Plasma Triggered Grain Coalescence for Self-Assembly of 3D Nanostructures
Corresponding Author: Jeong-Hyun Cho
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 27
Abstract
Grain coalescence has been applied in many areas of nanofabrication technology, including modification of thin-film properties, nanowelding, and self-assembly of nanostructures. However, very few systematic studies of self-assembly using the grain coalescence, especially for three-dimensional (3D) nanostructures, exist at present. Here, we investigate the mechanism of plasma triggered grain coalescence to achieve the precise control of nanoscale phase and morphology of the grain coalescence induced by exothermic energy. Exothermic energy is generated through etching a silicon substrate via application of plasma. By tuning the plasma power and the flow rates of reactive gases, different etching rates and profiles can be achieved, resulting in various morphologies of grain coalescence. Balancing the isotropic/anisotropic substrate etching profile and the etching rate makes it possible to simultaneously release 2D nanostructures from the substrate and induce enough surface tension force, generated by grain coalescence, to form 3D nanostructures. Diverse morphologies of 3D nanostructures have been obtained by the grain coalescence, and a strategy to achieve self-assembly, resulting in desired 3D nanostructures, has been proposed and demonstrated.
Highlights:
1 Nanoscale grain coalescence induced during a Si etching process in a plasma etching system is characterized for self-assembly of 3D structures.
2 During the etching process, balancing the isotropic/anisotropic substrate etching profile and the etching rate make it possible to simultaneously release 2D nanostructures from the substrate and induce enough surface tension force, generated by grain coalescence, to form 3D nanostructures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Chaim, Grain coalescence by grain rotation in nano-ceramics. Scr. Mater. 66(5), 269–271 (2012). doi:10.1016/j.scriptamat.2011.11.007
- S. Majumder, M. Jain, A. Martinez, R. Katiyar, F. Van Keuls, F. Miranda, Sol–gel derived grain oriented barium strontium titanate thin films for phase shifter applications. J. Appl. Phys. 90(2), 896–903 (2001). doi:10.1063/1.1378811
- D. Dimos, C. Mueller, Perovskite thin films for high-frequency capacitor applications 1. Ann. Rev. Mater. Sci. 28(1), 397–419 (1998). doi:10.1146/annurev.matsci.28.1.397
- E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012). doi:10.1038/nmat3238
- S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M. Li, J. Lee, Various silver nanostructures on sapphire using plasmon self-assembly and dewetting of thin films. Nano-Micro Lett. 9, 17 (2017). doi:10.1007/s40820-016-0120-6
- M. Son, S. Jeong, D. Jang, Laser-induced nanowelding of linearly assembled and silica-coated gold nanorods to fabricate Au@ SiO2 core–shell nanowires. J. Phys. Chem. C 118(11), 5961–5967 (2014). doi:10.1021/jp412632n
- J.H. Cho, A. Azam, D.H. Gracias, Three dimensional nanofabrication using surface forces. Langmuir 26(21), 16534–16539 (2010). doi:10.1021/la1013889
- J.H. Cho, D. Datta, S. Park, V.B. Shenoy, D.H. Gracias, Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. Nano Lett. 10(12), 5098–5102 (2010). doi:10.1021/nl1035447
