Leakage Proof, Flame-Retardant, and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting
Corresponding Author: Delong Xie
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 196
Abstract
Phase change materials (PCMs) offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization. However, for organic solid–liquid PCMs, issues such as leakage, low thermal conductivity, lack of efficient solar-thermal media, and flammability have constrained their broad applications. Herein, we present an innovative class of versatile composite phase change materials (CPCMs) developed through a facile and environmentally friendly synthesis approach, leveraging the inherent anisotropy and unidirectional porosity of wood aerogel (nanowood) to support polyethylene glycol (PEG). The wood modification process involves the incorporation of phytic acid (PA) and MXene hybrid structure through an evaporation-induced assembly method, which could impart non-leaking PEG filling while concurrently facilitating thermal conduction, light absorption, and flame-retardant. Consequently, the as-prepared wood-based CPCMs showcase enhanced thermal conductivity (0.82 W m−1 K−1, about 4.6 times than PEG) as well as high latent heat of 135.5 kJ kg−1 (91.5% encapsulation) with thermal durability and stability throughout at least 200 heating and cooling cycles, featuring dramatic solar-thermal conversion efficiency up to 98.58%. In addition, with the synergistic effect of phytic acid and MXene, the flame-retardant performance of the CPCMs has been significantly enhanced, showing a self-extinguishing behavior. Moreover, the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs, relieving contemporary health hazards associated with electromagnetic waves. Overall, we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs, showcasing the operational principle through a proof-of-concept prototype system.
Highlights:
1 An innovative class of versatile form-stable composite phase change materials (CPCMs) was fruitfully exploited, featuring MXene/phytic acid hybrid depositing on non-carbonized wood as a robust support.
2 The wood-based CPCMs showcase enhanced thermal conductivity of 0.82 W m−1 K−1 (4.6 times than polyethylene glycol) as well as high latent heat of 135.5 kJ kg−1 (91.5% encapsulation) with thermal durability and stability throughout at least 200 heating and cooling cycles.
3 The wood-based CPCMs have good solar-thermal-electricity conversion, flame-retardant, and electromagnetic shielding properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- G. Simonsen, R. Ravotti, P. O’Neill, A. Stamatiou, Biobased phase change materials in energy storage and thermal management technologies. Renew. Sustain. Energy Rev. 184, 113546 (2023). https://doi.org/10.1016/j.rser.2023.113546
- M. Shao, Z. Han, J. Sun, C. Xiao, S. Zhang et al., A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 157, 377–403 (2020). https://doi.org/10.1016/j.renene.2020.04.137
- H. Sadeghi, R. Jalali, R.M. Singh, A review of borehole thermal energy storage and its integration into district heating systems. Renew. Sustain. Energy Rev. 192, 114236 (2024). https://doi.org/10.1016/j.rser.2023.114236
- Y. Ma, J. Gong, P. Zeng, M. Liu, Recent progress in interfacial dipole engineering for perovskite solar cells. Nano-Micro Lett. 15, 173 (2023). https://doi.org/10.1007/s40820-023-01131-4
- G. Wang, Z. Tang, Y. Gao, P. Liu, Y. Li et al., Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 123, 6953–7024 (2023). https://doi.org/10.1021/acs.chemrev.2c00572
- X. Li, X. Sheng, Y. Guo, X. Lu, H. Wu et al., Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Techn. 37, 171–179 (2021). https://doi.org/10.1016/j.jmst.2021.02.009
