+ d10 ions. J. Alloys Compd. 215(1–2), 63–70 (1994). https://doi.org/10.1016/0925-8388(94)90819-2
A. Simon, J. Ravez, V. Maisonneuve, C. Payen, V.B. Cajipe, Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater. 6(9), 1575–1580 (1994). https://doi.org/10.1021/cm00045a016
F. Boucher, M. Evain, R. Brec, Phase transition upon d10 Cd2+ ordering in CdPS3. Acta Crystallogr. B 51, 952–961 (1995). https://doi.org/10.1107/s0108768195004824
T. Coradin, R. Clément, P.G. Lacroix, K. Nakatani, From intercalation to aggregation: nonlinear optical properties of stilbazolium chromophores-mps3 layered hybrid materials. Chem. Mater. 8(8), 2153–2158 (1996). https://doi.org/10.1021/cm960060x
X. Bourdon, V. Maisonneuve, V.B. Cajipe, C. Payen, J.E. Fischer, Copper sublattice ordering in layered CuMP2Se6 (M = In, Cr). J. Alloys Compd. 283(1–2), 122–127 (1999). https://doi.org/10.1016/S0925-8388(98)00899-8
D. Gonbeau, T. Coradin, R. Clement, Xps study of stilbazolium chromophores and their intercalation compounds in the MnPS3 layered phase. J. Phys. Chem. B 103(18), 3545–3551 (1999). https://doi.org/10.1021/jp9843196
T.V. Misuryaev, T.V. Murzina, O.A. Aktsipetrov, N.E. Sherstyuk, V.B. Cajipe, X. Bourdon, Second harmonic generation in the lamellar ferrielectric CuInP2S6. Solid State Commun. 115, 605–608 (2000). https://doi.org/10.1016/S0038-1098(00)00257-X
S. Jörgens, A. Mewis, Die kristallstrukturen von hexachalcogeno-hypodiphosphaten des magnesiums und zinks. Z. Anorg. Allg. Chem. 630(1), 51–57 (2004). https://doi.org/10.1002/zaac.200300244
R.F. Frindt, D. Yang, P. Westreich, Exfoliated single molecular layers of Mn0.8PS3 and Cd0.8PS3. J. Mater. Res. 20(5), 1107–1112 (2005). https://doi.org/10.1557/JMR.2005.0161
A.R. Wildes, H.M. Rønnow, B. Roessli, M.J. Harris, K.W. Godfrey, Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.094422
K.C. Rule, G.J. McIntyre, S.J. Kennedy, T.J. Hicks, Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007). https://doi.org/10.1103/PhysRevB.76.134402
L. Silipigni, T. Quattrone, L. Schirò, V. Grasso, L.M. Scolaro, G. De Luca, G. Salvato, X-ray photoelectron spectroscopy and X-ray excited auger spectroscopy studies of manganese thiophosphate intercalated with sodium ions. J. Appl. Phys. 104, 123711 (2008). https://doi.org/10.1063/1.3048546
A. Pfitzner, S. Seidlmayer, Synthesis and structure determination of AgScP2Se6, AgErP2Se6 and AgTmP2Se6. Z. Anorg. Allg. Chem. 635(4–5), 704–707 (2009). https://doi.org/10.1002/zaac.200900004
B. Konkena, J. Masa, A.J.R. Botz, I. Sinev, W. Xia, J. Kossmann, R. Drautz, M. Muhler, W. Schuhmann, Metallic NiPS3@NiOOH core-shell heterostructures as highly efficient and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 7(1), 229–237 (2017). https://doi.org/10.1021/acscatal.6b02203
J. Liu, X.B. Li, D. Wang, W.M. Lau, P. Peng, L.M. Liu, Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting. J. Chem. Phys. 140, 054707 (2014). https://doi.org/10.1063/1.4863695
K.Z. Du, X.Z. Wang, Y. Liu, P. Hu, M.I. Utama, C.K. Gan, Q. Xiong, C. Kloc, Weak van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10(2), 1738–1743 (2016). https://doi.org/10.1021/acsnano.5b05927
R. Dangol, Z. Dai, A. Chaturvedi, Y. Zheng, Y. Zhang, K.N. Dinh, B. Li, Y. Zong, Q. Yan, Few-layer NiPS3 nanosheets as bifunctional materials for Li-ion storage and oxygen evolution reaction. Nanoscale 10(10), 4890–4896 (2018). https://doi.org/10.1039/C7NR08745D
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101
Y. Tingting, A. Xiurui, H. Hongxian, C.J. Qianjun, L. Can, Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 8(21), 1800210 (2018). https://doi.org/10.1002/aenm.201800210
X. Zhang, X. Zhao, D. Wu, Y. Jing, Z. Zhou, MnPSe3 monolayer: a promising 2d visible-light photohydrolytic catalyst with high carrier mobility. Adv. Sci. 3(10), 1600062 (2016). https://doi.org/10.1002/advs.201600062
Q. Pei, Y. Song, X. Wang, J. Zou, W. Mi, Superior electronic structure in two-dimensional MnPSe3/MoS2 van der waals heterostructures. Sci. Rep. 7, 9504 (2017). https://doi.org/10.1038/s41598-017-10145-z
N. Gheshlaghi, H.S. Pisheh, H. Ünlü, Composition and strain effects in type i and type ii heterostructure ZnSe/Cd(Zn)S and ZnSe/Cd1−xZnxS core/shell quantum dots. Superlattice Microstruct. 111, 156–165 (2017). https://doi.org/10.1016/j.spmi.2017.06.026
D. Dirk, F. Thomas, O. Ruth, B. Maya, L. Efrat, A.K. Thomas, E. Alexander, Type-I and type-II nanoscale heterostructures based on cdte nanocrystals: a comparative study. Small 4(8), 1148–1152 (2008). https://doi.org/10.1002/smll.200800287
