Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives
Corresponding Author: Guoyin Kai
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 45
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Highlights:
1 Different nanotechnologies and nanomaterials with their efficient applications in functional food development are summarized.
2 Nanotechnologies boosted the food, medicine, and biotechnology sector through enhanced food bioavailability, food processing, packaging, and preservation are also reviewed.
3 This comprehensive review on nanotechnologies in food science describes the recent trend and future perspectives for future functional nanofood research and development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Curr. Opin. Colloid Interface Sci. 363, 1–24 (2011). https://doi.org/10.1016/J.JCIS.2011.07.017
- C. Parisi, M. Vigani, E. Rodríguez-Cerezo, Agricultural nanotechnologies: what are the current possibilities? Nano Today 10, 124–127 (2015). https://doi.org/10.1016/J.NANTOD.2014.09.009
- Y.S. El-Temsah, E.J. Joner Bioforsk, Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 165, 16 (2006). https://doi.org/10.1002/tox.20610
- M. Kumari, A. Mukherjee, N. Chandrasekaran, Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ. 407, 5243–5246 (2009). https://doi.org/10.1016/J.SCITOTENV.2009.06.024
- R. Nair, S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, D.S. Kumar, Nanoparticulate material delivery to plants. Plant Sci. 179, 154–163 (2010). https://doi.org/10.1016/J.PLANTSCI.2010.04.012
- T.V. Duncan, The communication challenges presented by nanofoods. Nat. Nanotechnol. 6, 683–688 (2011). https://doi.org/10.1038/nnano.2011.193
- A.C. Tricco, H.M. Ashoor, J. Antony, Z. Bouck, M. Rodrigues et al., Essential Medicines List (EML) 2019 Application for the inclusion of long acting insulin analogues including biosimilar in the WHO Model List of Essential Medicines, as treatments used for patients with diabetes type 1 (2019)
- W.H. Sperber, M.P. Doyle, Introduction to the Microbiological spoilage of foods and beverages, in Compendium of the microbiological spoilage of foods and beverages (Springer International Publishing, New Yark, 2009). pp. 1–40
- B.S. Sekhon, Food nanotechnology—an overview. Nanotechnol. Sci. Appl. 3, 1–15 (2010). https://doi.org/10.2147/NSA.S8677
- V.K. Bajpai, M. Kamle, S. Shukla, D.K. Mahato, P. Chandra et al., Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 26, 1201–1214 (2018). https://doi.org/10.1016/J.JFDA.2018.06.011
- S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, M. Engineering, Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670–8673 (2007). https://doi.org/10.1021/la701067r
- K.W. Powers, S.C. Brown, V.B. Krishna, S.C. Wasdo, B.M. Moudgil, S.M. Roberts, Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90, 296–303 (2006). https://doi.org/10.1093/toxsci/kfj099
- H.M.C. Azeredo, C.L.M. Henrique, D. Wood, T.G. Williams, J.A.-B. Roberto, H.M. Tara, Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci. 74, 31–35 (2009). https://doi.org/10.1111/j.1750-3841.2009.01186.x
- S. Naoto, O. Hiroshi, N. Mitsutoshi, Mitsutoshi, micro- and nanotechnology for food processing. (Food safety series) resource: engineering and technology for a sustainable. World. Am. Soc. Agric. Eng. 16, 19 (2009)
- EFSA Scientific Committee, The potential risks arising from nanoscience and nanotechnologies on food and feed safety. Sci Opin Sci Comm (2009). https://doi.org/10.2903/j.efsa.2009.958
- S.K. Yadav, Tissue science & engineering realizing the potential of nanotechnology for agriculture and food technology. J. Tissue Sci. Eng. 8, 8–11 (2017). https://doi.org/10.4172/2157-7552.1000195
- B.K. Gilligan, Nanny, Nano, Boo, Boo Food ? (2008). http://www.towerofbabel.com/blog/2008/08/28/nanny-nano-boo-boo-food/
- M.F.F. Pocas, T.F. Delgado, F.A.R. Oliveira, Smart packaging technologies for fruits and vegetables. in Smart Packaging Technologies for Fast Moving Consumer Goods, ed. by J. Kerry, P. Butler (2008). https://doi.org/10.1002/9780470753699.ch9
- A.L. Brody, B. Bugusu, J.H. Han, C.K. Sand, T.H. Mchugh, Innovative food packaging solutions. J. Food Sci. 73, 107–116 (2008). https://doi.org/10.1111/j.1750-3841.2008.00933.x
- J.P. Kerry, M.N. O’Grady, S.A. Hogan, Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci. 74, 113–130 (2006). https://doi.org/10.1016/J.MEATSCI.2006.04.024
- X. He, H. Deng, H. Hwang, The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 27, 1–21 (2019). https://doi.org/10.1016/J.JFDA.2018.12.002
- A. Sorrentino, G. Gorrasi, V. Vittoria, Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18, 84–95 (2007). https://doi.org/10.1016/J.TIFS.2006.09.004
- D.S. Cha, M.S. Chinnan, Biopolymer-based antimicrobial packaging: a review. Crit. Rev. Food Sci. Nutr. 44, 223–237 (2004). https://doi.org/10.1080/10408690490464276
- J. Weiss, P. Takhistov, D.J. Mcclements, Functional materials in food nanotechnology. J. Food Sci. 71, 107–116 (2006). https://doi.org/10.1111/j.1750-3841.2006.00195.x
- R.J.B. Pinto, S. Daina, P. Sadocco, C.P. Neto, T. Trindade, Antibacterial activity of nanocomposites of copper and cellulose. Biomed. Res. Int. 2013, 280512 (2013). https://doi.org/10.1155/2013/280512
- S.D.F. Mihindukulasuriya, L.-T. Lim, Nanotechnology development in food packaging: a review. Trends Food Sci. Technol. 40, 149–167 (2014). https://doi.org/10.1016/J.TIFS.2014.09.009
- A. Brody, Nano and food packaging technologies converge. Food Technol. 60, 92–94 (2006)
- Y. Inoue, M. Hoshino, H. Takahashi, T. Noguchi, T. Murata, Y. Kanzaki, H. Hamashima, M. Sasatsu, Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions. J. Inorg. Biochem. 92, 37–42 (2002). https://doi.org/10.1016/S0162-0134(02)00489-0
- Y. Matsumura, K. Yoshikata, S. Kunisaki, T. Tsuchido, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69, 4278–4281 (2003). https://doi.org/10.1128/AEM.69.7.4278
- S. Egger, R.P. Lehmann, M.J. Height, M.J. Loessner, M. Schuppler, Antimicrobial properties of a novel silver-silica nanocomposite materials. Appl. Environ. Microbiol. 75, 2973–2976 (2009). https://doi.org/10.1128/AEM.01658-08
- N. Sinha, J. Ma, J.T.W. Yeow, Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 6, 573–590 (2006). https://doi.org/10.1166/jnn.2006.121
- Nanotechnology Can Enhance Food Packaging (2010). http://www.plastemart.com/plastic-technical-articles/Amorphous-polymers-can-produce-transparent-clear-products-/1260
- J. Rhim, P.K.W. Ng, J. Rhim, Natural biopolymer-based nanocomposite films for packaging. Crit. Rev. Food Sci. Nutr. 47, 411–433 (2007). https://doi.org/10.1080/10408390600846366
- J.M. Lagaron, L. Cabedo, D. Cava, J.L. Feijoo, R. Gavara, E. Gimenez, Improving packaged food quality and safety. Part 2 : Nanocomposites. Food Addit. Contam. 22, 994–998 (2005). https://doi.org/10.1080/02652030500239656
- Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, L. Castle, R. Aitken, R. Watkins, Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 25, 241–258 (2008). https://doi.org/10.1080/02652030701744538
- S. Ray, S.Y. Quek, A. Easteal, X.D. Chen, The potential use of polymer-clay nanocomposites in food packaging. Int. J. Food Eng. 2, 1–11 (2006). https://doi.org/10.2202/1556-3758.1149
- J.W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013). https://doi.org/10.1016/J.PROGPOLYMSCI.2013.05.008
- F.L. Yang, X.G. Li, F. Zhu, C.L. Lei, Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem. 57, 10156–10162 (2009). https://doi.org/10.1021/jf9023118
- F.E.S. An, A.G. Onzalez, Y.U.A.N.Y. Ao, Phytoglycogen octenyl succinate, an amphiphilic carbohydrate nanoparticle, and ε -polylysine to improve lipid oxidative stability of emulsions. J. Agric. Food Chem. 58, 660–667 (2010). https://doi.org/10.1021/jf903170b
- S. Neethirajan, D.S. Jayas, Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4, 39–47 (2015). https://doi.org/10.1007/s11947-010-0328-2
- A. Garland, Nanotechnology in Plastics Packaging: Commercial Applications in Nanotechnology (Pira International Limited, London, 2004), pp. 14–63
- M.V. Dias, N.F.F. de Soares, S.V. Borges, M.M. de Sousa, C.A. Nunes, I.R.N. de Oliveira, E.A.A. Medeiros, Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat. Food Chem. 141, 3160–3166 (2013). https://doi.org/10.1016/j.foodchem.2013.05.148
- M.A. Morris, S.C. Padmanabhan, M.C. Cruz-Romero, E. Cummins, Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications. Meat Sci. 132, 163–178 (2017). https://doi.org/10.1016/J.MEATSCI.2017.04.234
- R. Drew, T. Hagen, Nanotechnologies in food packaging: an exploratory appraisal of safety and regulation. Food Standards Australia New Zealand 75, 1 (2016)
- Z. Li, C. Sheng, Nanosensors for food safety. J. Nanosci. Nanotechnol. 14, 905–912 (2014). https://doi.org/10.1166/jnn.2014.8743
- M.M. Berekaa, Review article nanotechnology in food industry; advances in food processing, packaging and food safety. Int. J. Curr. Microbiol. App. Sci. 4, 345–357 (2015)
- M.A. Augustin, P. Sanguansri, Chapter 5: nanostructured materials in the food industry. Adv. Food Nutr. Res. 58, 183–213 (2009). https://doi.org/10.1016/s1043-4526(09)58005-9
- D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner et al., The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2009). https://doi.org/10.1038/nbt.1495
- C. Maneerat, Y. Hayata, Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int. J. Food Microbiol. 107, 99–103 (2006). https://doi.org/10.1016/J.IJFOODMICRO.2005.08.018
- T. King, M.J. Osmond-McLeod, L.L. Duffy, Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci. Technol. 72, 62–73 (2018). https://doi.org/10.1016/J.TIFS.2017.11.015
- A. Ditta, How helpful is nanotechnology in agriculture? Adv. Nat. Sci: Nanosci. Nanotechnol. 3, 033002 (2012). https://doi.org/10.1088/2043-6262/3/3/033002
- M. Ghasemi-Varnamkhasti, C. Apetrei, J. Lozano, A. Anyogu, Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 80, 71–92 (2018). https://doi.org/10.1016/J.TIFS.2018.07.018
- N. Dasgupta, S. Ranjan, D. Mundekkad, C. Ramalingam, R. Shanker, A. Kumar, Nanotechnology in agro-food: from field to plate. Food Res. Int. 69, 381–400 (2015). https://doi.org/10.1016/J.FOODRES.2015.01.005
- A. Emblem, H. Emblem, Packaging Technology: Fundamentals, Materials and Processes (Woodhead Publishing Ltd., Cambridge, 2012), pp. 287–309
- A.V. Fedotova, A.G. Snezhko, O.A. Sdobnikova, L.G. Samoilova, T.A. Smurova, A.A. Revina, E.B. Khailova, Packaging materials manufactured from natural polymers modified with silver nanoparticles. Plast. Massy 7, 42–47 (2009)
- L. Angiolillo, A. Conte, M.A. Del Nobile, Packaging and Shelf Life of Produce, Reference Module in Food Science (Elsevier, Dordrecht, 2016). https://doi.org/10.1016/B978-0-08-100596-5.03220-0
- G. Pyrgiotakis, A. Vasanthakumar, Y. Gao, M. Eleftheriadou, E. Toledo et al., Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS). Environ. Sci. Technol. 49, 3737–3745 (2015). https://doi.org/10.1021/es505868a
- P. Šimon, Q. Chaudhry, D. Bakoš, Migration of engineered nanoparticles from polymer packaging to food—a physicochemical view. J. Food Nutr. Res. 47, 105–113 (2008)
- C. Damm, H. Münstedt, A. Rösch, Long-term antimicrobial polyamide 6/silver-nanocomposites. J. Mater. Sci. 42, 6067–6073 (2007). https://doi.org/10.1007/s10853-006-1158-5
- S. Azlin-Hasim, M.C. Cruz-Romero, E. Cummins, J.P. Kerry, M.A. Morris, The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. Curr. Opin. Colloid Interface Sci. 461, 239–248 (2016). https://doi.org/10.1016/J.JCIS.2015.09.021
- R.T. De Silva, P. Pasbakhsh, S.M. Lee, A.Y. Kit, ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl. Clay Sci. 111, 10–20 (2015). https://doi.org/10.1016/J.CLAY.2015.03.024