- J. Shen, Y. Ma, F. Zhou, X. Sheng, Y. Chen, Thermophysical properties investigation of phase change microcapsules with low supercooling and high energy storage capability: potential for efficient solar energy thermal management. J. Mater. Sci. Technol. 191, 199–208 (2024). https://doi.org/10.1016/j.jmst.2024.01.014
- Y. Cao, P. Lian, Y. Chen, L. Zhang, X. Sheng, Novel organically modified disodium hydrogen phosphate dodecahydrate-based phase change composite for efficient solar energy storage and conversion. Sol. Energy Mater. Sol. Cells 268, 112747 (2024). https://doi.org/10.1016/j.solmat.2024.112747
- P. Lian, R. Yan, Z. Wu, Z. Wang, Y. Chen et al., Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid Mater. 6, 74 (2023). https://doi.org/10.1007/s42114-023-00655-y
- Q. Xu, L. Zhu, Y. Pei, C. Yang, D. Yang et al., Heat transfer enhancement performance of microencapsulated phase change materials latent functional thermal fluid in solid/liquid phase transition regions. Int. J. Heat Mass Transf. 214, 124461 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124461
- D. Huang, Y. Chen, L. Zhang, X. Sheng, Flexible thermoregulatory microcapsule/polyurethane-MXene composite films with multiple thermal management functionalities and excellent EMI shielding performance. J. Mater. Sci. Technol. 165, 27–38 (2023). https://doi.org/10.1016/j.jmst.2023.05.013
- H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
- J. Wu, M. Wang, L. Dong, Y. Zhang, J. Shi et al., Highly integrated, breathable, metalized phase change fibrous membranes based on hierarchical coaxial fiber structure for multimodal personal thermal management. Chem. Eng. J. 465, 142835 (2023). https://doi.org/10.1016/j.cej.2023.142835
- D. Huang, L. Zhang, X. Sheng, Y. Chen, Facile strategy for constructing highly thermally conductive PVDF-BN/PEG phase change composites based on a salt template toward efficient thermal management of electronics. Appl. Therm. Eng. 232, 121041 (2023). https://doi.org/10.1016/j.applthermaleng.2023.121041
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- H. He, M. Dong, Q. Wang, J. Zhang, Q. Feng et al., A multifunctional carbon-base phase change composite inspired by “fruit growth”. Carbon 205, 499–509 (2023). https://doi.org/10.1016/j.carbon.2023.01.038
- K. Chen, X. Yu, C. Tian, J. Wang, Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage. Energy Convers. Manag. 77, 13–21 (2014). https://doi.org/10.1016/j.enconman.2013.09.015
- B. Liu, Y. Wang, T. Rabczuk, T. Olofsson, W. Lu, Multi-scale modeling in thermal conductivity of polyurethane incorporated with phase change materials using physics-informed neural networks. Renew. Energy 220, 119565 (2024). https://doi.org/10.1016/j.renene.2023.119565
- C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16, 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
- M. Cheng, J. Hu, J. Xia, Q. Liu, T. Wei et al., One-step in situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material. Chem. Eng. J. 431, 133935 (2022). https://doi.org/10.1016/j.cej.2021.133935
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- L.A. Berglund, I. Burgert, Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285 (2018). https://doi.org/10.1002/adma.201704285
- G. Yan, S. He, G. Chen, S. Ma, A. Zeng et al., Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the hofmeister effect for human motion monitoring. Nano-Micro Lett. 14, 84 (2022). https://doi.org/10.1007/s40820-022-00827-3
- F. Qi, L. Wang, Y. Zhang, Z. Ma, H. Qiu et al., Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
- T. Farid, M.I. Rafiq, A. Ali, W. Tang, Transforming wood as next-generation structural and functional materials for a sustainable future. EcoMat 4, e12154 (2022). https://doi.org/10.1002/eom2.12154
- J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018). https://doi.org/10.1038/nature25476
- S. Xiao, C. Chen, Q. Xia, Y. Liu, Y. Yao et al., Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374, 465–471 (2021). https://doi.org/10.1126/science.abg9556