M. Landmann, E. Rauls, W.G. Schmidt, Understanding band alignments in semiconductor heterostructures: composition dependence and type-I–type-II transition of natural band offsets in nonpolar zinc-blende AlxGa1−xN/AlyGa1−yN composites. Phys. Rev. B 95, 155310 (2017). https://doi.org/10.1103/PhysRevB.95.155310
P. Qi, W. Xiaocha, Z. Jijun, M. Wenbo, Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der waals heterostructures. Nanotechnology 29, 214001 (2018). https://doi.org/10.1088/1361-6528/aab5ab
G. Long, T. Zhang, X. Cai, J. Hu, C.-W. Cho et al., Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11(11), 11330–11336 (2017). https://doi.org/10.1021/acsnano.7b05856
F. Wang, T.A. Shifa, P. He, Z. Cheng, J. Chu et al., Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity. Nano Energy 40, 673–680 (2017). https://doi.org/10.1016/j.nanoen.2017.09.017
C. Zhongzhou, S.T. Ahmed, W. Fengmei, G. Yi, H. Peng, Z. Kai, J. Chao, L. Quanlin, H. Jun, High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv. Mater. 30(26), e1707433 (2018). https://doi.org/10.1002/adma.201707433
H. Bing, H.Y. Hang, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4(5), 285–304 (2016). https://doi.org/10.1002/ese3.128
A.T. Montoya, E.G. Gillan, Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2. ACS Omega 3(3), 2947–2955 (2018). https://doi.org/10.1021/acsomega.7b02021
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on moni4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
R.N. Jenjeti, M.P. Austeria, S. Sampath, Alternate to molybdenum disulfide: a 2d, few-layer transition-metal thiophosphate and its hydrogen evolution reaction activity over a wide pH range. ChemElectroChem 3(9), 1392–1399 (2016). https://doi.org/10.1002/celc.201600235
C.C. Mayorga-Martinez, Z. Sofer, D. Sedmidubsky, S. Huber, A.Y.S. Eng, M. Pumera, Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces 9(14), 12563–12573 (2017). https://doi.org/10.1021/acsami.6b16553
E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-Y. Wang, K.H. Lim, X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7(8), 2624–2629 (2014). https://doi.org/10.1039/C4EE00957F
D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide ph range. ACS Energy Lett. 1(2), 367–372 (2016). https://doi.org/10.1021/acsenergylett.6b00184
K. Li, D. Rakov, W. Zhang, P. Xu, Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping. Chem. Commun. 53(58), 8199–8202 (2017). https://doi.org/10.1039/c7cc03173d
B. Song, K. Li, Y. Yin, T. Wu, L. Dang et al., Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017). https://doi.org/10.1021/acscatal.7b02575
S. Giménez, J. Bisquert, Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices, 1st edn. (Springer, Berlin, 2016), pp. 549–559. https://doi.org/10.1007/978-3-319-29641-8
X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D. Yu, A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 10(10), 893–899 (2017). https://doi.org/10.1039/C6EE03145E
P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu, Y. Wang, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 9(3), 2500–2508 (2017). https://doi.org/10.1021/acsami.6b13984
H. Peilei, Y. Xin-Yao, L.X. Wen, Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Edit. 56(14), 3897–3900 (2017). https://doi.org/10.1002/anie.201612635
F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
A. Michas, F. Andolfatto, M.E.G. Lyons, R. Durand, Gas evolution reactions at conductive metallic oxide electrodes for solid polymer electrolyte water electrolysis. Key Eng. Mater. 72–74, 535–550 (1992)
Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng, S. Li, Q. Yan, Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2d Fe-doped nickel thiophosphate nanosheets. Nano Energy 47, 257–265 (2018). https://doi.org/10.1016/j.nanoen.2018.02.048
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
C.-F. Du, K.N. Dinh, Q. Liang, Y. Zheng, Y. Luo, J. Zhang, Q. Yan, Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated Mxene hybrids for overall water splitting. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801127
D. Xiong, X. Wang, W. Li, L. Liu, Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution. Chem. Commun. 52(56), 8711–8714 (2016). https://doi.org/10.1039/C6CC04151E
D. Li, H. Baydoun, C.N. Verani, S.L. Brock, Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138(12), 4006–4009 (2016). https://doi.org/10.1021/jacs.6b01543
K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, Q. Yan, Ultrathin porous nifev ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14(8), 1703257 (2017). https://doi.org/10.1002/smll.201703257
L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H