- E. Taghinezhad, A. Ebadollahi, Potential application of chitosan-clay coating on some quality properties of lemon during storage. AgricEngInt: CIGR J. 19, 189–194 (2017)
- H.H. Khalaf, A.M. Sharoba, H.H. El-Tanahi, M.K. Morsy, Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey. J. Food Dairy Sci. Mansoura Univ. 4, 557–573 (2013)
- M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, E. Cummins, Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem. 139, 389–397 (2013). https://doi.org/10.1016/J.FOODCHEM.2013.01.045
- S. Djokic, Synthesis and antimicrobial activity of silver citrate complexes. Bioinorg. Chem. Appl. 2008, 436458 (2008). https://doi.org/10.1155/2008/436458
- M. Zarei, A. Jamnejad, E. Khajehali, Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J. Microbiol. 7, 1–4 (2014). https://doi.org/10.5812/jjm.8720
- M.E. Vance, T. Kuiken, E.P. Vejerano, S.P. Mcginnis, M.F.H. Jr, D. Rejeski, M.S. Hull, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015). https://doi.org/10.3762/bjnano.6.181
- M.C. Siqueira, G.F. Coelho, M.R. De Moura, J.D. Bresolin, S.Z. Hubinger, J.M. Marconcini, L.H.C. Mattoso, Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. J. Nanosci. Nanotechnol. 14, 5512–5517 (2014). https://doi.org/10.1166/jnn.2014.8991
- S.T. Khan, A.A. Al-Khedhairy, J.J. Musarrat, ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. Nanopart. Res. 17, 276–292 (2015). https://doi.org/10.1007/s11051-015-3074-6
- S.M. Rodrigues, P. Demokritou, N. Dokoozlian, C.O. Hendren, D.B. Karn et al., Environmental science nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano 1, 767–781 (2017). https://doi.org/10.1039/c6en00573j
- V. Krishna, S. Pumprueg, S.H. Lee, J. Zhao, W. Sigmund, B. Koopman, B.M. Moudgil, Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Process Saf. Environ. Prot. 83, 393–397 (2005). https://doi.org/10.1205/PSEP.04387
- A. Vohra, D.Y. Goswami, D.A. Deshpande, S.S. Block, Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J. Ind. Microbiol. Biotechnol. 32, 364–370 (2005). https://doi.org/10.1007/s10295-005-0006-y
- K.H. Cho, J.E. Park, T. Osaka, S.G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51, 956–960 (2005). https://doi.org/10.1016/J.ELECTACTA.2005.04.071
- B. Kim, D. Kim, D. Cho, S. Cho, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52, 277–281 (2003). https://doi.org/10.1016/S0045-6535(03)00051-1
- M.L. Cerrada, C. Serrano, M. Sanchez-Chaves, M. Fernandez-Garcıa, F. Fernandez-Martın et al., Self-sterilized EVOH-TiO2 nanocomposites: interface effects on biocidal properties. Adv. Funct. Mater. 18, 1949–1960 (2008). https://doi.org/10.1002/adfm.200701068
- M. Rai, P.S. Jogee, A.P. Ingle, Emerging nanotechnology for detection of mycotoxins in food and feed. Int. J. Food Sci. Nutr. 66, 363–370 (2015). https://doi.org/10.3109/09637486.2015.1034251
- J. Schmitt, S. Hajiw, A. Lecchi, J. Degrouard, A. Salonen, M. Impéror-Clerc, B. Pansu, Formation of superlattices of gold nanoparticles using ostwald ripening in emulsions: transition from fcc to bcc structure. J. Phys. Chem. B 120, 5759–5766 (2016). https://doi.org/10.1021/acs.jpcb.6b03287
- B. Duncan, X. Li, R.F. Landis, S.T. Kim, A. Gupta et al., Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 9, 7775–7782 (2015). https://doi.org/10.1021/acsnano.5b01696
- H.C.B. Paula, E.F. Oliveira, M.J.M. Carneiro, R.C.M. de Paula, Matrix effect on the spray drying nanoencapsulation of lippia sidoides essential oil in chitosan-native gum blends. Planta Med. 83, 392–397 (2017). https://doi.org/10.1055/s-0042-107470
- A.S. Gaspar, F.E. Wagner, V.S. Amaral, S.A. Costa Lima, V.A. Khomchenko, J.G. Santos, B.F.O. Costa, L. Durães, Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 172, 135–146 (2017). https://doi.org/10.1016/j.saa.2016.04.022
- S.F. Hosseini, M. Zandi, M. Rezaei, F. Farahmandghavi, Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr. Polym. 95, 50–56 (2013). https://doi.org/10.1016/J.CARBPOL.2013.02.031
- K. Li, S. Yin, X. Yang, C. Tang, Z. Wei, Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. J. Agric. Food Chem. 60, 11592–11600 (2012). https://doi.org/10.1021/jf302752v
- C. Gomes, R.G. Moreira, E. Castell-perez, Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 76, 16–24 (2011). https://doi.org/10.1111/j.1750-3841.2010.01985.x
- O. Gortzi, S. Lala, I. Chinou, J. Tsaknis, Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules 12, 932–945 (2007). https://doi.org/10.3390/12050932
- D. Valenti, A. De Logu, G. Loy, L. Bonsignore, F. Cottiglia, A.M. Fadda, Liposome-incorporated Santolina insularis essential oil: preparation, characterization and in vitro antiviral activity. J. Liposome Res. 11, 73–90 (2001). https://doi.org/10.1081/LPR-100103171
- Y. Wu, Y. Luo, Q. Wang, Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT - Food Sci. Technol. 48, 283–290 (2012). https://doi.org/10.1016/J.LWT.2012.03.027
- A.R. Bilia, C. Guccione, B. Isacchi, C. Righeschi, F. Firenzuoli, M.C. Bergonzi, Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid-Based Compl. Alt. Med. 2014, 651593 (2014). https://doi.org/10.1155/2014/651593
- F.O.M.S. Abreu, E.F. Oliveira, H.C.B. Paula, R.C.M. de Paula, Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym. 89, 1277–1282 (2012). https://doi.org/10.1016/J.CARBPOL.2012.04.048
- Y. Zhang, Y. Niu, Y. Luo, M. Ge, T. Yang, L. Yu, Q. Wang, Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem. 142, 269–275 (2014). https://doi.org/10.1016/j.foodchem.2013.07.058
- A. Iannitelli, R. Grande, A. di Stefano, M. di Giulio, P. Sozio et al., Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int. J. Mole. Sci. 12, 5039–5051 (2011). https://doi.org/10.3390/ijms12085039
- H. Gu, P.L. Ho, E. Tong, L. Wang, B. Xu, Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003). https://doi.org/10.1021/nl034396z
- L. Bi, L. Yang, G. Narsimhan, A.K. Bhunia, Y. Yao, Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J. Controlled Release 150, 150–156 (2011). https://doi.org/10.1016/J.JCONREL.2010.11.024
- M.K. Morsy, H.H. Khalaf, A.M. Sharoba, H.H. El-tanahi, C.N. Cutter, Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J. Food Sci. 79, 675–684 (2014). https://doi.org/10.1111/1750-3841.12400
- P. Wen, D.H. Zhu, K. Feng, F.-J. Liu, W.Y. Lou, N. Li, M.-H. Zong, H. Wu, Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 196, 996–1004 (2016). https://doi.org/10.1016/J.FOODCHEM.2015.10.043
- M.N.V.R. Kumar, Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharmaceut. 3, 234–258 (2000)
- D.J. McClements, The future of food colloids: next-generation nanoparticle delivery systems. Curr. Opin. Colloid Interface Sci. 28, 7–14 (2017). https://doi.org/10.1016/J.COCIS.2016.12.002
- R. Zhang, D.J. McClements, Enhancing nutraceutical bioavailability by controlling the composition and structure of gastrointestinal contents: emulsion-based delivery and excipient systems. Food Struct. Neth 10, 21–36 (2016). https://doi.org/10.1016/J.FOOSTR.2016.07.006
- Q.B. Hildeliza, J. Chanona-pe, L.S.M. Jose, G.F. Gutie, A. Jimene, Nanoencapsulation: a new trend in food engineering processing. Food Eng. Rev. 2, 39–50 (2010). https://doi.org/10.1007/s12393-009-9012-6
- M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, E. Cummins, Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci. Technol. 24, 30–46 (2012). https://doi.org/10.1016/J.TIFS.2011.10.006
- D.J. Mcclements, Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316 (2011). https://doi.org/10.1039/c0sm00549e
- I.J. Joye, G. Davidov-Pardo, D.J. McClements, Nanotechnology for increased micronutrient bioavailability. Trends Food Sci. Technol. 40, 168–182 (2014). https://doi.org/10.1016/J.TIFS.2014.08.006
- D.J. Mcclements, H. Xiao, Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food Funct. 5, 1307–1632 (2014). https://doi.org/10.1039/c4fo00100a
- D.J. Mcclements, J. Rao, Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51, 285–330 (2011). https://doi.org/10.1080/10408398.2011.559558
- L. Salvia-Trujillo, C. Qian, O. Martín-Belloso, D.J. McClements, Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 141, 1472–1480 (2013). https://doi.org/10.1016/J.FOODCHEM.2013.03.050
- B. Bigliardi, F. Galati, Innovation trends in the food industry: the case of functional foods. Trends Food Sci. Technol. 31, 118–129 (2013). https://doi.org/10.1016/J.TIFS.2013.03.006
- X. Wang, Y. Jiang, Y.W. Wang, M.T. Huang, C.T. Ho, Q. Huang, Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 108, 419–424 (2008). https://doi.org/10.1016/J.FOODCHEM.2007.10.086
- A. Kumari, V. Kumar, S.K. Yadav, Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med. Res. 7, 34–42 (2012). https://doi.org/10.3923/tmr.2012.34.42
- N. Dura, P.D. Marcato, Review Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. Int. J. Food Sci. Technol. 48, 1127–1134 (2013). https://doi.org/10.1111/ijfs.12027
- S.C. Yadav, S.K. Yadav, A. Sood, M. Sharma, B. Singh, Development of antidiabetic nanomedicine from stevioside. J. Biomed. Nanotechnol. 7, 54–55 (2011). https://doi.org/10.1166/jbn.2011.1198
- R. Yadav, D. Kumar, A. Kumari, S.K. Yadav, Encapsulation of catechin and epicatechin on bsa nps improved their stability and antioxidant potential. Excli J. 13, 331–346 (2014)
- I.A. Siddiqui, Hasan Mukhtar, Nanochemoprevention by bioactive food components: a perspective. Pharm. Res. 27, 1054–1060 (2010). https://doi.org/10.1007/s11095-010-0087-9
- S. Wang, R. Su, S. Nie, M. Sun, J. Zhang, D. Wu, N. Moustaid-Moussa, Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem. 25, 363–376 (2014). https://doi.org/10.1016/J.JNUTBIO.2013.10.002
- H. Chen, J. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods. Food Technol. 60(3), 30–36 (2006). https://doi.org/10.1201/9781315370859-14
- H. Yu, Q. Huang, Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem. 119, 669–674 (2010). https://doi.org/10.1016/J.FOODCHEM.2009.07.018
- P. Taylor, M. Vargas, C. Pastor, A. Chiralt, Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr. 48, 496–511 (2008). https://doi.org/10.1080/10408390701537344
- H. Yu, Y. Huang, Qingrong Huang, Synthesis and characterization of novel antimicrobial emulsifiers from ε-polylysine. J. Agric. Food Chem. 58, 1290–1295 (2010). https://doi.org/10.1021/jf903300m
- MathSciNet
- M.R. Mozafari, C. Johnson, C. Demetzos, Nanoliposomes and their applications in food. J. Liposome Res. 18, 309–327 (2008). https://doi.org/10.1080/08982100802465941
- R. Vidhyalakshmi, R. Bhakyaraj, R.S. Subhasree, Encapsulation“the future of probiotics”—a review. Adv. Biol. Res. 3, 96–103 (2009)
- M. Karavolos, A. Holban, Nanosized drug delivery systems in gastrointestinal targeting: interactions with microbiota. Pharmcaeutics 9, 1–15 (2016). https://doi.org/10.3390/ph9040062
- K. Hu, X. Huang, Y. Gao, X. Huang, H. Xiao, D.J. McClements, Core–shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chem. 182, 275–281 (2015). https://doi.org/10.1016/J.FOODCHEM.2015.03.009
- L. Zou, B. Zheng, R. Zhang, Z. Zhang, W. Liu, C. Liu, H. Xiao, D.J. McClements, Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Res. Int. 81, 74–82 (2016). https://doi.org/10.1016/J.FOODRES.2015.12.035
- J. Chen, J. Zheng, E.A. Decker, J. Mcclements, Improving nutraceutical bioavailability using mixed colloidal delivery systems: lipid nanoparticles increase tangeretin bioaccessibility and absorption from tangeretin-loaded zein nanoparticles. RSC Adv. 5, 73892–73900 (2015). https://doi.org/10.1039/C5RA13503F
- Y. Mao, D.J. Mcclements, Modulation of food texture using controlled heteroaggregation of lipid droplets: principles and applications. J. Appl. Polym. Sci. 130, 3833–3841 (2013). https://doi.org/10.1002/app.39631
- C. Maier, B. Zeeb, J. Weiss, Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values. Colloids Surf. B 117, 368–375 (2014). https://doi.org/10.1016/J.COLSURFB.2014.03.012