- B. Zhao, X. Shi, S. Khakalo, Y. Meng, A. Miettinen et al., Wood-based superblack. Nat. Commun. 14, 7875 (2023). https://doi.org/10.1038/s41467-023-43594-4
- K. Sheng, M. Tian, J. Zhu, Y. Zhang, B. Van der Bruggen, When coordination polymers meet wood: from molecular design toward sustainable solar desalination. ACS Nano 17, 15482–15491 (2023). https://doi.org/10.1021/acsnano.3c01421
- S. Liu, H. Wu, Y. Du, X. Lu, J. Qu, Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol. Energy Mater. Sol. Cells 230, 111187 (2021). https://doi.org/10.1016/j.solmat.2021.111187
- H. Yang, S. Wang, X. Wang, W. Chao, N. Wang et al., Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl. Energy 261, 114481 (2020). https://doi.org/10.1016/j.apenergy.2019.114481
- H. Yang, W. Chao, X. Di, Z. Yang, T. Yang et al., Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Convers. Manag. 200, 112029 (2019). https://doi.org/10.1016/j.enconman.2019.112029
- L. Shu, H. Fang, S. Feng, J. Sun, F. Yang et al., Assembling all-wood-derived carbon/carbon dots-assisted phase change materials for high-efficiency thermal-energy harvesters. Int. J. Biol. Macromol. 256, 128365 (2024). https://doi.org/10.1016/j.ijbiomac.2023.128365
- Y. Liu, H. Yang, Y. Wang, C. Ma, S. Luo et al., Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage. Chem. Eng. J. 424, 130426 (2021). https://doi.org/10.1016/j.cej.2021.130426
- X. Shi, Y. Meng, R. Bi, Z. Wan, Y. Zhu et al., Enabling unidirectional thermal conduction of wood-supported phase change material for photo-to-thermal energy conversion and heat regulation. Compos. Part B Eng. 245, 110231 (2022). https://doi.org/10.1016/j.compositesb.2022.110231
- W. Huang, H. Li, X. Lai, Z. Chen, L. Zheng et al., Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage. Cellulose 29, 223–232 (2022). https://doi.org/10.1007/s10570-021-04297-5
- J. Wu, Y. Chen, L. Zhang, X. Sheng, Electrostatic self-assembled MXene@PDDA-Fe3O4 nanocomposite: a novel, efficient, and stable low-temperature phosphating accelerator. J. Ind. Eng. Chem. 129, 424–434 (2024). https://doi.org/10.1016/j.jiec.2023.09.002
- Y. Cao, Z. Zeng, D. Huang, Y. Chen, L. Zhang et al., Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res. 15, 8524–8535 (2022). https://doi.org/10.1007/s12274-022-4626-6
- L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4, 200–210 (2022). https://doi.org/10.1002/cey2.174
- Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4, 2300224 (2023). https://doi.org/10.1002/adpr.202300224
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- X. Huang, Q. Weng, Y. Chen, L. Zhang, X. Sheng, Accelerating phosphating process via hydrophobic MXene@SA nanocomposites for the significant improvement in anti-corrosion performance of plain carbon steel. Surf. Interfaces 45, 103911 (2024). https://doi.org/10.1016/j.surfin.2024.103911
- H. Jiang, Y. Xie, Y. Jiang, Y. Luo, X. Sheng et al., Rationally assembled sandwich structure of MXene-based phosphorous flame retardant at ultra-low loading nanosheets enabling fire-safe thermoplastic polyurethane. Appl. Surf. Sci. 649, 159111 (2024). https://doi.org/10.1016/j.apsusc.2023.159111
- C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- Y. Jiang, X. Ru, W. Che, Z. Jiang, H. Chen et al., Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. Part B Eng. 229, 109460 (2022). https://doi.org/10.1016/j.compositesb.2021.109460
- Y. Zhang, Y. Huang, M.-C. Li, S. Zhang, W. Zhou et al., Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360 (2023). https://doi.org/10.1016/j.cej.2022.139360
- H. Gao, N. Bing, Z. Bao, H. Xie, W. Yu, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem. Eng. J. 454, 140362 (2023). https://doi.org/10.1016/j.cej.2022.140362