- J.H. Cho, D.H. Gracias, Self-assembly of lithographically patterned nanoparticles. Nano Lett. 9(12), 4049–4052 (2009). doi:10.1021/nl9022176
- J.H. Cho, T. James, D.H. Gracias, Curving nanostructures using extrinsic stress. Adv. Mater. 22(21), 2320–2324 (2010). doi:10.1002/adma.200904410
- J.H. Cho, M.D. Keung, N. Verellen, L. Lagae, V.V. Moshchalkov, P. Van Dorpe, D.H. Gracias, Nanoscale origami for 3D optics. Small 7(14), 1943–1948 (2011). doi:10.1002/smll.201100568
- H.R. Kwag, J.H. Cho, S.Y. Park, D. Gracias, Self-folding nanostructures with imprint patterned surfaces (SNIPS). Faraday Discuss. 191, 61–71 (2016). doi:10.1039/C6FD00021E
- D.H. Gracias, Three dimensional self-assembly at the nanoscale. In Proceedings of Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering, vol. XI (SPIE, Baltimore, 2013), p. 87500O
- J.C. Martz, D.W. Hess, E.E. Petersen, A generalized model of heat effects in surface reactions. I. Model development. J. Appl. Phys. 72(8), 3282–3288 (1992). doi:10.1063/1.351449
- G. Carter, M. Nobes, I. Katardjiev, Fundamental irradiation processes relevant to plasma-surface technology. Vacuum 38(6), 479–486 (1998). doi:10.1016/0042-207X(88)90592-1
- R. Contolini, L. d’Asaro, High rate masked etching of GaAs by magnetron ion etching. J. Vac. Sci. Technol. B 4(3), 706–713 (1986). doi:10.1116/1.583601
- O. Krogh, T. Wicker, B. Chapman, The role of gas phase reactions, electron impact, and collisional energy transfer processes relevant to plasma etching of polysilicon with H2 and Cl2. J. Vac. Sci. Technol. B 4(6), 1292–1300 (1986). doi:10.1116/1.583508
- J. Martz, D. Hess, W. Anderson, Tantalum etching in fluorocarbon/oxygen R f glow discharges. J. Appl. Phys. 67(8), 3609–3617 (1990). doi:10.1063/1.345313
- A. Durandet, O. Joubert, J. Pelletier, M. Pichot, Effects of ion bombardment and chemical reaction on wafer temperature during plasma etching. J. Appl. Phys. 67(8), 3862–3866 (1990). doi:10.1063/1.345009
- O. Joubert, P. Paniez, J. Pelletier, M. Pons, Etching of polymers by oxygen plasmas: influence of viscoelastic properties. Appl. Phys. Lett. 58(9), 959–961 (1991). doi:10.1063/1.104455
- J.C. Martz, D.W. Hess, E.E. Petersen, A generalized model of heat effects in surface reactions. II. Application to plasma etching reactions. J. Appl. Phys. 72(8), 3289–3293 (1992). doi:10.1063/1.351450
- A. Magunov, Determining the heat of a surface plasmochemical reaction by scanning calorimetry. Instrum. Exp. Tech. 43(5), 706–712 (2000). doi:10.1007/BF02759089
- R. Legtenberg, H. Jansen, M. de Boer, M. Elwenspoek, Anisotropic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures. J. Electrochem. Soc. 142(6), 2020–2028 (1995). doi:10.1149/1.2044234
- C. Dai, J.H. Cho, In situ monitored self-assembly of three-dimensional polyhedral nanostructures. Nano Lett. 16(6), 3655–3660 (2016). doi:10.1021/acs.nanolett.6b00797
- Y.M. Park, D. Ko, K. Yi, I. Petrov, Y. Kim, Measurement and estimation of temperature rise in TEM sample during ion milling. Ultramicroscopy 107(8), 663–668 (2007). doi:10.1016/j.ultramic.2007.01.002
- N. Shukla, S.K. Tripathi, A. Banerjee, A.S.V. Ramana, N.S. Rajput, V.N. Kulkarni, Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe. Appl. Surf. Sci. 256(2), 475–479 (2009). doi:10.1016/j.apsusc.2009.07.024