- Y. Zhu, Y. Zhang, G. Shi, J. Yang, J. Zhang, W. Li, A. Li, R. Tai, Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part. Fibre Toxicol. 12, 1–11 (2015). https://doi.org/10.1186/s12989-014-0075-z
- Y. Li, M. Hu, Y. Du, H. Xiao, D.J. McClements, Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids 25, 122–130 (2011). https://doi.org/10.1016/J.FOODHYD.2010.06.003
- N. Garti, A. Aserin, Nanoscale liquid self-assembled dispersions in foods and the delivery of functional ingredients, in: Understanding and Controlling the Microstructure of Complex Foods (Woodhead Publishing Ltd; Cambridge, UK, 2007), pp. 504–553
- R. Solaro, F. Chiellini, A. Battisti, Targeted delivery of protein drugs by nanocarriers. Materials 3, 1928–1980 (2010). https://doi.org/10.3390/ma3031928
- M.H. Shahavi, M. Hosseini, M. Jahanshahi, R.L. Meyer, G.N. Darzi, Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arab. J. Chem. 12, 3225–3232 (2019). https://doi.org/10.1016/J.ARABJC.2015.08.024
- Q. Huang, P. Given, M. Qian, Micro/nano encapsulation of active food ingredients, 1st edn. (American Chemical Society, Washington, DC., 2009)
- A.L.B. Iris, Ca2 + cross-linked alginic acid nanoparticles for solubilization of lipophilic natural colorants. J. Agric. Food Chem. 57, 7505–7512 (2009). https://doi.org/10.1021/jf900563a
- V.R. Sinha, Vinay, Anamika, J. R. Bhinge, Nanocochleates: A novel drug delivery technology. Pharmaceutical Rev. 6 (2008)
- H. Laroui, P. Rakhya, B. Xiao, E. Viennois, D. Merlin, Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig. Liver Dis. 45, 995–1002 (2013). https://doi.org/10.1016/J.DLD.2013.03.019
- K. Rajasundari, K. Ilamurugu, Nanotechnology and its applications in medical diagnosis. J. Basic. Appl. Chem. 1, 26–32 (2011)
- A.K. Singh, S.H. Harrison, J.S. Schoeniger, Gangliosides as receptors for biological toxins: development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes. Anal. Chem. 72, 6019–6024 (2000). https://doi.org/10.1021/ac000846l
- L. Gu, T. Elkin, X. Jiang, H. Li, Y. Lin, L. Qu, T.J. Tzeng, R. Joseph, Y. Sun, Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem. Commun. 7, 874–876 (2005). https://doi.org/10.1039/b415015e
- G.A. Zelada-guille, S.V. Bhosale, J. Riu, F.X. Rius, Real-time potentiometric detection of bacteria in complex samples. Anal. Chem. 82, 9254–9260 (2010)
- S.H. Huang, Gold nanoparticle-based immunochromatographic assay for the detection of Staphylococcus aureus. Sensor Actuat. B 127, 335–340 (2007). https://doi.org/10.1016/J.SNB.2007.04.027
- R.L. Phillips, O.R. Miranda, C. You, V.M. Rotello, Rapid and efficient identification of bacteria using gold-nanoparticle–poly (para-phenyleneethynylene) constructs. Angew. Chem. Int. Ed. 47, 2590–2594 (2008). https://doi.org/10.1002/anie.200703369
- A. Llorens, E. Lloret, P.A. Picouet, R. Trbojevich, A. Fernandez, Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 24, 19–29 (2012). https://doi.org/10.1016/J.TIFS.2011.10.001
- A.I. Cano, A., C. González-martínez, Silver composite materials and food packaging. In Composites Materials for Food Packaging (Wiley, 2018)), pp. 123–151. https://doi.org/10.1002/9781119160243.ch3
- A. Fernández, P. Picouet, E. Lloret, Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int. J. Food Microbiol. 142, 222–228 (2010). https://doi.org/10.1016/J.IJFOODMICRO.2010.07.001
- S. Valiyaveettil, Y. Teow, P.V. Asharani, M. Prakash, S. Valiyaveettil, Health impact and safety of engineered nanomaterials. Chem. Commun. 47, 7025–7038 (2011). https://doi.org/10.1039/c0cc05271j
- K. Tiede, A.B.A. Boxall, S.P. Tear, J. Lewis, H. David et al., Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. Part A. 25, 795–821 (2008). https://doi.org/10.1080/02652030802007553
- A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment Amanda. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 544–568 (2010). https://doi.org/10.1002/wnan.103
- M.J. Hajipour, K.M. Fromm, A.A. Akbar Ashkarran, D. Jimenez de Aberasturi, I.R. de Larramendi et al., Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012). https://doi.org/10.1016/j.tibtech.2012.06.004
- B. Mao, J. Tsai, C. Chen, S. Yan, B. Mao, J. Tsai, C. Chen, S. Yan, Y. Wang, Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicol. 10, 1021–1040 (2016). https://doi.org/10.1080/17435390.2016.1189614
- V. Valdiglesias, C. Costa, V. Sharma, G. Kiliç, E. Pásaro, J.P. Teixeira, A. Dhawan, B. Laffon, Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem. Toxicol. 57, 352–361 (2013). https://doi.org/10.1016/J.FCT.2013.04.010
- M.C. Botelho, C. Costa, S. Silva, S. Costa, A. Dhawan, P.A. Oliveira, J.P. Teixeira, Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro. Biomed. Pharmacother. 68, 59–64 (2014). https://doi.org/10.1016/J.BIOPHA.2013.08.006
- Z. Magdolenova, A.R. Collins, A. Kumar, A. Dhawam, V. Stone, M. Dusinska, Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicol 8, 233–278 (2014). https://doi.org/10.3109/17435390.2013.773464
- A. Kumar, A. Dhawan, Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch. Toxicol. 87, 1883–1900 (2013). https://doi.org/10.1007/s00204-013-1128-z
- A.K. Shukla, P. Pragya, D.K. Chowdhuri, A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster. Mutat. Res. Toxicol. Environ. Mutagen. 726, 222–226 (2011). https://doi.org/10.1016/J.MRGENTOX.2011.09.017
- X. Guo, T. Chen, Progress in genotoxicity evaluation of engineered nanomaterials. Nanomater. Toxicity Risk Assess. (2015). https://doi.org/10.5772/61013
- A.M. Knaapen, C. Albrecht, A. Becker, A. Winzer, G.R. Haenen, P.J.A. Borm, R.P.F. Schins, DNA damage in lung epithelial cells isolated from rats exposed to quartz: role of surface reactivity and neutrophilic inflammation. Carcinogenesis 23, 1111–1120 (2002). https://doi.org/10.1093/carcin/23.7.1111
- A. Xu, Y. Chai, T. Nohmi, T.K. Hei, Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part. Fibre Toxicol. 6, 1–13 (2009). https://doi.org/10.1186/1743-8977-6-3
- A. Kumar, A.K. Pandey, S.S. Singh, R. Shanker, A. Dhawan, Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Rad. Biol. Med. 51, 1872–1881 (2011). https://doi.org/10.1016/J.FREERADBIOMED.2011.08.025
- M. Wojewódzka, A. Lankoff, M. Dusińska, G. Brunborg, J. Czerwińska, T. Iwaneńko, T. Stępkowski, I. Szumiel, Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleonika 56, 29–33 (2011)
- V.A. Senapati, A. Kumar, G.S. Gupta, A.K. Pandey, A. Dhawan, ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: a mechanistic approach. Food Chem. Toxicol. 85, 61–70 (2015). https://doi.org/10.1016/J.FCT.2015.06.018
- Q. Xia, H.-M. Hwang, P.C. Ray, H. Yu, Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug. Anal. 22, 64–75 (2014). https://doi.org/10.1016/J.JFDA.2014.01.005
- H. Bouwmeester, S. Dekkers, M.Y. Noordam, W.I. Hagens, A.S. Bulder et al., Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53, 52–62 (2009). https://doi.org/10.1016/J.YRTPH.2008.10.008
- C. Mouneyrac, P. Buffet, L. Poirier, Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ. Sci. Pollut. Res. 21, 7899–7912 (2014). https://doi.org/10.1007/s11356-014-2745-7
- L. Xu, X. Li, T. Takemura, N. Hanagata, G. Wu, L.L. Chou, Genotoxicity and molecular response of silver nanoparticle (NP) -based hydrogel. J. Nanobiotechnol. 10, 1–11 (2012). https://doi.org/10.1186/1477-3155-10-16
- K. Kansara, P. Patel, D. Shah, R.K. Shukla, S. Singh, A. Kumar, A. Dhawan, TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen. 56, 204–217 (2015). https://doi.org/10.1002/em.21925
- J.Y. Kwon, S.Y. Lee, P. Koedrith, J.Y. Lee, K.-M. Kim et al., Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutat. Res. Toxicol. Environ. Mutagen. 761, 1–9 (2014). https://doi.org/10.1016/J.MRGENTOX.2014.01.005
- Ü. Kumbıçak, T. Çavaş, N. Çinkılıç, Z. Kumbıçak, Ö. Vatan, D. Yılmaz, Evaluation of in vitro cytotoxicity and genotoxicity of copper–zinc alloy nanoparticles in human lung epithelial cells. Food Chem. Toxicol. 73, 105–112 (2014). https://doi.org/10.1016/J.FCT.2014.07.040
- C. Badgley, J. Moghtader, E. Quintero, E. Zakem, M.J. Chappell, Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22, 86–108 (2007). https://doi.org/10.1017/S1742170507001640
- D.M. Bowman, G.A. Hodge, Nanotechnology: mapping the wild regulatory frontier. Futures 38, 1060–1073 (2006). https://doi.org/10.1016/J.FUTURES.2006.02.017
- F. Cubadda, F. Aureli, A. Raggi, M. Cristina, B. Toscan, A. Mantovani, Nanotechnologies and nanomaterials in the food sector and their safety assessment. Rapp. ISTISAN 13, 48 (2016)
- S. Tinkle, S.E. Mcneil, M. Stefan, R. Bawa, G. Borchard, Nanomedicines: addressing the scientific and regulatory gap. Ann. New York Acad. Sci. 1313, 35–56 (2014). https://doi.org/10.1111/nyas.12403
- N.O. Brien, E. Cummins, Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J. Environ. Sci. Health A 45, 992–1007 (2010). https://doi.org/10.1080/10934521003772410
- C. Buzea, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, 17–71 (2007). https://doi.org/10.1116/1.2815690
- F. González-nilo, T. Pérez-acle, S. Guínez-, Nanoinformatics: an emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biol. Res. 44, 43–51 (2011). https://doi.org/10.4067/S0716-97602011000100006
- Center for Food Safety (2017). (www.centerforfoodsafety.org) Retrieved from http://salsa3.salsalabs.com/o/1881/p/salsa/web/common/public/content?content_item_KEY=14112%20#showJoin
- N. Pradhan, S. Singh, N. Ojha, A. Shrivastava, A. Barla, V. Rai, S. Bose, Facets of Nanotechnology as seen in food processing, packaging, and preservation industry. Biomed. Res. Int. 2015, 1–17 (2015). https://doi.org/10.1155/2015/365672
- A. Gramza-Michałowska, D. Kmiecik, J. Kobus-Cisowska, A. Żywica, K. Dziedzic, A. Brzozowska, Phytonutrients in oat (Avena sativa L.) Drink : Effect of plant extract on antiradical capacity, nutritional value and sensory characteristics. Pol. J. Food Nutr. Sci. 68, 63–71 (2018). https://doi.org/10.1515/pjfns-2017-0009
- K. Pathakoti, M. Manubolu, H.-M. Hwang, Nanostructures: current uses and future applications in food science. J. Food Drug Anal. 25, 245–253 (2017). https://doi.org/10.1016/J.JFDA.2017.02.004
- H.A. Lee, Effect of nanometric Lactobacillus plantarum in kimchi on dextran sulfate sodium-induced colitis in mice. J. Med. Food 18, 1073–1080 (2015). https://doi.org/10.1089/jmf.2015.3509
- L. Rashidi, K. Khosravi-Darani, The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr. 51, 723–730 (2011). https://doi.org/10.1080/10408391003785417
- N. Walia, N. Dasgupta, S. Ranjan, C. Ramalingam, M. Gandhi, Food—rade nanoencapsulation of vitamins. Environ. Chem. Lett. 17, 991–1002 (2019). https://doi.org/10.1007/s10311-018-00855-9
- A.Y. Pawar, K.R. Jadhav, N.B. Sonkamble, M.R. Kale, Nanocochleate: a novel drug delivery system. Asian J. Pharm 10, 234–242 (2016)
- B. Chatterjee, Synthetic Lycopene: the future but unaware fact. Int. J. Clin. Biomed. Res. 2, 14–18 (2016)
- M. Rossi, D. Passeri, A. Sinibaldi, M. Angjellari, E. Tamburri, A. Sorbo, E. Carata, L. Dini, Nanotechnology for food packaging and food quality assessment. Adv. Food Nutr. Res. 82, 149–204 (2017). https://doi.org/10.1016/BS.AFNR.2017.01.002
- E.H. Chowdhury, T. Akaike, Fibronectin-coated nano-precipitates of calcium–magnesium phosphate for integrin-targeted gene delivery. J. Controlled Release 116, 68–69 (2006). https://doi.org/10.1016/j.jconrel.2006.09.053
- K. Jennifer, The Nanotechnology-Biology Interface: Exploring Models for Oversight, Workshop Report (Center for Science, Technology, and Public Policy, 2005)
- N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008). https://doi.org/10.1111/j.1574-6968.2007.01012.x
- R. Zhao, P. Torley, P.J. Halley, Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J. Mater. Sci. 43, 3058–3071 (2008). https://doi.org/10.1007/s10853-007-2434-8
