Low-Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption
Corresponding Author: Panbo Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 7
Abstract
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching, adjusting dielectric/magnetic resonance and promoting electromagnetic (EM) wave absorption, but still exist a significant challenging in regulating local phase evolution. Herein, accordion-shaped Co/Co3O4@N-doped carbon nanosheets (Co/Co3O4@NC) with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and low-temperature oxidation process. The results indicate that the surface epitaxial growth of crystal Co3O4 domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components, which are beneficial for optimizing impedance matching and interfacial polarization. Moreover, gradient magnetic heterointerfaces simultaneously realize magnetic coupling, and long-range magnetic diffraction. Specifically, the synthesized Co/Co3O4@NC absorbents display the strong electromagnetic wave attenuation capability of − 53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz, both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.
Highlights:
1 Co/Co3O4@NC nanosheets with gradient magnetic heterointerfaces have been fabricated by the high-temperature carbonization/low-temperature oxidation processes.
2 Experimental and theoretical simulation results indicate that magnetic heterointerfaces engineering is beneficial for optimizing impedance matching and promoting electromagnetic wave absorption.
3 Gradient magnetic heterointerfaces with magnetic-heteroatomic components realize the adjustment of interfacial polarization, magnetic coupling, and long-range magnetic diffraction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- H. Lv, Z. Yang, H. Pan, R. Wu, Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
- Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
- M. Sun, D. Wang, Z. Xiong, Z. Zhang, L. Qin et al., Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption. J. Mater. Sci. Technol. 130, 176–183 (2022). https://doi.org/10.1016/j.jmst.2022.05.016
- Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanops-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
- Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang et al., Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 32, 2205160 (2022). https://doi.org/10.1002/adfm.202205160
- H.-Y. Wang, X.-B. Sun, S.-H. Yang, P.-Y. Zhao, X.-J. Zhang et al., 3D ultralight hollow NiCo Compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
- P. Miao, N. Qu, W. Chen, T. Wang, W. Zhao et al., A two-dimensional semiconductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 454, 140445 (2023). https://doi.org/10.1016/j.cej.2022.140445
- P. Liu, S. Gao, X. Liu, Y. Huang, W. He et al., Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Part B Eng. 192, 107992 (2020). https://doi.org/10.1016/j.compositesb.2020.107992
- M. Ning, Q. Man, G. Tan, Z. Lei, J. Li et al., Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: a case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 12, 20785–20796 (2020). https://doi.org/10.1021/acsami.9b20433
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16, e2003502 (2020). https://doi.org/10.1002/smll.202003502
- L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
- Q. Liang, L. Wang, X. Qi, Q. Peng, X. Gong et al., Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 147, 37–46 (2023). https://doi.org/10.1016/j.jmst.2022.10.069
- B. Cai, L. Zhou, P.-Y. Zhao, H.-L. Peng, Z.-L. Hou et al., Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss. Nat. Commun. 15, 3299 (2024). https://doi.org/10.1038/s41467-024-47537-5
- M. Huang, L. Wang, W. You, R. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 17, e2101416 (2021). https://doi.org/10.1002/smll.202101416
- Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
- P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. Part B Eng. 202, 108406 (2020). https://doi.org/10.1016/j.compositesb.2020.108406
- N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
- C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- L. Wang, X. Li, X. Shi, M. Huang, X. Li et al., Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 13, 2136–2156 (2021). https://doi.org/10.1039/d0nr06267g
- Z. He, H. Xu, L. Shi, X. Ren, J. Kong et al., Hierarchical Co2 P/CoS2@C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small 20, e2306253 (2024). https://doi.org/10.1002/smll.202306253
- P. Liu, S. Zheng, Z. He, C. Qu, L. Zhang et al., Optimizing integrated-loss capacities via asymmetric electronic environments for highly efficient electromagnetic wave absorption. Small (2024). https://doi.org/10.1002/smll.202403903
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- W. Wang, K. Nan, H. Zheng, Q. Li, Y. Wang, Ion-exchange reaction construction of carbon nanotube-modified CoNi@MoO2/C composite for ultra-intense and broad electromagnetic wave absorption. Carbon 210, 118074 (2023). https://doi.org/10.1016/j.carbon.2023.118074
