Enhanced Electromagnetic Wave Absorption Properties of Poly(3,4-ethylenedioxythiophene) Nanofiber-Decorated Graphene Sheets by Non-covalent Interactions
Corresponding Author: Ying Huang
Nano-Micro Letters,
Vol. 8 No. 2 (2016), Article Number: 131-136
Abstract
Graphene sheets (GNs) have high conductivity, but they exhibit weak electromagnetic (EM) wave absorption performance. Here, poly (3,4-ethylenedioxythiophene) (PEDOT) nanofibers were decorated on the surface of GNs in which the residual defects and groups act as the active sites and therefore are beneficial for the deposition of PEDOT nanofibers. The SEM images display that PEDOT nanofibers are successfully decorated on the surface of GNs through in situ polymerization. The diameter of the PEDOT nanofibers were ranged from 15 to 50 nm with hundreds of nanometers in length. The EM wave absorption properties of graphene, PEDOT, and GNs-PEDOT were also investigated. Compared to pure graphene and PEDOT, the EM wave absorption properties of GNs-PEDOT improved significantly. The maximum value of R L was up to −48.1 dB at 10.5 GHz with a thickness of only 2 mm. Meanwhile, the absorption bandwidth of R L values below −10 dB was 9.4 GHz (5.8–12.3, 12.9–15.8 GHz) in the thickness of 1.5–3 mm. The enhancement is attributed to the modification of PEDOT and the unique structure of nanofibers. On one hand, the deposition of PEDOT nanofibers on the surface of GNs decreases the conductivity of graphene, and makes impedance match better. On the other hand, the unique structure of PEDOT nanofibers results in relatively large specific surfaces areas, providing more active sites for reflection and scattering of EM waves. Therefore, our findings demonstrate that the deposition of conducting polymers on GNs by non-covalent bond is an efficient way to fabricate strong EM wave absorbers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejakovic, J.W. Yoo, A.J. Epstein, Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84(4), 589–591 (2004). doi:10.1063/1.1641167
- C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011). doi:10.1063/1.3555436
- Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). doi:10.1002/adma.201405788
- Y.L. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Adv. Mater. 17(16), 1999–2003 (2005). doi:10.1021/nl051375r
- P. Saini, V. Choudhary, Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J. Nanopart. Res. 15, 1415–1421 (2013). doi:10.1007/s11051-012-1415-2
- P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113(3), 919–926 (2009). doi:10.1016/j.matchemphys.2008.08.065
- Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell. RSC Adv. 3(10), 3309–3315 (2013). doi:10.1039/c2ra23404a
- B. Zhang, Y. Du, P. Zhang, H. Zhao, L. Kang, X. Han, P. Xu, Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130(3), 1909–1916 (2013). doi:10.1002/app.39332
- X. Yan, D.S. Xue, Fabrication and microwave absorption properties of Fe0.64Ni0.36-NiFe2O4 nanocomposite. Nano-Micro Lett. 4(3), 176–179 (2012). doi:10.1007/BF03353710
- P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 161(16), 1522–1526 (2011). doi:10.1016/j.synthmet.2011.04.033
- P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh, V. Choudhary, High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5(10), 4330–4346 (2013). doi:10.1039/c3nr00634d
- Q.Y. He, S.X. Wu, Z.Y. Yin, H. Zhang, Graphene-based electronic sensors. Chem. Sci. 3, 1764–1772 (2012). doi:10.1039/c2sc20205k
- Z. Yang, R.G. Gao, N.T. Hu, J. Chai, Y.W. Cheng, L.Y. Zhang, H. Wei, E.S.W. Kong, Y.F. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.1007/BF03353684
- P. Russo, A. Hu, G. Compagnini, Sythesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). doi:10.5101/nml.v5i4
- P. Saini, V. Choudhary, S.K. Dhawan, Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polym. Adv. Technol. 23(3), 343–349 (2012). doi:10.1002/pat.1873
- J.T. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 116(9), 5420–5426 (2012). doi:10.1021/jp211474e
- X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 92(1), 013127 (2008). doi:10.1063/1.2830995
- P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 116(24), 13403–13412 (2012). doi:10.1021/jp302131w
- Y.J. Yang, L.N. Zhang, S.B. Li, Z.M. Wang, J.H. Xu, W.Y. Yang, Y.D. Jiang, Vapor phase polymerization deposition conducting polymer nanocomposites on porous dielectric surface as high performance electrode materials. Nano-Micro Lett. 5(1), 40–46 (2013). doi:10.1007/BF03353730
- X.W. Ni, X.J. Hu, S.Y. Zhou, C.H. Sun, X.X. Bai, P. Chen, Synthesis and microwave absorbing properties of poly(3,4-ethylenedioxythiophene)(PEDOT) microspheres. Polym. Adv. Technol. 22(5), 532–537 (2011). doi:10.1002/pat.1676
- H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22, 21679–21685 (2012). doi:10.1039/c2jm34273a
- P.B. Liu, Y. Huang, Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties. J. Polym. Res. 21, 430–434 (2014). doi:10.1007/s10965-014-0430-7
- W.C. Zhou, X.J. Hu, X.X. Bai, S.Y. Zhou, C.H. Sun, J. Yan, P. Chen, Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interface 3(10), 3839–3845 (2011). doi:10.1021/am2004812