- E. Acosta, Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 14, 3–15 (2009). https://doi.org/10.1016/J.COCIS.2008.01.002
- K. Arshak, C. Adley, E. Moore, C. Cunniffe, M. Campion, J. Harris, Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sensor Actuat. B 126, 226–231 (2007). https://doi.org/10.1016/J.SNB.2006.12.006
- Y. Xing, Q. Xu, X. Li, C. Chen, L. Ma, S. Li, Z. Che, H. Lin, Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int. J. Polym. Sci. 5, 1–24 (2016). https://doi.org/10.1155/2016/4851730
- C. Ozdemir, F. Yeni, D. Odaci, S. Timur, Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem. 119, 380–385 (2010). https://doi.org/10.1016/J.FOODCHEM.2009.05.087
- R. Antiochia, I. Lavagnini, F. Magno, Amperometric mediated carbon nanotube paste biosensor for fructose determination paste biosensor for fructose. Anal. Lett. 37, 1657–1669 (2007). https://doi.org/10.1081/AL-120037594
- S. Viswanathan, H. Radecka, J. Radecki, Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens. Bioelectron. 24, 2772–2777 (2009). https://doi.org/10.1016/J.BIOS.2009.01.044
- M. Tominaga, S. Nomura, I. Taniguchi, d-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode. Biosens. Bioelectron. 24, 1184–1188 (2009). https://doi.org/10.1016/J.BIOS.2008.07.002
- X. Li, Y. Zhou, Z. Zheng, X. Yue, Z. Dai, S. Liu, Z. Tang, Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 25, 6580–6586 (2009). https://doi.org/10.1021/la900066z
- H. Zhang, J. Wang, S. Ye, Predictions of acidity, soluble solids and firmness of pear using electronic nose technique. J. Food Eng. 86, 370–378 (2008). https://doi.org/10.1016/J.JFOODENG.2007.08.026
- M. Wang, Z. Li, Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensor Actuat. B 133, 607–612 (2008). https://doi.org/10.1016/J.SNB.2008.03.023
- K. El-boubbou, C. Gruden, X. Huang, Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 129, 13392–13393 (2007). https://doi.org/10.1021/ja076086e
- Y. Liju Yang, Li, Quantum dots as fluorescent labels for quantitative detection of Salmonella typhimurium in chicken carcass wash water. J. Food Prot. 68, 1241–1245 (2005)
- R.S. Norman, J.W. Stone, A. Gole, C.J. Murphy, T.L. Sabo-attwood, Targeted photothermal lysis of the pathogenic bacteria Pseudomonas aeruginosa with Gold Nanorods. Nano Lett. 8, 302–306 (2008). https://doi.org/10.1021/nl0727056
- A.S. Nanoshells, S.A. Kalele, A.A. Kundu, S.W. Gosavi, D.N. Deobagkar, D.D. Deobagkar, S.K. Kulkarni, Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small 2, 335–338 (2006). https://doi.org/10.1002/smll.200500286
- B.J. Yakes, R.J. Lipert, J.P. Bannantine, M.D. Porter, Detection of Mycobacterium avium subsp. paratuberculosis by a sonicate immunoassay based on surface-enhanced raman scattering. Clin. Vaccine Immunol. 15, 227–234 (2008). https://doi.org/10.1128/cvi.00334-07
- A.C. Vinayaka, S. Basheer, M.S. Thakur, Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens. Bioelectron. 24, 1615–1620 (2009). https://doi.org/10.1016/j.bios.2008.08.042
- X. Ji, J. Zheng, J. Xu, V.K. Rastogi, T. Cheng, J.J. Defrank, R.M. Leblanc, (CdSe) ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J. Phys. Chem. B. 109, 3793–3799 (2005). https://doi.org/10.1021/jp044928f
- A.L. Simonian, T.A. Good, S.S. Wang, J.R. Wild, Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta 534, 69–77 (2005). https://doi.org/10.1016/j.aca.2004.06.056
- H. Wei, E. Wang, X.Y.N. Nanotechnol, Fe3O4 Magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 80, 2250–2254 (2008)
- M.G. Sandros, V. Shete, D.E. Benson, Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. Analyst 131, 229–235 (2006). https://doi.org/10.1039/b511591d
- G. Thangavel, S. Thiruvengadam, Nanotechnology in food industry—a review. Int. J. Chem. Tech. Res. 6, 4096–4101 (2014)
- R.B. Reed, J.J. Faust, Y. Yang, K. Doudrick, D.G. Capco, K. Hristovski, P. Westerho, Characterization of nanomaterials in metal colloid-containing dietary supplement drinks and assessment of their potential interactions after ingestion. ACS Sustain. Chem. Eng. 2, 1616–1624 (2014). https://doi.org/10.1021/sc500108m
- A.K. Sundramoorthy, S. Gunasekaran, Applications of graphene in quality assurance and safety of food. TrAC-Trends Anal. Chem. 60, 36–53 (2014). https://doi.org/10.1016/J.TRAC.2014.04.015
- H. Yu, C. Yan, J. Yao, Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv. 4, 59792–59802 (2014). https://doi.org/10.1039/C4RA12691B
- R. Augustine, A.R. Abraham, N. Kalarikkal, S. Thomas, Novel Approaches of Nanotechnology in Food (Academic Press, Oxford, 2016)
- T. Lorne, M. Jiménez-Ruiz, S. Rols, J.-M. Escudier, J. Rubio-Zuazo et al., Competition between covalent and non-covalent grafting of fluorescein isothiocyanate on double-walled carbon nanotubes: a quantitative approach. Carbon 123, 735–743 (2017). https://doi.org/10.1016/J.CARBON.2017.07.070
- C.J. Barrow, C. Nolan, B.J. Holub, Bioequivalence of encapsulated and microencapsulated fish-oil supplementation. J. Funct. Foods 1, 38–43 (2009). https://doi.org/10.1016/J.JFF.2008.09.006
- E. Bouyer, G. Mekhloufi, V. Rosilio, J.-L. Grossiord, F. Agnely, Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field. Int. J. Pharm. 436, 359–378 (2012). https://doi.org/10.1016/J.IJPHARM.2012.06.052
- S. Emami, S. Azadmard-damirchi, S.H. Peighambardoust, H. Valizadeh, J. Hesari, Liposomes as carrier vehicles for functional compounds in food sector. J. Exp. Nanosci. 11, 737–759 (2016). https://doi.org/10.1080/17458080.2016.1148273
- T. Ghorbanzade, S.M. Jafari, S. Akhavan, R. Hadavi, Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 216, 146–152 (2017). https://doi.org/10.1016/J.FOODCHEM.2016.08.022
- I. Barwal, A. Sood, M. Sharma, B. Singh, S.C. Yadav, Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surface B 101, 510–516 (2013). https://doi.org/10.1016/J.COLSURFB.2012.07.005
- H. Singh, Nanotechnology applications in functional foods: opportunities and challenges. Prev. Nutr. Food Sci. 21, 1–8 (2016). https://doi.org/10.3746/pnf.2016.21.1.1
- T. Mehmood, Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology. Food Chem. 183, 1–7 (2015). https://doi.org/10.1016/J.FOODCHEM.2015.03.021
- I. Cho, S. Ku, Current technical approaches for the early detection of foodborne pathogens: challenges and opportunities. Int. J. Mole. Sci. 18, 2078 (2017). https://doi.org/10.3390/ijms18102078
- B. Dalzon, C. Lebas, G. Jimenez, A. Gutjahr, C. Terrat, J. Exposito, B. Verrier, C. Lethias, Poly (lactic acid) nanoparticles targeting α5β1 integrin as vaccine delivery vehicle: A prospective study. PLoS ONE 11, 1–18 (2016). https://doi.org/10.1371/journal.pone.0167663
- M.A. Mohammed, J.T.M. Syeda, K.M. Wasan, E.K. Wasan, An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmcaeutics 9, 1–26 (2017). https://doi.org/10.3390/pharmaceutics9040053
- B. Kuswandi, Environmental friendly food nano-packaging. Environ. Chem. Lett. 15(2), 205–221 (2017). https://doi.org/10.1007/s10311-017-0613-7
- B. Malhotra, A.N.U. Keshwani, H. Kharkwal, Natural polymer based cling films for food packaging. Int. J. Pharm. Pharm. Sci. 7, 10–18 (2015)
- S. Malaysiana, K. Mengenai, T. Hijau, D. Selenium, K. Penguatan et al., A Review on selenium-enriched green tea: fortification methods, biological activities and application prospect. Sains Malays. 43, 1685–1692 (2014)
- M.H. Fulekar, Nanotechnology: Importance and Applications (Ik Publishers International Pvt Ltd, New Delhi, 2010)
- H. Ardalani, A. Avan, M. Ghayour-mobarhan, Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J. Phytomed. 7, 285–294 (2017)
- B. Hu, X. Liu, C. Zhang, X. Zeng, Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug Anal. 25, 3–15 (2017). https://doi.org/10.1016/J.JFDA.2016.11.004
- X. He, H.-M. Hwang, Nanotechnology in food science: functionality, applicability, and safety assessment. J. Food Drug Anal. 24, 671–681 (2016). https://doi.org/10.1016/J.JFDA.2016.06.001
- C.J. Wijaya, S.N. Saputra, F.E. Soetaredjo, J.N. Putro, C.X. Lin, A. Kurniawan, Y.-H. Ju, S. Ismadji, Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr. Polym. 175, 370–376 (2017). https://doi.org/10.1016/J.CARBPOL.2017.08.004
- L. Wang, C. Hu, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)
- V. Rastogi, P. Yadav, S.S. Bhattacharya, A.K. Mishra, N. Verma, A. Verma, J.K. Pandit, Carbon nanotubes : an emerging drug carrier for targeting cancer cells. J. Drug Deliv. 10, 1–24 (2014). https://doi.org/10.1016/10.1155/2014/670815
- H. Jiang, D. Jiang, J. Shao, X. Sun, J. Wang, High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep36987
- N.K. Jain, V. Mishra, N.K. Mehra, N.K. Jain, V. Mishra, N.K. Mehra, Targeted drug delivery to macrophages. Expert Opin. Drug Deliv. 10, 353–367 (2013). https://doi.org/10.1517/17425247.2013.751370
- T.K. Głab, J. Boratynski, Potential of casein as a carrier for biologically active. Top. Curr. Chem. 375, 1–20 (2017). https://doi.org/10.1007/s41061-017-0158-z
- K.P. Chandrika, A. Singh, M.K. Tumma, P. Yadav, Nanotechnology prospects and constraints in agriculture, in Environmental chemistry for a sustainable world, vol. 14, ed. by N. Dasgupta, S. Ranjan, E. Lichtfouse (Springer, New York, 2018)
- O. Betzer, R. Meir, T. Dreifuss, K. Shamalov, M. Motiei, A. Shwartz, K. Baranes, C.J. Cohen, N. Shraga-heled, R. Ofir, In-vitro optimization of nanoparticle-cell labeling protocols for In-vivo Cell tracking applications. Sci. Rep. 5, 15400 (2015). https://doi.org/10.1038/srep15400
- H.D. Silva, M.Â. Cerqueira, A.A. Vicente, Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol. 5, 854–867 (2012). https://doi.org/10.1007/s11947-011-0683-7
- K.M. Nelson, J.L. Dahlin, J. Bisson, J. Graham, G.F. Pauli, M.A. Walters, The essential medicinal chemistry of curcumin. J. Med. Chem. 60, 1620–1637 (2017). https://doi.org/10.1021/acs.jmedchem.6b00975
- D. Kim, S.J. Kwon, X. Wu, J. Sauve, I. Lee, J. Nam, J. Kim, J.S. Dordick, Selective killing of pathogenic bacteria by antimicrobial silver nanoparticle-cell wall binding domain conjugates. ACS Appl. Mater. Interfaces. 10, 13317–13324 (2018). https://doi.org/10.1021/acsami.8b00181
- X. Su, P. Liu, H. Wu, N. Gu, Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol. Med. 11, 86–91 (2014). https://doi.org/10.7497/j.issn.2095-3941.2014.02.003
- L.A. Dykman, N.G. Khlebtsov, Gold nanoparticles in biology and medicine: recent advances and prospects. ACTA Nat. 3, 34–55 (2011). https://doi.org/10.1111/j.1600-0854.2010.01156.x
- X. Gao, S.R. Dave, Advances in Experimental Medicine and Biology (Springer, New York, 2007)
- Z. Bakhtiary, A.A. Saei, M.J. Hajipour, M. Raoufi, O. Vermesh, M. Mahmoudi, Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed. Nanotechnol. Biol. Med. 12, 287–307 (2016). https://doi.org/10.1016/J.NANO.2015.10.019
- U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed. Nanotechnol. Biol. Med. 6, 714–729 (2010). https://doi.org/10.1016/J.NANO.2010.05.005
- D. Goswami, S.K. Medda, G. De, Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles. ACS Appl. Mater. Interfaces. 3, 3440–3447 (2011). https://doi.org/10.1021/am200666m
- F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 148, 135–146 (2010). https://doi.org/10.1016/J.JCONREL.2010.08.027
- M. Hirenkumar, S. Steven, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1–19 (2012). https://doi.org/10.3390/polym3031377.Poly
- H. Sun, Y. Sakka, H. Sun, Y. Sakka, Luminescent metal nanoclusters: controlled synthesis and functional applications luminescent metal nanoclusters: controlled synthesis and functional applications. Sci. Technol. Adv. Mater. 15, 014205 (2014). https://doi.org/10.1088/1468-6996/15/1/014205
- C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharmac. Investig. 5, 124–133 (2015). https://doi.org/10.4103/2230-973X.160844