- J. Gao, Y. Hu, Y. Wang, X. Lin, K. Hu et al., MOF structure engineering to synthesize Co-N-C catalyst with richer accessible active sites for enhanced oxygen reduction. Small 17, e2104684 (2021). https://doi.org/10.1002/smll.202104684
- Z.-L. Hou, X. Gao, J. Zhang, G. Wang, A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon 222, 118935 (2024). https://doi.org/10.1016/j.carbon.2024.118935
- S. Kang, W. Zhang, Z. Hu, J. Yu, Y. Wang et al., Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber. J. Alloys Compd. 818, 152932 (2020). https://doi.org/10.1016/j.jallcom.2019.152932
- Y. Wang, X. Di, X. Wu, X. Li, MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. J. Alloys Compd. 846, 156215 (2020). https://doi.org/10.1016/j.jallcom.2020.156215
- L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
- Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
- Y. Huang, S.L. Zhang, X.F. Lu, Z.P. Wu, D. Luan et al., Trimetallic spinel NiCo2-xFexO4 nanoboxes for highly efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. Engl. 60, 11841–11846 (2021). https://doi.org/10.1002/anie.202103058
- Y.-L. Wang, P.-Y. Zhao, B.-L. Liang, K. Chen, G.-S. Wang, Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 202, 66–75 (2023). https://doi.org/10.1016/j.carbon.2022.10.043
- C. Lei, J. Li, Y. Wu, Y. Xie, Y. Ling et al., Construction of gradient hierarchical and hetero-interfaces structure for ultra-broad microwave absorption. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.04.004
- I. Lorite, J.J. Romero, J.F. Fernández, Effects of the agglomeration state on the Raman properties of Co3O4 nanops. J. Raman Spectrosc. 43, 1443–1448 (2012). https://doi.org/10.1002/jrs.4098
- M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8, 2004640 (2021). https://doi.org/10.1002/advs.202004640
- J.-C. Shu, X.-Y. Huang, M.-S. Cao, Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 174, 638–646 (2021). https://doi.org/10.1016/j.carbon.2020.11.087
- X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun et al., Phase and morphology evolution of high dielectric CoO/Co3O4 ps with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020). https://doi.org/10.1016/j.cej.2020.125205
- J. Cheng, H. Jiang, L. Cai, F. Pan, Y. Shi et al., Porous N-doped C/VB-group VS2 composites derived from perishable garbage to synergistically solve the environmental and electromagnetic pollution. Chem. Eng. J. 457, 141208 (2023). https://doi.org/10.1016/j.cej.2022.141208
- Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281
- J. Chen, J. Zheng, F. Wang, Q. Huang, G. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 174, 509–517 (2021). https://doi.org/10.1016/j.carbon.2020.12.077
- W. Wang, K. Nan, H. Zheng, Q. Li, Y. Wang, Heterostructure design of hydrangea-like Co2P/Ni2P@C multilayered hollow microspheres for high-efficiency microwave absorption. J. Mater. Sci. Technol. 181, 104–114 (2024). https://doi.org/10.1016/j.jmst.2023.09.023
- J. Chen, J. Zheng, Q. Huang, F. Wang, G. Ji, Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanops. ACS Appl. Mater. Interfaces 13, 36182–36189 (2021). https://doi.org/10.1021/acsami.1c09430
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- B. Zhao, Y. Li, Q. Zeng, B. Fan, L. Wang et al., Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. J. Mater. Sci. Technol. 107, 100–110 (2022). https://doi.org/10.1016/j.jmst.2021.07.044
- P. Liu, Y. Li, H. Xu, L. Shi, J. Kong et al., Hierarchical Fe-Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption. ACS Nano 18, 560–570 (2024). https://doi.org/10.1021/acsnano.3c08569
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8
References
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
H. Lv, Z. Yang, H. Pan, R. Wu, Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
M. Sun, D. Wang, Z. Xiong, Z. Zhang, L. Qin et al., Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption. J. Mater. Sci. Technol. 130, 176–183 (2022). https://doi.org/10.1016/j.jmst.2022.05.016
Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanops-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang et al., Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 32, 2205160 (2022). https://doi.org/10.1002/adfm.202205160
H.-Y. Wang, X.-B. Sun, S.-H. Yang, P.-Y. Zhao, X.-J. Zhang et al., 3D ultralight hollow NiCo Compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
P. Miao, N. Qu, W. Chen, T. Wang, W. Zhao et al., A two-dimensional semiconductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 454, 140445 (2023). https://doi.org/10.1016/j.cej.2022.140445
P. Liu, S. Gao, X. Liu, Y. Huang, W. He et al., Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Part B Eng. 192, 107992 (2020). https://doi.org/10.1016/j.compositesb.2020.107992
M. Ning, Q. Man, G. Tan, Z. Lei, J. Li et al., Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: a case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 12, 20785–20796 (2020). https://doi.org/10.1021/acsami.9b20433
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16, e2003502 (2020). https://doi.org/10.1002/smll.202003502
L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