- D.L. Flamm, V.M. Donnelly, J.A. Mucha, The reaction of fluorine atoms with silicon. J. Appl. Phys. 52(5), 3633–3639 (1981). doi:10.1063/1.329098
- J. Mauer, J. Logan, L. Zielinski, G. Schwartz, Mechanism of silicon etching by a CF4 plasma. J. Vac. Sci. Technol. 15(5), 1734–1738 (1978). doi:10.1116/1.569836
- Y. Tzeng, T. Lin, Dry etching of silicon materials in SF6 based plasmas roles of and gas additives. J. Electrochem. Soc. 134(9), 2304–2309 (1987). doi:10.1149/1.2100875
- Y. Tzeng, T.H. Lin, Plasma etching with tetrafluoromethane and nitrous oxide: the role of oxygen in the etching of silicon materials. J. Electrochem. Soc. 133(7), 1443–1448 (1986). doi:10.1149/1.2108931
- C. Mogab, A. Adams, D.L. Flamm, Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas. J. Appl. Phys. 49(7), 3796–3803 (1978). doi:10.1063/1.325382
- T. Wakida, S. Tokino, Surface modification of fibre and polymeric materials by discharge treatment and its application to textile processing. Indian J. Fibre Text. Res. 21, 69–78 (1996)
References
R. Chaim, Grain coalescence by grain rotation in nano-ceramics. Scr. Mater. 66(5), 269–271 (2012). doi:10.1016/j.scriptamat.2011.11.007
S. Majumder, M. Jain, A. Martinez, R. Katiyar, F. Van Keuls, F. Miranda, Sol–gel derived grain oriented barium strontium titanate thin films for phase shifter applications. J. Appl. Phys. 90(2), 896–903 (2001). doi:10.1063/1.1378811
D. Dimos, C. Mueller, Perovskite thin films for high-frequency capacitor applications 1. Ann. Rev. Mater. Sci. 28(1), 397–419 (1998). doi:10.1146/annurev.matsci.28.1.397
E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012). doi:10.1038/nmat3238
S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M. Li, J. Lee, Various silver nanostructures on sapphire using plasmon self-assembly and dewetting of thin films. Nano-Micro Lett. 9, 17 (2017). doi:10.1007/s40820-016-0120-6
M. Son, S. Jeong, D. Jang, Laser-induced nanowelding of linearly assembled and silica-coated gold nanorods to fabricate Au@ SiO2 core–shell nanowires. J. Phys. Chem. C 118(11), 5961–5967 (2014). doi:10.1021/jp412632n
J.H. Cho, A. Azam, D.H. Gracias, Three dimensional nanofabrication using surface forces. Langmuir 26(21), 16534–16539 (2010). doi:10.1021/la1013889
J.H. Cho, D. Datta, S. Park, V.B. Shenoy, D.H. Gracias, Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. Nano Lett. 10(12), 5098–5102 (2010). doi:10.1021/nl1035447
J.H. Cho, D.H. Gracias, Self-assembly of lithographically patterned nanoparticles. Nano Lett. 9(12), 4049–4052 (2009). doi:10.1021/nl9022176
J.H. Cho, T. James, D.H. Gracias, Curving nanostructures using extrinsic stress. Adv. Mater. 22(21), 2320–2324 (2010). doi:10.1002/adma.200904410
J.H. Cho, M.D. Keung, N. Verellen, L. Lagae, V.V. Moshchalkov, P. Van Dorpe, D.H. Gracias, Nanoscale origami for 3D optics. Small 7(14), 1943–1948 (2011). doi:10.1002/smll.201100568
H.R. Kwag, J.H. Cho, S.Y. Park, D. Gracias, Self-folding nanostructures with imprint patterned surfaces (SNIPS). Faraday Discuss. 191, 61–71 (2016). doi:10.1039/C6FD00021E
D.H. Gracias, Three dimensional self-assembly at the nanoscale. In Proceedings of Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering, vol. XI (SPIE, Baltimore, 2013), p. 87500O
J.C. Martz, D.W. Hess, E.E. Petersen, A generalized model of heat effects in surface reactions. I. Model development. J. Appl. Phys. 72(8), 3282–3288 (1992). doi:10.1063/1.351449