- F.M. Mustafa, H.A. Hodali, Use of mesoporous silicate nanoparticles as drug carrier for mefenamic acid. Marer. Sci. Eng. 92, 1–6 (2015). https://doi.org/10.1088/1757-899X/92/1/012018
- A.D. Furasova, A.F. Fakhardo, V.A. Milichko, E. Tervoort, M. Niederberger, V.V. Vinogradov, Synthesis of a rare-earth doped hafnia hydrosol: towards injectable luminescent nanocolloids. Colloid Surface B 154, 21–26 (2017). https://doi.org/10.1016/J.COLSURFB.2017.02.029
- R. Bakry, M. Najam-ul-haq, C.W. Huck, Medicinal applications of fullerenes. Int. J. Nanomed. 2, 639–649 (2007). https://doi.org/10.2147/nano.2007.2.1.117
- G.C. Pradhan, S. Dash, S.K. Swain, Barrier properties of nano silicon carbide designed chitosan nanocomposites. Carbohydr. Polym. 134, 60–65 (2015). https://doi.org/10.1016/J.CARBPOL.2015.06.081
- S.E. McNeil, Nanotechnology for the biologist. J. Leukoc. Biol. 78, 585–594 (2005). https://doi.org/10.1189/jlb.0205074
- I.K. Herrmann, How nanotechnology-enabled concepts could contribute to the prevention, diagnosis and therapy of bacterial infections. Crit. Care 19, 239 (2015). https://doi.org/10.1186/s13054-015-0957-y
- L. Salvia-trujillo, O. Martín-belloso, D.J. Mcclements, Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials 6, 1–16 (2016). https://doi.org/10.3390/nano6010017
References
T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Curr. Opin. Colloid Interface Sci. 363, 1–24 (2011). https://doi.org/10.1016/J.JCIS.2011.07.017
C. Parisi, M. Vigani, E. Rodríguez-Cerezo, Agricultural nanotechnologies: what are the current possibilities? Nano Today 10, 124–127 (2015). https://doi.org/10.1016/J.NANTOD.2014.09.009
Y.S. El-Temsah, E.J. Joner Bioforsk, Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 165, 16 (2006). https://doi.org/10.1002/tox.20610
M. Kumari, A. Mukherjee, N. Chandrasekaran, Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ. 407, 5243–5246 (2009). https://doi.org/10.1016/J.SCITOTENV.2009.06.024
R. Nair, S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, D.S. Kumar, Nanoparticulate material delivery to plants. Plant Sci. 179, 154–163 (2010). https://doi.org/10.1016/J.PLANTSCI.2010.04.012
T.V. Duncan, The communication challenges presented by nanofoods. Nat. Nanotechnol. 6, 683–688 (2011). https://doi.org/10.1038/nnano.2011.193
A.C. Tricco, H.M. Ashoor, J. Antony, Z. Bouck, M. Rodrigues et al., Essential Medicines List (EML) 2019 Application for the inclusion of long acting insulin analogues including biosimilar in the WHO Model List of Essential Medicines, as treatments used for patients with diabetes type 1 (2019)
W.H. Sperber, M.P. Doyle, Introduction to the Microbiological spoilage of foods and beverages, in Compendium of the microbiological spoilage of foods and beverages (Springer International Publishing, New Yark, 2009). pp. 1–40
B.S. Sekhon, Food nanotechnology—an overview. Nanotechnol. Sci. Appl. 3, 1–15 (2010). https://doi.org/10.2147/NSA.S8677
V.K. Bajpai, M. Kamle, S. Shukla, D.K. Mahato, P. Chandra et al., Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 26, 1201–1214 (2018). https://doi.org/10.1016/J.JFDA.2018.06.011
S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, M. Engineering, Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670–8673 (2007). https://doi.org/10.1021/la701067r
K.W. Powers, S.C. Brown, V.B. Krishna, S.C. Wasdo, B.M. Moudgil, S.M. Roberts, Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90, 296–303 (2006). https://doi.org/10.1093/toxsci/kfj099
H.M.C. Azeredo, C.L.M. Henrique, D. Wood, T.G. Williams, J.A.-B. Roberto, H.M. Tara, Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci. 74, 31–35 (2009). https://doi.org/10.1111/j.1750-3841.2009.01186.x
S. Naoto, O. Hiroshi, N. Mitsutoshi, Mitsutoshi, micro- and nanotechnology for food processing. (Food safety series) resource: engineering and technology for a sustainable. World. Am. Soc. Agric. Eng. 16, 19 (2009)
EFSA Scientific Committee, The potential risks arising from nanoscience and nanotechnologies on food and feed safety. Sci Opin Sci Comm (2009). https://doi.org/10.2903/j.efsa.2009.958
S.K. Yadav, Tissue science & engineering realizing the potential of nanotechnology for agriculture and food technology. J. Tissue Sci. Eng. 8, 8–11 (2017). https://doi.org/10.4172/2157-7552.1000195
B.K. Gilligan, Nanny, Nano, Boo, Boo Food ? (2008). http://www.towerofbabel.com/blog/2008/08/28/nanny-nano-boo-boo-food/
M.F.F. Pocas, T.F. Delgado, F.A.R. Oliveira, Smart packaging technologies for fruits and vegetables. in Smart Packaging Technologies for Fast Moving Consumer Goods, ed. by J. Kerry, P. Butler (2008). https://doi.org/10.1002/9780470753699.ch9
A.L. Brody, B. Bugusu, J.H. Han, C.K. Sand, T.H. Mchugh, Innovative food packaging solutions. J. Food Sci. 73, 107–116 (2008). https://doi.org/10.1111/j.1750-3841.2008.00933.x
J.P. Kerry, M.N. O’Grady, S.A. Hogan, Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci. 74, 113–130 (2006). https://doi.org/10.1016/J.MEATSCI.2006.04.024
X. He, H. Deng, H. Hwang, The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 27, 1–21 (2019). https://doi.org/10.1016/J.JFDA.2018.12.002
A. Sorrentino, G. Gorrasi, V. Vittoria, Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18, 84–95 (2007). https://doi.org/10.1016/J.TIFS.2006.09.004
D.S. Cha, M.S. Chinnan, Biopolymer-based antimicrobial packaging: a review. Crit. Rev. Food Sci. Nutr. 44, 223–237 (2004). https://doi.org/10.1080/10408690490464276
J. Weiss, P. Takhistov, D.J. Mcclements, Functional materials in food nanotechnology. J. Food Sci. 71, 107–116 (2006). https://doi.org/10.1111/j.1750-3841.2006.00195.x
R.J.B. Pinto, S. Daina, P. Sadocco, C.P. Neto, T. Trindade, Antibacterial activity of nanocomposites of copper and cellulose. Biomed. Res. Int. 2013, 280512 (2013). https://doi.org/10.1155/2013/280512
S.D.F. Mihindukulasuriya, L.-T. Lim, Nanotechnology development in food packaging: a review. Trends Food Sci. Technol. 40, 149–167 (2014). https://doi.org/10.1016/J.TIFS.2014.09.009
A. Brody, Nano and food packaging technologies converge. Food Technol. 60, 92–94 (2006)
Y. Inoue, M. Hoshino, H. Takahashi, T. Noguchi, T. Murata, Y. Kanzaki, H. Hamashima, M. Sasatsu, Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions. J. Inorg. Biochem. 92, 37–42 (2002). https://doi.org/10.1016/S0162-0134(02)00489-0
Y. Matsumura, K. Yoshikata, S. Kunisaki, T. Tsuchido, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69, 4278–4281 (2003). https://doi.org/10.1128/AEM.69.7.4278
S. Egger, R.P. Lehmann, M.J. Height, M.J. Loessner, M. Schuppler, Antimicrobial properties of a novel silver-silica nanocomposite materials. Appl. Environ. Microbiol. 75, 2973–2976 (2009). https://doi.org/10.1128/AEM.01658-08
N. Sinha, J. Ma, J.T.W. Yeow, Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 6, 573–590 (2006). https://doi.org/10.1166/jnn.2006.121
Nanotechnology Can Enhance Food Packaging (2010). http://www.plastemart.com/plastic-technical-articles/Amorphous-polymers-can-produce-transparent-clear-products-/1260
J. Rhim, P.K.W. Ng, J. Rhim, Natural biopolymer-based nanocomposite films for packaging. Crit. Rev. Food Sci. Nutr. 47, 411–433 (2007). https://doi.org/10.1080/10408390600846366
J.M. Lagaron, L. Cabedo, D. Cava, J.L. Feijoo, R. Gavara, E. Gimenez, Improving packaged food quality and safety. Part 2 : Nanocomposites. Food Addit. Contam. 22, 994–998 (2005). https://doi.org/10.1080/02652030500239656
Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, L. Castle, R. Aitken, R. Watkins, Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 25, 241–258 (2008). https://doi.org/10.1080/02652030701744538
S. Ray, S.Y. Quek, A. Easteal, X.D. Chen, The potential use of polymer-clay nanocomposites in food packaging. Int. J. Food Eng. 2, 1–11 (2006). https://doi.org/10.2202/1556-3758.1149
J.W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013). https://doi.org/10.1016/J.PROGPOLYMSCI.2013.05.008
F.L. Yang, X.G. Li, F. Zhu, C.L. Lei, Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem. 57, 10156–10162 (2009). https://doi.org/10.1021/jf9023118
F.E.S. An, A.G. Onzalez, Y.U.A.N.Y. Ao, Phytoglycogen octenyl succinate, an amphiphilic carbohydrate nanoparticle, and ε -polylysine to improve lipid oxidative stability of emulsions. J. Agric. Food Chem. 58, 660–667 (2010). https://doi.org/10.1021/jf903170b
S. Neethirajan, D.S. Jayas, Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4, 39–47 (2015). https://doi.org/10.1007/s11947-010-0328-2
A. Garland, Nanotechnology in Plastics Packaging: Commercial Applications in Nanotechnology (Pira International Limited, London, 2004), pp. 14–63
M.V. Dias, N.F.F. de Soares, S.V. Borges, M.M. de Sousa, C.A. Nunes, I.R.N. de Oliveira, E.A.A. Medeiros, Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat. Food Chem. 141, 3160–3166 (2013). https://doi.org/10.1016/j.foodchem.2013.05.148
M.A. Morris, S.C. Padmanabhan, M.C. Cruz-Romero, E. Cummins, Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications. Meat Sci. 132, 163–178 (2017). https://doi.org/10.1016/J.MEATSCI.2017.04.234
R. Drew, T. Hagen, Nanotechnologies in food packaging: an exploratory appraisal of safety and regulation. Food Standards Australia New Zealand 75, 1 (2016)
Z. Li, C. Sheng, Nanosensors for food safety. J. Nanosci. Nanotechnol. 14, 905–912 (2014). https://doi.org/10.1166/jnn.2014.8743
M.M. Berekaa, Review article nanotechnology in food industry; advances in food processing, packaging and food safety. Int. J. Curr. Microbiol. App. Sci. 4, 345–357 (2015)
M.A. Augustin, P. Sanguansri, Chapter 5: nanostructured materials in the food industry. Adv. Food Nutr. Res. 58, 183–213 (2009). https://doi.org/10.1016/s1043-4526(09)58005-9
D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner et al., The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2009). https://doi.org/10.1038/nbt.1495
C. Maneerat, Y. Hayata, Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int. J. Food Microbiol. 107, 99–103 (2006). https://doi.org/10.1016/J.IJFOODMICRO.2005.08.018
T. King, M.J. Osmond-McLeod, L.L. Duffy, Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci. Technol. 72, 62–73 (2018). https://doi.org/10.1016/J.TIFS.2017.11.015
A. Ditta, How helpful is nanotechnology in agriculture? Adv. Nat. Sci: Nanosci. Nanotechnol. 3, 033002 (2012). https://doi.org/10.1088/2043-6262/3/3/033002
M. Ghasemi-Varnamkhasti, C. Apetrei, J. Lozano, A. Anyogu, Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 80, 71–92 (2018). https://doi.org/10.1016/J.TIFS.2018.07.018
N. Dasgupta, S. Ranjan, D. Mundekkad, C. Ramalingam, R. Shanker, A. Kumar, Nanotechnology in agro-food: from field to plate. Food Res. Int. 69, 381–400 (2015). https://doi.org/10.1016/J.FOODRES.2015.01.005
A. Emblem, H. Emblem, Packaging Technology: Fundamentals, Materials and Processes (Woodhead Publishing Ltd., Cambridge, 2012), pp. 287–309
A.V. Fedotova, A.G. Snezhko, O.A. Sdobnikova, L.G. Samoilova, T.A. Smurova, A.A. Revina, E.B. Khailova, Packaging materials manufactured from natural polymers modified with silver nanoparticles. Plast. Massy 7, 42–47 (2009)
L. Angiolillo, A. Conte, M.A. Del Nobile, Packaging and Shelf Life of Produce, Reference Module in Food Science (Elsevier, Dordrecht, 2016). https://doi.org/10.1016/B978-0-08-100596-5.03220-0
G. Pyrgiotakis, A. Vasanthakumar, Y. Gao, M. Eleftheriadou, E. Toledo et al., Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS). Environ. Sci. Technol. 49, 3737–3745 (2015). https://doi.org/10.1021/es505868a
P. Šimon, Q. Chaudhry, D. Bakoš, Migration of engineered nanoparticles from polymer packaging to food—a physicochemical view. J. Food Nutr. Res. 47, 105–113 (2008)