Q. Liang, L. Wang, X. Qi, Q. Peng, X. Gong et al., Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 147, 37–46 (2023). https://doi.org/10.1016/j.jmst.2022.10.069
B. Cai, L. Zhou, P.-Y. Zhao, H.-L. Peng, Z.-L. Hou et al., Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss. Nat. Commun. 15, 3299 (2024). https://doi.org/10.1038/s41467-024-47537-5
M. Huang, L. Wang, W. You, R. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 17, e2101416 (2021). https://doi.org/10.1002/smll.202101416
Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. Part B Eng. 202, 108406 (2020). https://doi.org/10.1016/j.compositesb.2020.108406
N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
L. Wang, X. Li, X. Shi, M. Huang, X. Li et al., Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 13, 2136–2156 (2021). https://doi.org/10.1039/d0nr06267g
Z. He, H. Xu, L. Shi, X. Ren, J. Kong et al., Hierarchical Co2 P/CoS2@C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small 20, e2306253 (2024). https://doi.org/10.1002/smll.202306253
P. Liu, S. Zheng, Z. He, C. Qu, L. Zhang et al., Optimizing integrated-loss capacities via asymmetric electronic environments for highly efficient electromagnetic wave absorption. Small (2024). https://doi.org/10.1002/smll.202403903
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812
W. Wang, K. Nan, H. Zheng, Q. Li, Y. Wang, Ion-exchange reaction construction of carbon nanotube-modified CoNi@MoO2/C composite for ultra-intense and broad electromagnetic wave absorption. Carbon 210, 118074 (2023). https://doi.org/10.1016/j.carbon.2023.118074
J. Gao, Y. Hu, Y. Wang, X. Lin, K. Hu et al., MOF structure engineering to synthesize Co-N-C catalyst with richer accessible active sites for enhanced oxygen reduction. Small 17, e2104684 (2021). https://doi.org/10.1002/smll.202104684
Z.-L. Hou, X. Gao, J. Zhang, G. Wang, A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon 222, 118935 (2024). https://doi.org/10.1016/j.carbon.2024.118935
S. Kang, W. Zhang, Z. Hu, J. Yu, Y. Wang et al., Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber. J. Alloys Compd. 818, 152932 (2020). https://doi.org/10.1016/j.jallcom.2019.152932
Y. Wang, X. Di, X. Wu, X. Li, MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. J. Alloys Compd. 846, 156215 (2020). https://doi.org/10.1016/j.jallcom.2020.156215
L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
Y. Huang, S.L. Zhang, X.F. Lu, Z.P. Wu, D. Luan et al., Trimetallic spinel NiCo2-xFexO4 nanoboxes for highly efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. Engl. 60, 11841–11846 (2021). https://doi.org/10.1002/anie.202103058
Y.-L. Wang, P.-Y. Zhao, B.-L. Liang, K. Chen, G.-S. Wang, Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 202, 66–75 (2023). https://doi.org/10.1016/j.carbon.2022.10.043
C. Lei, J. Li, Y. Wu, Y. Xie, Y. Ling et al., Construction of gradient hierarchical and hetero-interfaces structure for ultra-broad microwave absorption. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.04.004
I. Lorite, J.J. Romero, J.F. Fernández, Effects of the agglomeration state on the Raman properties of Co3O4 nanops. J. Raman Spectrosc. 43, 1443–1448 (2012). https://doi.org/10.1002/jrs.4098
M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8, 2004640 (2021). https://doi.org/10.1002/advs.202004640
J.-C. Shu, X.-Y. Huang, M.-S. Cao, Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 174, 638–646 (2021). https://doi.org/10.1016/j.carbon.2020.11.087
X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun et al., Phase and morphology evolution of high dielectric CoO/Co3O4 ps with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020). https://doi.org/10.1016/j.cej.2020.125205
J. Cheng, H. Jiang, L. Cai, F. Pan, Y. Shi et al., Porous N-doped C/VB-group VS2 composites derived from perishable garbage to synergistically solve the environmental and electromagnetic pollution. Chem. Eng. J. 457, 141208 (2023). https://doi.org/10.1016/j.cej.2022.141208
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281
J. Chen, J. Zheng, F. Wang, Q. Huang, G. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 174, 509–517 (2021). https://doi.org/10.1016/j.carbon.2020.12.077
W. Wang, K. Nan, H. Zheng, Q. Li, Y. Wang, Heterostructure design of hydrangea-like Co2P/Ni2P@C multilayered hollow microspheres for high-efficiency microwave absorption. J. Mater. Sci. Technol. 181, 104–114 (2024). https://doi.org/10.1016/j.jmst.2023.09.023
J. Chen, J. Zheng, Q. Huang, F. Wang, G. Ji, Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanops. ACS Appl. Mater. Interfaces 13, 36182–36189 (2021). https://doi.org/10.1021/acsami.1c09430
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
B. Zhao, Y. Li, Q. Zeng, B. Fan, L. Wang et al., Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. J. Mater. Sci. Technol. 107, 100–110 (2022). https://doi.org/10.1016/j.jmst.2021.07.044
P. Liu, Y. Li, H. Xu, L. Shi, J. Kong et al., Hierarchical Fe-Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption. ACS Nano 18, 560–570 (2024). https://doi.org/10.1021/acsnano.3c08569
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8