- D. Zhang, K. Yang, X. Liu, M. Luo, Z. Li et al., Boosting the photothermal conversion efficiency of MXene film by porous wood for light-driven soft actuators. Chem. Eng. J. 450, 138013 (2022). https://doi.org/10.1016/j.cej.2022.138013
- M. Luo, D. Zhang, K. Yang, Z. Li, Z. Zhu et al., A flexible vertical-section wood/MXene electrode with excellent performance fabricated by building a highly accessible bonding interface. ACS Appl. Mater. Interfaces 14, 40460–40468 (2022). https://doi.org/10.1021/acsami.2c12819
- P.-L. Wang, C. Ma, Q. Yuan, T. Mai, M.-G. Ma, Novel Ti3C2Tx MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect. J. Colloid Interface Sci. 606, 971–982 (2022). https://doi.org/10.1016/j.jcis.2021.08.092
- Y. Li, X. Li, D. Liu, X. Cheng, X. He et al., Fabrication and properties of polyethylene glycol-modified wood composite for energy storage and conversion. BioResources 11, 7790–7802 (2016). https://doi.org/10.15376/biores.11.3.7790-7802
- Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
- X. He, J. Wu, X. Huang, Y. Chen, L. Zhang et al., Three-in-one polymer nanocomposite coating via constructing tannic acid functionalized MXene/BP hybrids with superior corrosion resistance, friction resistance, and flame-retardancy. Chem. Eng. Sci. 283, 119429 (2024). https://doi.org/10.1016/j.ces.2023.119429
- Y. Cao, M. Weng, M.H.H. Mahmoud, A.Y. Elnaggar, L. Zhang et al., Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv. Compos. Hybrid Mater. 5, 1253–1267 (2022). https://doi.org/10.1007/s42114-022-00504-4
- Y. Wei, C. Hu, Z. Dai, Y. Zhang, W. Zhang et al., Highly anisotropic MXene@Wood composites for tunable electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 168, 107476 (2023). https://doi.org/10.1016/j.compositesa.2023.107476
- Y. Meng, J. Majoinen, B. Zhao, O.J. Rojas, Form-stable phase change materials from mesoporous balsa after selective removal of lignin. Compos. Part B Eng. 199, 108296 (2020). https://doi.org/10.1016/j.compositesb.2020.108296
- Y. Yun, W. Chi, R. Liu, Y. Ning, W. Liu et al., Self-assembled polyacylated anthocyanins on anionic wood film as a multicolor sensor for tracking TVB-N of meat. Ind. Crops Prod. 208, 117834 (2024). https://doi.org/10.1016/j.indcrop.2023.117834
- H. Yang, Y. Wang, Q. Yu, G. Cao, R. Yang et al., Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl. Energ. 212, 455–464 (2018). https://doi.org/10.1016/j.apenergy.2017.12.006
- L. Ma, C. Guo, R. Ou, L. Sun, Q. Wang et al., Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material. Energy Fuels 32, 5453–5461 (2018). https://doi.org/10.1021/acs.energyfuels.7b03933
- B. Liang, X. Lu, R. Li, W. Tu, Z. Yang et al., Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage. Sol. Energ. Mat. Sol. C 200, 110037 (2019). https://doi.org/10.1016/j.solmat.2019.110037
- R. Xia, W. Zhang, Y. Yang, J. Zhao, Y. Liu et al., Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation. J. Clean. Prod. 296, 126598 (2021). https://doi.org/10.1016/j.jclepro.2021.126598
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 34, 2316691 (2024). https://doi.org/10.1002/adfm.202316691
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- X. Chen, H. Gao, L. Xing, W. Dong, A. Li et al., Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater. 18, 280–288 (2019). https://doi.org/10.1016/j.ensm.2018.08.024
- I. Shamseddine, F. Pennec, P. Biwole, F. Fardoun, Supercooling of phase change materials: a review. Renew. Sustain. Energy Rev. 158, 112172 (2022). https://doi.org/10.1016/j.rser.2022.112172
- Z. Zeng, D. Huang, L. Zhang, X. Sheng, Y. Chen, An innovative modified calcium chloride hexahydrate–based composite phase change material for thermal energy storage and indoor temperature regulation. Adv. Compos. Hybrid Mater. 6, 80 (2023). https://doi.org/10.1007/s42114-023-00654-z
- Y. Luo, Y. Xie, W. Geng, G. Dai, X. Sheng et al., Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. J. Colloid Interface Sci. 606, 223–235 (2022). https://doi.org/10.1016/j.jcis.2021.08.025