C. Damm, H. Münstedt, A. Rösch, Long-term antimicrobial polyamide 6/silver-nanocomposites. J. Mater. Sci. 42, 6067–6073 (2007). https://doi.org/10.1007/s10853-006-1158-5
S. Azlin-Hasim, M.C. Cruz-Romero, E. Cummins, J.P. Kerry, M.A. Morris, The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. Curr. Opin. Colloid Interface Sci. 461, 239–248 (2016). https://doi.org/10.1016/J.JCIS.2015.09.021
R.T. De Silva, P. Pasbakhsh, S.M. Lee, A.Y. Kit, ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl. Clay Sci. 111, 10–20 (2015). https://doi.org/10.1016/J.CLAY.2015.03.024
E. Taghinezhad, A. Ebadollahi, Potential application of chitosan-clay coating on some quality properties of lemon during storage. AgricEngInt: CIGR J. 19, 189–194 (2017)
H.H. Khalaf, A.M. Sharoba, H.H. El-Tanahi, M.K. Morsy, Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey. J. Food Dairy Sci. Mansoura Univ. 4, 557–573 (2013)
M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, E. Cummins, Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem. 139, 389–397 (2013). https://doi.org/10.1016/J.FOODCHEM.2013.01.045
S. Djokic, Synthesis and antimicrobial activity of silver citrate complexes. Bioinorg. Chem. Appl. 2008, 436458 (2008). https://doi.org/10.1155/2008/436458
M. Zarei, A. Jamnejad, E. Khajehali, Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J. Microbiol. 7, 1–4 (2014). https://doi.org/10.5812/jjm.8720
M.E. Vance, T. Kuiken, E.P. Vejerano, S.P. Mcginnis, M.F.H. Jr, D. Rejeski, M.S. Hull, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015). https://doi.org/10.3762/bjnano.6.181
M.C. Siqueira, G.F. Coelho, M.R. De Moura, J.D. Bresolin, S.Z. Hubinger, J.M. Marconcini, L.H.C. Mattoso, Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. J. Nanosci. Nanotechnol. 14, 5512–5517 (2014). https://doi.org/10.1166/jnn.2014.8991
S.T. Khan, A.A. Al-Khedhairy, J.J. Musarrat, ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. Nanopart. Res. 17, 276–292 (2015). https://doi.org/10.1007/s11051-015-3074-6
S.M. Rodrigues, P. Demokritou, N. Dokoozlian, C.O. Hendren, D.B. Karn et al., Environmental science nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano 1, 767–781 (2017). https://doi.org/10.1039/c6en00573j
V. Krishna, S. Pumprueg, S.H. Lee, J. Zhao, W. Sigmund, B. Koopman, B.M. Moudgil, Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Process Saf. Environ. Prot. 83, 393–397 (2005). https://doi.org/10.1205/PSEP.04387
A. Vohra, D.Y. Goswami, D.A. Deshpande, S.S. Block, Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J. Ind. Microbiol. Biotechnol. 32, 364–370 (2005). https://doi.org/10.1007/s10295-005-0006-y
K.H. Cho, J.E. Park, T. Osaka, S.G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51, 956–960 (2005). https://doi.org/10.1016/J.ELECTACTA.2005.04.071
B. Kim, D. Kim, D. Cho, S. Cho, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52, 277–281 (2003). https://doi.org/10.1016/S0045-6535(03)00051-1
M.L. Cerrada, C. Serrano, M. Sanchez-Chaves, M. Fernandez-Garcıa, F. Fernandez-Martın et al., Self-sterilized EVOH-TiO2 nanocomposites: interface effects on biocidal properties. Adv. Funct. Mater. 18, 1949–1960 (2008). https://doi.org/10.1002/adfm.200701068
M. Rai, P.S. Jogee, A.P. Ingle, Emerging nanotechnology for detection of mycotoxins in food and feed. Int. J. Food Sci. Nutr. 66, 363–370 (2015). https://doi.org/10.3109/09637486.2015.1034251
J. Schmitt, S. Hajiw, A. Lecchi, J. Degrouard, A. Salonen, M. Impéror-Clerc, B. Pansu, Formation of superlattices of gold nanoparticles using ostwald ripening in emulsions: transition from fcc to bcc structure. J. Phys. Chem. B 120, 5759–5766 (2016). https://doi.org/10.1021/acs.jpcb.6b03287
B. Duncan, X. Li, R.F. Landis, S.T. Kim, A. Gupta et al., Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 9, 7775–7782 (2015). https://doi.org/10.1021/acsnano.5b01696
H.C.B. Paula, E.F. Oliveira, M.J.M. Carneiro, R.C.M. de Paula, Matrix effect on the spray drying nanoencapsulation of lippia sidoides essential oil in chitosan-native gum blends. Planta Med. 83, 392–397 (2017). https://doi.org/10.1055/s-0042-107470
A.S. Gaspar, F.E. Wagner, V.S. Amaral, S.A. Costa Lima, V.A. Khomchenko, J.G. Santos, B.F.O. Costa, L. Durães, Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 172, 135–146 (2017). https://doi.org/10.1016/j.saa.2016.04.022
S.F. Hosseini, M. Zandi, M. Rezaei, F. Farahmandghavi, Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr. Polym. 95, 50–56 (2013). https://doi.org/10.1016/J.CARBPOL.2013.02.031
K. Li, S. Yin, X. Yang, C. Tang, Z. Wei, Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. J. Agric. Food Chem. 60, 11592–11600 (2012). https://doi.org/10.1021/jf302752v
C. Gomes, R.G. Moreira, E. Castell-perez, Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 76, 16–24 (2011). https://doi.org/10.1111/j.1750-3841.2010.01985.x
O. Gortzi, S. Lala, I. Chinou, J. Tsaknis, Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules 12, 932–945 (2007). https://doi.org/10.3390/12050932
D. Valenti, A. De Logu, G. Loy, L. Bonsignore, F. Cottiglia, A.M. Fadda, Liposome-incorporated Santolina insularis essential oil: preparation, characterization and in vitro antiviral activity. J. Liposome Res. 11, 73–90 (2001). https://doi.org/10.1081/LPR-100103171
Y. Wu, Y. Luo, Q. Wang, Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT - Food Sci. Technol. 48, 283–290 (2012). https://doi.org/10.1016/J.LWT.2012.03.027
A.R. Bilia, C. Guccione, B. Isacchi, C. Righeschi, F. Firenzuoli, M.C. Bergonzi, Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid-Based Compl. Alt. Med. 2014, 651593 (2014). https://doi.org/10.1155/2014/651593
F.O.M.S. Abreu, E.F. Oliveira, H.C.B. Paula, R.C.M. de Paula, Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym. 89, 1277–1282 (2012). https://doi.org/10.1016/J.CARBPOL.2012.04.048
Y. Zhang, Y. Niu, Y. Luo, M. Ge, T. Yang, L. Yu, Q. Wang, Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem. 142, 269–275 (2014). https://doi.org/10.1016/j.foodchem.2013.07.058
A. Iannitelli, R. Grande, A. di Stefano, M. di Giulio, P. Sozio et al., Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int. J. Mole. Sci. 12, 5039–5051 (2011). https://doi.org/10.3390/ijms12085039
H. Gu, P.L. Ho, E. Tong, L. Wang, B. Xu, Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003). https://doi.org/10.1021/nl034396z
L. Bi, L. Yang, G. Narsimhan, A.K. Bhunia, Y. Yao, Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J. Controlled Release 150, 150–156 (2011). https://doi.org/10.1016/J.JCONREL.2010.11.024
M.K. Morsy, H.H. Khalaf, A.M. Sharoba, H.H. El-tanahi, C.N. Cutter, Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J. Food Sci. 79, 675–684 (2014). https://doi.org/10.1111/1750-3841.12400
P. Wen, D.H. Zhu, K. Feng, F.-J. Liu, W.Y. Lou, N. Li, M.-H. Zong, H. Wu, Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 196, 996–1004 (2016). https://doi.org/10.1016/J.FOODCHEM.2015.10.043
M.N.V.R. Kumar, Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharmaceut. 3, 234–258 (2000)
D.J. McClements, The future of food colloids: next-generation nanoparticle delivery systems. Curr. Opin. Colloid Interface Sci. 28, 7–14 (2017). https://doi.org/10.1016/J.COCIS.2016.12.002
R. Zhang, D.J. McClements, Enhancing nutraceutical bioavailability by controlling the composition and structure of gastrointestinal contents: emulsion-based delivery and excipient systems. Food Struct. Neth 10, 21–36 (2016). https://doi.org/10.1016/J.FOOSTR.2016.07.006
Q.B. Hildeliza, J. Chanona-pe, L.S.M. Jose, G.F. Gutie, A. Jimene, Nanoencapsulation: a new trend in food engineering processing. Food Eng. Rev. 2, 39–50 (2010). https://doi.org/10.1007/s12393-009-9012-6
M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, E. Cummins, Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci. Technol. 24, 30–46 (2012). https://doi.org/10.1016/J.TIFS.2011.10.006
D.J. Mcclements, Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316 (2011). https://doi.org/10.1039/c0sm00549e
I.J. Joye, G. Davidov-Pardo, D.J. McClements, Nanotechnology for increased micronutrient bioavailability. Trends Food Sci. Technol. 40, 168–182 (2014). https://doi.org/10.1016/J.TIFS.2014.08.006
D.J. Mcclements, H. Xiao, Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food Funct. 5, 1307–1632 (2014). https://doi.org/10.1039/c4fo00100a
D.J. Mcclements, J. Rao, Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51, 285–330 (2011). https://doi.org/10.1080/10408398.2011.559558
L. Salvia-Trujillo, C. Qian, O. Martín-Belloso, D.J. McClements, Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 141, 1472–1480 (2013). https://doi.org/10.1016/J.FOODCHEM.2013.03.050
B. Bigliardi, F. Galati, Innovation trends in the food industry: the case of functional foods. Trends Food Sci. Technol. 31, 118–129 (2013). https://doi.org/10.1016/J.TIFS.2013.03.006
X. Wang, Y. Jiang, Y.W. Wang, M.T. Huang, C.T. Ho, Q. Huang, Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 108, 419–424 (2008). https://doi.org/10.1016/J.FOODCHEM.2007.10.086
A. Kumari, V. Kumar, S.K. Yadav, Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med. Res. 7, 34–42 (2012). https://doi.org/10.3923/tmr.2012.34.42
N. Dura, P.D. Marcato, Review Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. Int. J. Food Sci. Technol. 48, 1127–1134 (2013). https://doi.org/10.1111/ijfs.12027
S.C. Yadav, S.K. Yadav, A. Sood, M. Sharma, B. Singh, Development of antidiabetic nanomedicine from stevioside. J. Biomed. Nanotechnol. 7, 54–55 (2011). https://doi.org/10.1166/jbn.2011.1198
R. Yadav, D. Kumar, A. Kumari, S.K. Yadav, Encapsulation of catechin and epicatechin on bsa nps improved their stability and antioxidant potential. Excli J. 13, 331–346 (2014)
I.A. Siddiqui, Hasan Mukhtar, Nanochemoprevention by bioactive food components: a perspective. Pharm. Res. 27, 1054–1060 (2010). https://doi.org/10.1007/s11095-010-0087-9
S. Wang, R. Su, S. Nie, M. Sun, J. Zhang, D. Wu, N. Moustaid-Moussa, Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem. 25, 363–376 (2014). https://doi.org/10.1016/J.JNUTBIO.2013.10.002
H. Chen, J. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods. Food Technol. 60(3), 30–36 (2006). https://doi.org/10.1201/9781315370859-14
H. Yu, Q. Huang, Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem. 119, 669–674 (2010). https://doi.org/10.1016/J.FOODCHEM.2009.07.018
P. Taylor, M. Vargas, C. Pastor, A. Chiralt, Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr. 48, 496–511 (2008). https://doi.org/10.1080/10408390701537344
H. Yu, Y. Huang, Qingrong Huang, Synthesis and characterization of novel antimicrobial emulsifiers from ε-polylysine. J. Agric. Food Chem. 58, 1290–1295 (2010). https://doi.org/10.1021/jf903300m
MathSciNet
M.R. Mozafari, C. Johnson, C. Demetzos, Nanoliposomes and their applications in food. J. Liposome Res. 18, 309–327 (2008). https://doi.org/10.1080/08982100802465941
R. Vidhyalakshmi, R. Bhakyaraj, R.S. Subhasree, Encapsulation“the future of probiotics”—a review. Adv. Biol. Res. 3, 96–103 (2009)
M. Karavolos, A. Holban, Nanosized drug delivery systems in gastrointestinal targeting: interactions with microbiota. Pharmcaeutics 9, 1–15 (2016). https://doi.org/10.3390/ph9040062
K. Hu, X. Huang, Y. Gao, X. Huang, H. Xiao, D.J. McClements, Core–shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chem. 182, 275–281 (2015). https://doi.org/10.1016/J.FOODCHEM.2015.03.009
L. Zou, B. Zheng, R. Zhang, Z. Zhang, W. Liu, C. Liu, H. Xiao, D.J. McClements, Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Res. Int. 81, 74–82 (2016). https://doi.org/10.1016/J.FOODRES.2015.12.035
J. Chen, J. Zheng, E.A. Decker, J. Mcclements, Improving nutraceutical bioavailability using mixed colloidal delivery systems: lipid nanoparticles increase tangeretin bioaccessibility and absorption from tangeretin-loaded zein nanoparticles. RSC Adv. 5, 73892–73900 (2015). https://doi.org/10.1039/C5RA13503F