G. Carter, M. Nobes, I. Katardjiev, Fundamental irradiation processes relevant to plasma-surface technology. Vacuum 38(6), 479–486 (1998). doi:10.1016/0042-207X(88)90592-1
R. Contolini, L. d’Asaro, High rate masked etching of GaAs by magnetron ion etching. J. Vac. Sci. Technol. B 4(3), 706–713 (1986). doi:10.1116/1.583601
O. Krogh, T. Wicker, B. Chapman, The role of gas phase reactions, electron impact, and collisional energy transfer processes relevant to plasma etching of polysilicon with H2 and Cl2. J. Vac. Sci. Technol. B 4(6), 1292–1300 (1986). doi:10.1116/1.583508
J. Martz, D. Hess, W. Anderson, Tantalum etching in fluorocarbon/oxygen R f glow discharges. J. Appl. Phys. 67(8), 3609–3617 (1990). doi:10.1063/1.345313
A. Durandet, O. Joubert, J. Pelletier, M. Pichot, Effects of ion bombardment and chemical reaction on wafer temperature during plasma etching. J. Appl. Phys. 67(8), 3862–3866 (1990). doi:10.1063/1.345009
O. Joubert, P. Paniez, J. Pelletier, M. Pons, Etching of polymers by oxygen plasmas: influence of viscoelastic properties. Appl. Phys. Lett. 58(9), 959–961 (1991). doi:10.1063/1.104455
J.C. Martz, D.W. Hess, E.E. Petersen, A generalized model of heat effects in surface reactions. II. Application to plasma etching reactions. J. Appl. Phys. 72(8), 3289–3293 (1992). doi:10.1063/1.351450
A. Magunov, Determining the heat of a surface plasmochemical reaction by scanning calorimetry. Instrum. Exp. Tech. 43(5), 706–712 (2000). doi:10.1007/BF02759089
R. Legtenberg, H. Jansen, M. de Boer, M. Elwenspoek, Anisotropic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures. J. Electrochem. Soc. 142(6), 2020–2028 (1995). doi:10.1149/1.2044234
C. Dai, J.H. Cho, In situ monitored self-assembly of three-dimensional polyhedral nanostructures. Nano Lett. 16(6), 3655–3660 (2016). doi:10.1021/acs.nanolett.6b00797
Y.M. Park, D. Ko, K. Yi, I. Petrov, Y. Kim, Measurement and estimation of temperature rise in TEM sample during ion milling. Ultramicroscopy 107(8), 663–668 (2007). doi:10.1016/j.ultramic.2007.01.002
N. Shukla, S.K. Tripathi, A. Banerjee, A.S.V. Ramana, N.S. Rajput, V.N. Kulkarni, Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe. Appl. Surf. Sci. 256(2), 475–479 (2009). doi:10.1016/j.apsusc.2009.07.024
D.L. Flamm, V.M. Donnelly, J.A. Mucha, The reaction of fluorine atoms with silicon. J. Appl. Phys. 52(5), 3633–3639 (1981). doi:10.1063/1.329098
J. Mauer, J. Logan, L. Zielinski, G. Schwartz, Mechanism of silicon etching by a CF4 plasma. J. Vac. Sci. Technol. 15(5), 1734–1738 (1978). doi:10.1116/1.569836
Y. Tzeng, T. Lin, Dry etching of silicon materials in SF6 based plasmas roles of and gas additives. J. Electrochem. Soc. 134(9), 2304–2309 (1987). doi:10.1149/1.2100875
Y. Tzeng, T.H. Lin, Plasma etching with tetrafluoromethane and nitrous oxide: the role of oxygen in the etching of silicon materials. J. Electrochem. Soc. 133(7), 1443–1448 (1986). doi:10.1149/1.2108931
C. Mogab, A. Adams, D.L. Flamm, Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas. J. Appl. Phys. 49(7), 3796–3803 (1978). doi:10.1063/1.325382
T. Wakida, S. Tokino, Surface modification of fibre and polymeric materials by discharge treatment and its application to textile processing. Indian J. Fibre Text. Res. 21, 69–78 (1996)