- J. Wang, H. Yue, Z. Du, X. Cheng, H. Wang et al., Flame-retardant and form-stable delignified wood-based phase change composites with superior energy storage density and reversible thermochromic properties for visual thermoregulation. ACS Sustainable Chem. Eng. 11, 3932–3943 (2023). https://doi.org/10.1021/acssuschemeng.2c07635
- L. Tang, K. Ruan, X. Liu, Y. Tang, Y. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16, 38 (2023). https://doi.org/10.1007/s40820-023-01257-5
- S. Yin, X. Ren, R. Zheng, Y. Li, J. Zhao et al., Improving fire safety and mechanical properties of waterborne polyurethane by montmorillonite-passivated black phosphorus. Chem. Eng. J. 464, 142683 (2023). https://doi.org/10.1016/j.cej.2023.142683
- P. Lin, J. Xie, Y. He, X. Lu, W. Li et al., MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy Mater. Sol. Cells 206, 110229 (2020). https://doi.org/10.1016/j.solmat.2019.110229
- C. Liang, H. Qiu, Y. Zhang, Y. Liu, J. Gu, External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 68, 1938–1953 (2023). https://doi.org/10.1016/j.scib.2023.07.046
- S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 34, 2316722 (2024). https://doi.org/10.1002/adfm.202316722
- J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
References
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
G. Simonsen, R. Ravotti, P. O’Neill, A. Stamatiou, Biobased phase change materials in energy storage and thermal management technologies. Renew. Sustain. Energy Rev. 184, 113546 (2023). https://doi.org/10.1016/j.rser.2023.113546
M. Shao, Z. Han, J. Sun, C. Xiao, S. Zhang et al., A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 157, 377–403 (2020). https://doi.org/10.1016/j.renene.2020.04.137
H. Sadeghi, R. Jalali, R.M. Singh, A review of borehole thermal energy storage and its integration into district heating systems. Renew. Sustain. Energy Rev. 192, 114236 (2024). https://doi.org/10.1016/j.rser.2023.114236
Y. Ma, J. Gong, P. Zeng, M. Liu, Recent progress in interfacial dipole engineering for perovskite solar cells. Nano-Micro Lett. 15, 173 (2023). https://doi.org/10.1007/s40820-023-01131-4
G. Wang, Z. Tang, Y. Gao, P. Liu, Y. Li et al., Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 123, 6953–7024 (2023). https://doi.org/10.1021/acs.chemrev.2c00572
X. Li, X. Sheng, Y. Guo, X. Lu, H. Wu et al., Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Techn. 37, 171–179 (2021). https://doi.org/10.1016/j.jmst.2021.02.009
J. Shen, Y. Ma, F. Zhou, X. Sheng, Y. Chen, Thermophysical properties investigation of phase change microcapsules with low supercooling and high energy storage capability: potential for efficient solar energy thermal management. J. Mater. Sci. Technol. 191, 199–208 (2024). https://doi.org/10.1016/j.jmst.2024.01.014
Y. Cao, P. Lian, Y. Chen, L. Zhang, X. Sheng, Novel organically modified disodium hydrogen phosphate dodecahydrate-based phase change composite for efficient solar energy storage and conversion. Sol. Energy Mater. Sol. Cells 268, 112747 (2024). https://doi.org/10.1016/j.solmat.2024.112747
P. Lian, R. Yan, Z. Wu, Z. Wang, Y. Chen et al., Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid Mater. 6, 74 (2023). https://doi.org/10.1007/s42114-023-00655-y
Q. Xu, L. Zhu, Y. Pei, C. Yang, D. Yang et al., Heat transfer enhancement performance of microencapsulated phase change materials latent functional thermal fluid in solid/liquid phase transition regions. Int. J. Heat Mass Transf. 214, 124461 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124461
D. Huang, Y. Chen, L. Zhang, X. Sheng, Flexible thermoregulatory microcapsule/polyurethane-MXene composite films with multiple thermal management functionalities and excellent EMI shielding performance. J. Mater. Sci. Technol. 165, 27–38 (2023). https://doi.org/10.1016/j.jmst.2023.05.013