Y. Mao, D.J. Mcclements, Modulation of food texture using controlled heteroaggregation of lipid droplets: principles and applications. J. Appl. Polym. Sci. 130, 3833–3841 (2013). https://doi.org/10.1002/app.39631
C. Maier, B. Zeeb, J. Weiss, Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values. Colloids Surf. B 117, 368–375 (2014). https://doi.org/10.1016/J.COLSURFB.2014.03.012
Y. Zhu, Y. Zhang, G. Shi, J. Yang, J. Zhang, W. Li, A. Li, R. Tai, Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part. Fibre Toxicol. 12, 1–11 (2015). https://doi.org/10.1186/s12989-014-0075-z
Y. Li, M. Hu, Y. Du, H. Xiao, D.J. McClements, Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids 25, 122–130 (2011). https://doi.org/10.1016/J.FOODHYD.2010.06.003
N. Garti, A. Aserin, Nanoscale liquid self-assembled dispersions in foods and the delivery of functional ingredients, in: Understanding and Controlling the Microstructure of Complex Foods (Woodhead Publishing Ltd; Cambridge, UK, 2007), pp. 504–553
R. Solaro, F. Chiellini, A. Battisti, Targeted delivery of protein drugs by nanocarriers. Materials 3, 1928–1980 (2010). https://doi.org/10.3390/ma3031928
M.H. Shahavi, M. Hosseini, M. Jahanshahi, R.L. Meyer, G.N. Darzi, Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arab. J. Chem. 12, 3225–3232 (2019). https://doi.org/10.1016/J.ARABJC.2015.08.024
Q. Huang, P. Given, M. Qian, Micro/nano encapsulation of active food ingredients, 1st edn. (American Chemical Society, Washington, DC., 2009)
A.L.B. Iris, Ca2 + cross-linked alginic acid nanoparticles for solubilization of lipophilic natural colorants. J. Agric. Food Chem. 57, 7505–7512 (2009). https://doi.org/10.1021/jf900563a
V.R. Sinha, Vinay, Anamika, J. R. Bhinge, Nanocochleates: A novel drug delivery technology. Pharmaceutical Rev. 6 (2008)
H. Laroui, P. Rakhya, B. Xiao, E. Viennois, D. Merlin, Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig. Liver Dis. 45, 995–1002 (2013). https://doi.org/10.1016/J.DLD.2013.03.019
K. Rajasundari, K. Ilamurugu, Nanotechnology and its applications in medical diagnosis. J. Basic. Appl. Chem. 1, 26–32 (2011)
A.K. Singh, S.H. Harrison, J.S. Schoeniger, Gangliosides as receptors for biological toxins: development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes. Anal. Chem. 72, 6019–6024 (2000). https://doi.org/10.1021/ac000846l
L. Gu, T. Elkin, X. Jiang, H. Li, Y. Lin, L. Qu, T.J. Tzeng, R. Joseph, Y. Sun, Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem. Commun. 7, 874–876 (2005). https://doi.org/10.1039/b415015e
G.A. Zelada-guille, S.V. Bhosale, J. Riu, F.X. Rius, Real-time potentiometric detection of bacteria in complex samples. Anal. Chem. 82, 9254–9260 (2010)
S.H. Huang, Gold nanoparticle-based immunochromatographic assay for the detection of Staphylococcus aureus. Sensor Actuat. B 127, 335–340 (2007). https://doi.org/10.1016/J.SNB.2007.04.027
R.L. Phillips, O.R. Miranda, C. You, V.M. Rotello, Rapid and efficient identification of bacteria using gold-nanoparticle–poly (para-phenyleneethynylene) constructs. Angew. Chem. Int. Ed. 47, 2590–2594 (2008). https://doi.org/10.1002/anie.200703369
A. Llorens, E. Lloret, P.A. Picouet, R. Trbojevich, A. Fernandez, Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 24, 19–29 (2012). https://doi.org/10.1016/J.TIFS.2011.10.001
A.I. Cano, A., C. González-martínez, Silver composite materials and food packaging. In Composites Materials for Food Packaging (Wiley, 2018)), pp. 123–151. https://doi.org/10.1002/9781119160243.ch3
A. Fernández, P. Picouet, E. Lloret, Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int. J. Food Microbiol. 142, 222–228 (2010). https://doi.org/10.1016/J.IJFOODMICRO.2010.07.001
S. Valiyaveettil, Y. Teow, P.V. Asharani, M. Prakash, S. Valiyaveettil, Health impact and safety of engineered nanomaterials. Chem. Commun. 47, 7025–7038 (2011). https://doi.org/10.1039/c0cc05271j
K. Tiede, A.B.A. Boxall, S.P. Tear, J. Lewis, H. David et al., Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. Part A. 25, 795–821 (2008). https://doi.org/10.1080/02652030802007553
A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment Amanda. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 544–568 (2010). https://doi.org/10.1002/wnan.103
M.J. Hajipour, K.M. Fromm, A.A. Akbar Ashkarran, D. Jimenez de Aberasturi, I.R. de Larramendi et al., Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012). https://doi.org/10.1016/j.tibtech.2012.06.004
B. Mao, J. Tsai, C. Chen, S. Yan, B. Mao, J. Tsai, C. Chen, S. Yan, Y. Wang, Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicol. 10, 1021–1040 (2016). https://doi.org/10.1080/17435390.2016.1189614
V. Valdiglesias, C. Costa, V. Sharma, G. Kiliç, E. Pásaro, J.P. Teixeira, A. Dhawan, B. Laffon, Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem. Toxicol. 57, 352–361 (2013). https://doi.org/10.1016/J.FCT.2013.04.010
M.C. Botelho, C. Costa, S. Silva, S. Costa, A. Dhawan, P.A. Oliveira, J.P. Teixeira, Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro. Biomed. Pharmacother. 68, 59–64 (2014). https://doi.org/10.1016/J.BIOPHA.2013.08.006
Z. Magdolenova, A.R. Collins, A. Kumar, A. Dhawam, V. Stone, M. Dusinska, Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicol 8, 233–278 (2014). https://doi.org/10.3109/17435390.2013.773464
A. Kumar, A. Dhawan, Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch. Toxicol. 87, 1883–1900 (2013). https://doi.org/10.1007/s00204-013-1128-z
A.K. Shukla, P. Pragya, D.K. Chowdhuri, A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster. Mutat. Res. Toxicol. Environ. Mutagen. 726, 222–226 (2011). https://doi.org/10.1016/J.MRGENTOX.2011.09.017
X. Guo, T. Chen, Progress in genotoxicity evaluation of engineered nanomaterials. Nanomater. Toxicity Risk Assess. (2015). https://doi.org/10.5772/61013
A.M. Knaapen, C. Albrecht, A. Becker, A. Winzer, G.R. Haenen, P.J.A. Borm, R.P.F. Schins, DNA damage in lung epithelial cells isolated from rats exposed to quartz: role of surface reactivity and neutrophilic inflammation. Carcinogenesis 23, 1111–1120 (2002). https://doi.org/10.1093/carcin/23.7.1111
A. Xu, Y. Chai, T. Nohmi, T.K. Hei, Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part. Fibre Toxicol. 6, 1–13 (2009). https://doi.org/10.1186/1743-8977-6-3
A. Kumar, A.K. Pandey, S.S. Singh, R. Shanker, A. Dhawan, Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Rad. Biol. Med. 51, 1872–1881 (2011). https://doi.org/10.1016/J.FREERADBIOMED.2011.08.025
M. Wojewódzka, A. Lankoff, M. Dusińska, G. Brunborg, J. Czerwińska, T. Iwaneńko, T. Stępkowski, I. Szumiel, Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleonika 56, 29–33 (2011)
V.A. Senapati, A. Kumar, G.S. Gupta, A.K. Pandey, A. Dhawan, ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: a mechanistic approach. Food Chem. Toxicol. 85, 61–70 (2015). https://doi.org/10.1016/J.FCT.2015.06.018
Q. Xia, H.-M. Hwang, P.C. Ray, H. Yu, Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug. Anal. 22, 64–75 (2014). https://doi.org/10.1016/J.JFDA.2014.01.005
H. Bouwmeester, S. Dekkers, M.Y. Noordam, W.I. Hagens, A.S. Bulder et al., Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53, 52–62 (2009). https://doi.org/10.1016/J.YRTPH.2008.10.008
C. Mouneyrac, P. Buffet, L. Poirier, Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ. Sci. Pollut. Res. 21, 7899–7912 (2014). https://doi.org/10.1007/s11356-014-2745-7
L. Xu, X. Li, T. Takemura, N. Hanagata, G. Wu, L.L. Chou, Genotoxicity and molecular response of silver nanoparticle (NP) -based hydrogel. J. Nanobiotechnol. 10, 1–11 (2012). https://doi.org/10.1186/1477-3155-10-16
K. Kansara, P. Patel, D. Shah, R.K. Shukla, S. Singh, A. Kumar, A. Dhawan, TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen. 56, 204–217 (2015). https://doi.org/10.1002/em.21925
J.Y. Kwon, S.Y. Lee, P. Koedrith, J.Y. Lee, K.-M. Kim et al., Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutat. Res. Toxicol. Environ. Mutagen. 761, 1–9 (2014). https://doi.org/10.1016/J.MRGENTOX.2014.01.005
Ü. Kumbıçak, T. Çavaş, N. Çinkılıç, Z. Kumbıçak, Ö. Vatan, D. Yılmaz, Evaluation of in vitro cytotoxicity and genotoxicity of copper–zinc alloy nanoparticles in human lung epithelial cells. Food Chem. Toxicol. 73, 105–112 (2014). https://doi.org/10.1016/J.FCT.2014.07.040
C. Badgley, J. Moghtader, E. Quintero, E. Zakem, M.J. Chappell, Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22, 86–108 (2007). https://doi.org/10.1017/S1742170507001640
D.M. Bowman, G.A. Hodge, Nanotechnology: mapping the wild regulatory frontier. Futures 38, 1060–1073 (2006). https://doi.org/10.1016/J.FUTURES.2006.02.017
F. Cubadda, F. Aureli, A. Raggi, M. Cristina, B. Toscan, A. Mantovani, Nanotechnologies and nanomaterials in the food sector and their safety assessment. Rapp. ISTISAN 13, 48 (2016)
S. Tinkle, S.E. Mcneil, M. Stefan, R. Bawa, G. Borchard, Nanomedicines: addressing the scientific and regulatory gap. Ann. New York Acad. Sci. 1313, 35–56 (2014). https://doi.org/10.1111/nyas.12403
N.O. Brien, E. Cummins, Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J. Environ. Sci. Health A 45, 992–1007 (2010). https://doi.org/10.1080/10934521003772410
C. Buzea, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, 17–71 (2007). https://doi.org/10.1116/1.2815690
F. González-nilo, T. Pérez-acle, S. Guínez-, Nanoinformatics: an emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biol. Res. 44, 43–51 (2011). https://doi.org/10.4067/S0716-97602011000100006
Center for Food Safety (2017). (www.centerforfoodsafety.org) Retrieved from http://salsa3.salsalabs.com/o/1881/p/salsa/web/common/public/content?content_item_KEY=14112%20#showJoin
N. Pradhan, S. Singh, N. Ojha, A. Shrivastava, A. Barla, V. Rai, S. Bose, Facets of Nanotechnology as seen in food processing, packaging, and preservation industry. Biomed. Res. Int. 2015, 1–17 (2015). https://doi.org/10.1155/2015/365672
A. Gramza-Michałowska, D. Kmiecik, J. Kobus-Cisowska, A. Żywica, K. Dziedzic, A. Brzozowska, Phytonutrients in oat (Avena sativa L.) Drink : Effect of plant extract on antiradical capacity, nutritional value and sensory characteristics. Pol. J. Food Nutr. Sci. 68, 63–71 (2018). https://doi.org/10.1515/pjfns-2017-0009
K. Pathakoti, M. Manubolu, H.-M. Hwang, Nanostructures: current uses and future applications in food science. J. Food Drug Anal. 25, 245–253 (2017). https://doi.org/10.1016/J.JFDA.2017.02.004
H.A. Lee, Effect of nanometric Lactobacillus plantarum in kimchi on dextran sulfate sodium-induced colitis in mice. J. Med. Food 18, 1073–1080 (2015). https://doi.org/10.1089/jmf.2015.3509
L. Rashidi, K. Khosravi-Darani, The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr. 51, 723–730 (2011). https://doi.org/10.1080/10408391003785417
N. Walia, N. Dasgupta, S. Ranjan, C. Ramalingam, M. Gandhi, Food—rade nanoencapsulation of vitamins. Environ. Chem. Lett. 17, 991–1002 (2019). https://doi.org/10.1007/s10311-018-00855-9
A.Y. Pawar, K.R. Jadhav, N.B. Sonkamble, M.R. Kale, Nanocochleate: a novel drug delivery system. Asian J. Pharm 10, 234–242 (2016)
B. Chatterjee, Synthetic Lycopene: the future but unaware fact. Int. J. Clin. Biomed. Res. 2, 14–18 (2016)
M. Rossi, D. Passeri, A. Sinibaldi, M. Angjellari, E. Tamburri, A. Sorbo, E. Carata, L. Dini, Nanotechnology for food packaging and food quality assessment. Adv. Food Nutr. Res. 82, 149–204 (2017). https://doi.org/10.1016/BS.AFNR.2017.01.002
E.H. Chowdhury, T. Akaike, Fibronectin-coated nano-precipitates of calcium–magnesium phosphate for integrin-targeted gene delivery. J. Controlled Release 116, 68–69 (2006). https://doi.org/10.1016/j.jconrel.2006.09.053
K. Jennifer, The Nanotechnology-Biology Interface: Exploring Models for Oversight, Workshop Report (Center for Science, Technology, and Public Policy, 2005)