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. JACS 80(6), 1339 (1958). doi:10.1021/ja01539a017
- Y.F. Xu, Y. Wang, J.J. Liang, Y. Huang, Y.F. Ma, X.J. Wan, A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2(4), 343–348 (2009). doi:10.1007/s12274-009-9032-9
- A. Schaarschmidt, A.A. Farah, A. Aby, A.S. Helmy, Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT−PSS films. J. Phys. Chem. B 113(28), 9352–9355 (2009). doi:10.1021/jp904147v
- S.A. Spanninga, D.C. Martin, Z. Chen, X-ray photoelectron spectroscopy study of counterion incorporation in poly (3, 4-ethylenedioxythiophene). J. Phys. Chem. C 113(14), 5585–5592 (2009). doi:10.1021/jp811282f
- M. Oyharçabal, T. Olinga, M.P. Foulc, S. Lacomme, E. Gontier, V. Vigneras, Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites. Compos. Sci. Technol. 74, 107–112 (2013). doi:10.1016/j.compscitech.2012.10.016
References
H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejakovic, J.W. Yoo, A.J. Epstein, Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84(4), 589–591 (2004). doi:10.1063/1.1641167
C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011). doi:10.1063/1.3555436
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). doi:10.1002/adma.201405788
Y.L. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Adv. Mater. 17(16), 1999–2003 (2005). doi:10.1021/nl051375r
P. Saini, V. Choudhary, Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J. Nanopart. Res. 15, 1415–1421 (2013). doi:10.1007/s11051-012-1415-2
P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113(3), 919–926 (2009). doi:10.1016/j.matchemphys.2008.08.065
Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell. RSC Adv. 3(10), 3309–3315 (2013). doi:10.1039/c2ra23404a
B. Zhang, Y. Du, P. Zhang, H. Zhao, L. Kang, X. Han, P. Xu, Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130(3), 1909–1916 (2013). doi:10.1002/app.39332
X. Yan, D.S. Xue, Fabrication and microwave absorption properties of Fe0.64Ni0.36-NiFe2O4 nanocomposite. Nano-Micro Lett. 4(3), 176–179 (2012). doi:10.1007/BF03353710
P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 161(16), 1522–1526 (2011). doi:10.1016/j.synthmet.2011.04.033
P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh, V. Choudhary, High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5(10), 4330–4346 (2013). doi:10.1039/c3nr00634d
Q.Y. He, S.X. Wu, Z.Y. Yin, H. Zhang, Graphene-based electronic sensors. Chem. Sci. 3, 1764–1772 (2012). doi:10.1039/c2sc20205k
Z. Yang, R.G. Gao, N.T. Hu, J. Chai, Y.W. Cheng, L.Y. Zhang, H. Wei, E.S.W. Kong, Y.F. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.1007/BF03353684
P. Russo, A. Hu, G. Compagnini, Sythesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). doi:10.5101/nml.v5i4
P. Saini, V. Choudhary, S.K. Dhawan, Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polym. Adv. Technol. 23(3), 343–349 (2012). doi:10.1002/pat.1873
J.T. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 116(9), 5420–5426 (2012). doi:10.1021/jp211474e
X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 92(1), 013127 (2008). doi:10.1063/1.2830995
P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 116(24), 13403–13412 (2012). doi:10.1021/jp302131w
Y.J. Yang, L.N. Zhang, S.B. Li, Z.M. Wang, J.H. Xu, W.Y. Yang, Y.D. Jiang, Vapor phase polymerization deposition conducting polymer nanocomposites on porous dielectric surface as high performance electrode materials. Nano-Micro Lett. 5(1), 40–46 (2013). doi:10.1007/BF03353730
X.W. Ni, X.J. Hu, S.Y. Zhou, C.H. Sun, X.X. Bai, P. Chen, Synthesis and microwave absorbing properties of poly(3,4-ethylenedioxythiophene)(PEDOT) microspheres. Polym. Adv. Technol. 22(5), 532–537 (2011). doi:10.1002/pat.1676
H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22, 21679–21685 (2012). doi:10.1039/c2jm34273a
P.B. Liu, Y. Huang, Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties. J. Polym. Res. 21, 430–434 (2014). doi:10.1007/s10965-014-0430-7
W.C. Zhou, X.J. Hu, X.X. Bai, S.Y. Zhou, C.H. Sun, J. Yan, P. Chen, Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interface 3(10), 3839–3845 (2011). doi:10.1021/am2004812
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. JACS 80(6), 1339 (1958). doi:10.1021/ja01539a017
Y.F. Xu, Y. Wang, J.J. Liang, Y. Huang, Y.F. Ma, X.J. Wan, A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2(4), 343–348 (2009). doi:10.1007/s12274-009-9032-9
A. Schaarschmidt, A.A. Farah, A. Aby, A.S. Helmy, Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT−PSS films. J. Phys. Chem. B 113(28), 9352–9355 (2009). doi:10.1021/jp904147v
S.A. Spanninga, D.C. Martin, Z. Chen, X-ray photoelectron spectroscopy study of counterion incorporation in poly (3, 4-ethylenedioxythiophene). J. Phys. Chem. C 113(14), 5585–5592 (2009). doi:10.1021/jp811282f
M. Oyharçabal, T. Olinga, M.P. Foulc, S. Lacomme, E. Gontier, V. Vigneras, Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites. Compos. Sci. Technol. 74, 107–112 (2013). doi:10.1016/j.compscitech.2012.10.016