H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
J. Wu, M. Wang, L. Dong, Y. Zhang, J. Shi et al., Highly integrated, breathable, metalized phase change fibrous membranes based on hierarchical coaxial fiber structure for multimodal personal thermal management. Chem. Eng. J. 465, 142835 (2023). https://doi.org/10.1016/j.cej.2023.142835
D. Huang, L. Zhang, X. Sheng, Y. Chen, Facile strategy for constructing highly thermally conductive PVDF-BN/PEG phase change composites based on a salt template toward efficient thermal management of electronics. Appl. Therm. Eng. 232, 121041 (2023). https://doi.org/10.1016/j.applthermaleng.2023.121041
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
H. He, M. Dong, Q. Wang, J. Zhang, Q. Feng et al., A multifunctional carbon-base phase change composite inspired by “fruit growth”. Carbon 205, 499–509 (2023). https://doi.org/10.1016/j.carbon.2023.01.038
K. Chen, X. Yu, C. Tian, J. Wang, Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage. Energy Convers. Manag. 77, 13–21 (2014). https://doi.org/10.1016/j.enconman.2013.09.015
B. Liu, Y. Wang, T. Rabczuk, T. Olofsson, W. Lu, Multi-scale modeling in thermal conductivity of polyurethane incorporated with phase change materials using physics-informed neural networks. Renew. Energy 220, 119565 (2024). https://doi.org/10.1016/j.renene.2023.119565
C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16, 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
M. Cheng, J. Hu, J. Xia, Q. Liu, T. Wei et al., One-step in situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material. Chem. Eng. J. 431, 133935 (2022). https://doi.org/10.1016/j.cej.2021.133935
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
L.A. Berglund, I. Burgert, Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285 (2018). https://doi.org/10.1002/adma.201704285
G. Yan, S. He, G. Chen, S. Ma, A. Zeng et al., Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the hofmeister effect for human motion monitoring. Nano-Micro Lett. 14, 84 (2022). https://doi.org/10.1007/s40820-022-00827-3
F. Qi, L. Wang, Y. Zhang, Z. Ma, H. Qiu et al., Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
T. Farid, M.I. Rafiq, A. Ali, W. Tang, Transforming wood as next-generation structural and functional materials for a sustainable future. EcoMat 4, e12154 (2022). https://doi.org/10.1002/eom2.12154
J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018). https://doi.org/10.1038/nature25476
S. Xiao, C. Chen, Q. Xia, Y. Liu, Y. Yao et al., Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374, 465–471 (2021). https://doi.org/10.1126/science.abg9556
B. Zhao, X. Shi, S. Khakalo, Y. Meng, A. Miettinen et al., Wood-based superblack. Nat. Commun. 14, 7875 (2023). https://doi.org/10.1038/s41467-023-43594-4
K. Sheng, M. Tian, J. Zhu, Y. Zhang, B. Van der Bruggen, When coordination polymers meet wood: from molecular design toward sustainable solar desalination. ACS Nano 17, 15482–15491 (2023). https://doi.org/10.1021/acsnano.3c01421
S. Liu, H. Wu, Y. Du, X. Lu, J. Qu, Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol. Energy Mater. Sol. Cells 230, 111187 (2021). https://doi.org/10.1016/j.solmat.2021.111187
H. Yang, S. Wang, X. Wang, W. Chao, N. Wang et al., Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl. Energy 261, 114481 (2020). https://doi.org/10.1016/j.apenergy.2019.114481
H. Yang, W. Chao, X. Di, Z. Yang, T. Yang et al., Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Convers. Manag. 200, 112029 (2019). https://doi.org/10.1016/j.enconman.2019.112029
L. Shu, H. Fang, S. Feng, J. Sun, F. Yang et al., Assembling all-wood-derived carbon/carbon dots-assisted phase change materials for high-efficiency thermal-energy harvesters. Int. J. Biol. Macromol. 256, 128365 (2024). https://doi.org/10.1016/j.ijbiomac.2023.128365
Y. Liu, H. Yang, Y. Wang, C. Ma, S. Luo et al., Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage. Chem. Eng. J. 424, 130426 (2021). https://doi.org/10.1016/j.cej.2021.130426
X. Shi, Y. Meng, R. Bi, Z. Wan, Y. Zhu et al., Enabling unidirectional thermal conduction of wood-supported phase change material for photo-to-thermal energy conversion and heat regulation. Compos. Part B Eng. 245, 110231 (2022). https://doi.org/10.1016/j.compositesb.2022.110231
W. Huang, H. Li, X. Lai, Z. Chen, L. Zheng et al., Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage. Cellulose 29, 223–232 (2022). https://doi.org/10.1007/s10570-021-04297-5
J. Wu, Y. Chen, L. Zhang, X. Sheng, Electrostatic self-assembled MXene@PDDA-Fe3O4 nanocomposite: a novel, efficient, and stable low-temperature phosphating accelerator. J. Ind. Eng. Chem. 129, 424–434 (2024). https://doi.org/10.1016/j.jiec.2023.09.002
Y. Cao, Z. Zeng, D. Huang, Y. Chen, L. Zhang et al., Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res. 15, 8524–8535 (2022). https://doi.org/10.1007/s12274-022-4626-6
L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4, 200–210 (2022). https://doi.org/10.1002/cey2.174
Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4, 2300224 (2023). https://doi.org/10.1002/adpr.202300224
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
X. Huang, Q. Weng, Y. Chen, L. Zhang, X. Sheng, Accelerating phosphating process via hydrophobic MXene@SA nanocomposites for the significant improvement in anti-corrosion performance of plain carbon steel. Surf. Interfaces 45, 103911 (2024). https://doi.org/10.1016/j.surfin.2024.103911
H. Jiang, Y. Xie, Y. Jiang, Y. Luo, X. Sheng et al., Rationally assembled sandwich structure of MXene-based phosphorous flame retardant at ultra-low loading nanosheets enabling fire-safe thermoplastic polyurethane. Appl. Surf. Sci. 649, 159111 (2024). https://doi.org/10.1016/j.apsusc.2023.159111
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
Y. Jiang, X. Ru, W. Che, Z. Jiang, H. Chen et al., Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. Part B Eng. 229, 109460 (2022). https://doi.org/10.1016/j.compositesb.2021.109460
Y. Zhang, Y. Huang, M.-C. Li, S. Zhang, W. Zhou et al., Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360 (2023). https://doi.org/10.1016/j.cej.2022.139360
H. Gao, N. Bing, Z. Bao, H. Xie, W. Yu, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem. Eng. J. 454, 140362 (2023). https://doi.org/10.1016/j.cej.2022.140362
D. Zhang, K. Yang, X. Liu, M. Luo, Z. Li et al., Boosting the photothermal conversion efficiency of MXene film by porous wood for light-driven soft actuators. Chem. Eng. J. 450, 138013 (2022). https://doi.org/10.1016/j.cej.2022.138013
M. Luo, D. Zhang, K. Yang, Z. Li, Z. Zhu et al., A flexible vertical-section wood/MXene electrode with excellent performance fabricated by building a highly accessible bonding interface. ACS Appl. Mater. Interfaces 14, 40460–40468 (2022). https://doi.org/10.1021/acsami.2c12819
P.-L. Wang, C. Ma, Q. Yuan, T. Mai, M.-G. Ma, Novel Ti3C2Tx MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect. J. Colloid Interface Sci. 606, 971–982 (2022). https://doi.org/10.1016/j.jcis.2021.08.092
Y. Li, X. Li, D. Liu, X. Cheng, X. He et al., Fabrication and properties of polyethylene glycol-modified wood composite for energy storage and conversion. BioResources 11, 7790–7802 (2016). https://doi.org/10.15376/biores.11.3.7790-7802
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
X. He, J. Wu, X. Huang, Y. Chen, L. Zhang et al., Three-in-one polymer nanocomposite coating via constructing tannic acid functionalized MXene/BP hybrids with superior corrosion resistance, friction resistance, and flame-retardancy. Chem. Eng. Sci. 283, 119429 (2024). https://doi.org/10.1016/j.ces.2023.119429
Y. Cao, M. Weng, M.H.H. Mahmoud, A.Y. Elnaggar, L. Zhang et al., Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv. Compos. Hybrid Mater. 5, 1253–1267 (2022). https://doi.org/10.1007/s42114-022-00504-4
Y. Wei, C. Hu, Z. Dai, Y. Zhang, W. Zhang et al., Highly anisotropic MXene@Wood composites for tunable electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 168, 107476 (2023). https://doi.org/10.1016/j.compositesa.2023.107476
Y. Meng, J. Majoinen, B. Zhao, O.J. Rojas, Form-stable phase change materials from mesoporous balsa after selective removal of lignin. Compos. Part B Eng. 199, 108296 (2020). https://doi.org/10.1016/j.compositesb.2020.108296
Y. Yun, W. Chi, R. Liu, Y. Ning, W. Liu et al., Self-assembled polyacylated anthocyanins on anionic wood film as a multicolor sensor for tracking TVB-N of meat. Ind. Crops Prod. 208, 117834 (2024). https://doi.org/10.1016/j.indcrop.2023.117834
H. Yang, Y. Wang, Q. Yu, G. Cao, R. Yang et al., Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl. Energ. 212, 455–464 (2018). https://doi.org/10.1016/j.apenergy.2017.12.006
L. Ma, C. Guo, R. Ou, L. Sun, Q. Wang et al., Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material. Energy Fuels 32, 5453–5461 (2018). https://doi.org/10.1021/acs.energyfuels.7b03933
B. Liang, X. Lu, R. Li, W. Tu, Z. Yang et al., Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage. Sol. Energ. Mat. Sol. C 200, 110037 (2019). https://doi.org/10.1016/j.solmat.2019.110037
R. Xia, W. Zhang, Y. Yang, J. Zhao, Y. Liu et al., Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation. J. Clean. Prod. 296, 126598 (2021). https://doi.org/10.1016/j.jclepro.2021.126598
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 34, 2316691 (2024). https://doi.org/10.1002/adfm.202316691
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
X. Chen, H. Gao, L. Xing, W. Dong, A. Li et al., Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater. 18, 280–288 (2019). https://doi.org/10.1016/j.ensm.2018.08.024
I. Shamseddine, F. Pennec, P. Biwole, F. Fardoun, Supercooling of phase change materials: a review. Renew. Sustain. Energy Rev. 158, 112172 (2022). https://doi.org/10.1016/j.rser.2022.112172
Z. Zeng, D. Huang, L. Zhang, X. Sheng, Y. Chen, An innovative modified calcium chloride hexahydrate–based composite phase change material for thermal energy storage and indoor temperature regulation. Adv. Compos. Hybrid Mater. 6, 80 (2023). https://doi.org/10.1007/s42114-023-00654-z
Y. Luo, Y. Xie, W. Geng, G. Dai, X. Sheng et al., Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. J. Colloid Interface Sci. 606, 223–235 (2022). https://doi.org/10.1016/j.jcis.2021.08.025
J. Wang, H. Yue, Z. Du, X. Cheng, H. Wang et al., Flame-retardant and form-stable delignified wood-based phase change composites with superior energy storage density and reversible thermochromic properties for visual thermoregulation. ACS Sustainable Chem. Eng. 11, 3932–3943 (2023). https://doi.org/10.1021/acssuschemeng.2c07635
L. Tang, K. Ruan, X. Liu, Y. Tang, Y. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16, 38 (2023). https://doi.org/10.1007/s40820-023-01257-5
S. Yin, X. Ren, R. Zheng, Y. Li, J. Zhao et al., Improving fire safety and mechanical properties of waterborne polyurethane by montmorillonite-passivated black phosphorus. Chem. Eng. J. 464, 142683 (2023). https://doi.org/10.1016/j.cej.2023.142683
P. Lin, J. Xie, Y. He, X. Lu, W. Li et al., MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy Mater. Sol. Cells 206, 110229 (2020). https://doi.org/10.1016/j.solmat.2019.110229
C. Liang, H. Qiu, Y. Zhang, Y. Liu, J. Gu, External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 68, 1938–1953 (2023). https://doi.org/10.1016/j.scib.2023.07.046
S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 34, 2316722 (2024). https://doi.org/10.1002/adfm.202316722
J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8