N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008). https://doi.org/10.1111/j.1574-6968.2007.01012.x
R. Zhao, P. Torley, P.J. Halley, Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J. Mater. Sci. 43, 3058–3071 (2008). https://doi.org/10.1007/s10853-007-2434-8
E. Acosta, Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 14, 3–15 (2009). https://doi.org/10.1016/J.COCIS.2008.01.002
K. Arshak, C. Adley, E. Moore, C. Cunniffe, M. Campion, J. Harris, Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sensor Actuat. B 126, 226–231 (2007). https://doi.org/10.1016/J.SNB.2006.12.006
Y. Xing, Q. Xu, X. Li, C. Chen, L. Ma, S. Li, Z. Che, H. Lin, Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int. J. Polym. Sci. 5, 1–24 (2016). https://doi.org/10.1155/2016/4851730
C. Ozdemir, F. Yeni, D. Odaci, S. Timur, Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem. 119, 380–385 (2010). https://doi.org/10.1016/J.FOODCHEM.2009.05.087
R. Antiochia, I. Lavagnini, F. Magno, Amperometric mediated carbon nanotube paste biosensor for fructose determination paste biosensor for fructose. Anal. Lett. 37, 1657–1669 (2007). https://doi.org/10.1081/AL-120037594
S. Viswanathan, H. Radecka, J. Radecki, Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens. Bioelectron. 24, 2772–2777 (2009). https://doi.org/10.1016/J.BIOS.2009.01.044
M. Tominaga, S. Nomura, I. Taniguchi, d-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode. Biosens. Bioelectron. 24, 1184–1188 (2009). https://doi.org/10.1016/J.BIOS.2008.07.002
X. Li, Y. Zhou, Z. Zheng, X. Yue, Z. Dai, S. Liu, Z. Tang, Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 25, 6580–6586 (2009). https://doi.org/10.1021/la900066z
H. Zhang, J. Wang, S. Ye, Predictions of acidity, soluble solids and firmness of pear using electronic nose technique. J. Food Eng. 86, 370–378 (2008). https://doi.org/10.1016/J.JFOODENG.2007.08.026
M. Wang, Z. Li, Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensor Actuat. B 133, 607–612 (2008). https://doi.org/10.1016/J.SNB.2008.03.023
K. El-boubbou, C. Gruden, X. Huang, Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 129, 13392–13393 (2007). https://doi.org/10.1021/ja076086e
Y. Liju Yang, Li, Quantum dots as fluorescent labels for quantitative detection of Salmonella typhimurium in chicken carcass wash water. J. Food Prot. 68, 1241–1245 (2005)
R.S. Norman, J.W. Stone, A. Gole, C.J. Murphy, T.L. Sabo-attwood, Targeted photothermal lysis of the pathogenic bacteria Pseudomonas aeruginosa with Gold Nanorods. Nano Lett. 8, 302–306 (2008). https://doi.org/10.1021/nl0727056
A.S. Nanoshells, S.A. Kalele, A.A. Kundu, S.W. Gosavi, D.N. Deobagkar, D.D. Deobagkar, S.K. Kulkarni, Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small 2, 335–338 (2006). https://doi.org/10.1002/smll.200500286
B.J. Yakes, R.J. Lipert, J.P. Bannantine, M.D. Porter, Detection of Mycobacterium avium subsp. paratuberculosis by a sonicate immunoassay based on surface-enhanced raman scattering. Clin. Vaccine Immunol. 15, 227–234 (2008). https://doi.org/10.1128/cvi.00334-07
A.C. Vinayaka, S. Basheer, M.S. Thakur, Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens. Bioelectron. 24, 1615–1620 (2009). https://doi.org/10.1016/j.bios.2008.08.042
X. Ji, J. Zheng, J. Xu, V.K. Rastogi, T. Cheng, J.J. Defrank, R.M. Leblanc, (CdSe) ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J. Phys. Chem. B. 109, 3793–3799 (2005). https://doi.org/10.1021/jp044928f
A.L. Simonian, T.A. Good, S.S. Wang, J.R. Wild, Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta 534, 69–77 (2005). https://doi.org/10.1016/j.aca.2004.06.056
H. Wei, E. Wang, X.Y.N. Nanotechnol, Fe3O4 Magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 80, 2250–2254 (2008)
M.G. Sandros, V. Shete, D.E. Benson, Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. Analyst 131, 229–235 (2006). https://doi.org/10.1039/b511591d
G. Thangavel, S. Thiruvengadam, Nanotechnology in food industry—a review. Int. J. Chem. Tech. Res. 6, 4096–4101 (2014)
R.B. Reed, J.J. Faust, Y. Yang, K. Doudrick, D.G. Capco, K. Hristovski, P. Westerho, Characterization of nanomaterials in metal colloid-containing dietary supplement drinks and assessment of their potential interactions after ingestion. ACS Sustain. Chem. Eng. 2, 1616–1624 (2014). https://doi.org/10.1021/sc500108m
A.K. Sundramoorthy, S. Gunasekaran, Applications of graphene in quality assurance and safety of food. TrAC-Trends Anal. Chem. 60, 36–53 (2014). https://doi.org/10.1016/J.TRAC.2014.04.015
H. Yu, C. Yan, J. Yao, Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv. 4, 59792–59802 (2014). https://doi.org/10.1039/C4RA12691B
R. Augustine, A.R. Abraham, N. Kalarikkal, S. Thomas, Novel Approaches of Nanotechnology in Food (Academic Press, Oxford, 2016)
T. Lorne, M. Jiménez-Ruiz, S. Rols, J.-M. Escudier, J. Rubio-Zuazo et al., Competition between covalent and non-covalent grafting of fluorescein isothiocyanate on double-walled carbon nanotubes: a quantitative approach. Carbon 123, 735–743 (2017). https://doi.org/10.1016/J.CARBON.2017.07.070
C.J. Barrow, C. Nolan, B.J. Holub, Bioequivalence of encapsulated and microencapsulated fish-oil supplementation. J. Funct. Foods 1, 38–43 (2009). https://doi.org/10.1016/J.JFF.2008.09.006
E. Bouyer, G. Mekhloufi, V. Rosilio, J.-L. Grossiord, F. Agnely, Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field. Int. J. Pharm. 436, 359–378 (2012). https://doi.org/10.1016/J.IJPHARM.2012.06.052
S. Emami, S. Azadmard-damirchi, S.H. Peighambardoust, H. Valizadeh, J. Hesari, Liposomes as carrier vehicles for functional compounds in food sector. J. Exp. Nanosci. 11, 737–759 (2016). https://doi.org/10.1080/17458080.2016.1148273
T. Ghorbanzade, S.M. Jafari, S. Akhavan, R. Hadavi, Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 216, 146–152 (2017). https://doi.org/10.1016/J.FOODCHEM.2016.08.022
I. Barwal, A. Sood, M. Sharma, B. Singh, S.C. Yadav, Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surface B 101, 510–516 (2013). https://doi.org/10.1016/J.COLSURFB.2012.07.005
H. Singh, Nanotechnology applications in functional foods: opportunities and challenges. Prev. Nutr. Food Sci. 21, 1–8 (2016). https://doi.org/10.3746/pnf.2016.21.1.1
T. Mehmood, Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology. Food Chem. 183, 1–7 (2015). https://doi.org/10.1016/J.FOODCHEM.2015.03.021
I. Cho, S. Ku, Current technical approaches for the early detection of foodborne pathogens: challenges and opportunities. Int. J. Mole. Sci. 18, 2078 (2017). https://doi.org/10.3390/ijms18102078
B. Dalzon, C. Lebas, G. Jimenez, A. Gutjahr, C. Terrat, J. Exposito, B. Verrier, C. Lethias, Poly (lactic acid) nanoparticles targeting α5β1 integrin as vaccine delivery vehicle: A prospective study. PLoS ONE 11, 1–18 (2016). https://doi.org/10.1371/journal.pone.0167663
M.A. Mohammed, J.T.M. Syeda, K.M. Wasan, E.K. Wasan, An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmcaeutics 9, 1–26 (2017). https://doi.org/10.3390/pharmaceutics9040053
B. Kuswandi, Environmental friendly food nano-packaging. Environ. Chem. Lett. 15(2), 205–221 (2017). https://doi.org/10.1007/s10311-017-0613-7
B. Malhotra, A.N.U. Keshwani, H. Kharkwal, Natural polymer based cling films for food packaging. Int. J. Pharm. Pharm. Sci. 7, 10–18 (2015)
S. Malaysiana, K. Mengenai, T. Hijau, D. Selenium, K. Penguatan et al., A Review on selenium-enriched green tea: fortification methods, biological activities and application prospect. Sains Malays. 43, 1685–1692 (2014)
M.H. Fulekar, Nanotechnology: Importance and Applications (Ik Publishers International Pvt Ltd, New Delhi, 2010)
H. Ardalani, A. Avan, M. Ghayour-mobarhan, Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J. Phytomed. 7, 285–294 (2017)
B. Hu, X. Liu, C. Zhang, X. Zeng, Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug Anal. 25, 3–15 (2017). https://doi.org/10.1016/J.JFDA.2016.11.004
X. He, H.-M. Hwang, Nanotechnology in food science: functionality, applicability, and safety assessment. J. Food Drug Anal. 24, 671–681 (2016). https://doi.org/10.1016/J.JFDA.2016.06.001
C.J. Wijaya, S.N. Saputra, F.E. Soetaredjo, J.N. Putro, C.X. Lin, A. Kurniawan, Y.-H. Ju, S. Ismadji, Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr. Polym. 175, 370–376 (2017). https://doi.org/10.1016/J.CARBPOL.2017.08.004
L. Wang, C. Hu, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)
V. Rastogi, P. Yadav, S.S. Bhattacharya, A.K. Mishra, N. Verma, A. Verma, J.K. Pandit, Carbon nanotubes : an emerging drug carrier for targeting cancer cells. J. Drug Deliv. 10, 1–24 (2014). https://doi.org/10.1016/10.1155/2014/670815
H. Jiang, D. Jiang, J. Shao, X. Sun, J. Wang, High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep36987
N.K. Jain, V. Mishra, N.K. Mehra, N.K. Jain, V. Mishra, N.K. Mehra, Targeted drug delivery to macrophages. Expert Opin. Drug Deliv. 10, 353–367 (2013). https://doi.org/10.1517/17425247.2013.751370
T.K. Głab, J. Boratynski, Potential of casein as a carrier for biologically active. Top. Curr. Chem. 375, 1–20 (2017). https://doi.org/10.1007/s41061-017-0158-z
K.P. Chandrika, A. Singh, M.K. Tumma, P. Yadav, Nanotechnology prospects and constraints in agriculture, in Environmental chemistry for a sustainable world, vol. 14, ed. by N. Dasgupta, S. Ranjan, E. Lichtfouse (Springer, New York, 2018)
O. Betzer, R. Meir, T. Dreifuss, K. Shamalov, M. Motiei, A. Shwartz, K. Baranes, C.J. Cohen, N. Shraga-heled, R. Ofir, In-vitro optimization of nanoparticle-cell labeling protocols for In-vivo Cell tracking applications. Sci. Rep. 5, 15400 (2015). https://doi.org/10.1038/srep15400
H.D. Silva, M.Â. Cerqueira, A.A. Vicente, Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol. 5, 854–867 (2012). https://doi.org/10.1007/s11947-011-0683-7
K.M. Nelson, J.L. Dahlin, J. Bisson, J. Graham, G.F. Pauli, M.A. Walters, The essential medicinal chemistry of curcumin. J. Med. Chem. 60, 1620–1637 (2017). https://doi.org/10.1021/acs.jmedchem.6b00975
D. Kim, S.J. Kwon, X. Wu, J. Sauve, I. Lee, J. Nam, J. Kim, J.S. Dordick, Selective killing of pathogenic bacteria by antimicrobial silver nanoparticle-cell wall binding domain conjugates. ACS Appl. Mater. Interfaces. 10, 13317–13324 (2018). https://doi.org/10.1021/acsami.8b00181
X. Su, P. Liu, H. Wu, N. Gu, Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol. Med. 11, 86–91 (2014). https://doi.org/10.7497/j.issn.2095-3941.2014.02.003
L.A. Dykman, N.G. Khlebtsov, Gold nanoparticles in biology and medicine: recent advances and prospects. ACTA Nat. 3, 34–55 (2011). https://doi.org/10.1111/j.1600-0854.2010.01156.x
X. Gao, S.R. Dave, Advances in Experimental Medicine and Biology (Springer, New York, 2007)
Z. Bakhtiary, A.A. Saei, M.J. Hajipour, M. Raoufi, O. Vermesh, M. Mahmoudi, Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed. Nanotechnol. Biol. Med. 12, 287–307 (2016). https://doi.org/10.1016/J.NANO.2015.10.019
U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed. Nanotechnol. Biol. Med. 6, 714–729 (2010). https://doi.org/10.1016/J.NANO.2010.05.005
D. Goswami, S.K. Medda, G. De, Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles. ACS Appl. Mater. Interfaces. 3, 3440–3447 (2011). https://doi.org/10.1021/am200666m
F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 148, 135–146 (2010). https://doi.org/10.1016/J.JCONREL.2010.08.027
M. Hirenkumar, S. Steven, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1–19 (2012). https://doi.org/10.3390/polym3031377.Poly
H. Sun, Y. Sakka, H. Sun, Y. Sakka, Luminescent metal nanoclusters: controlled synthesis and functional applications luminescent metal nanoclusters: controlled synthesis and functional applications. Sci. Technol. Adv. Mater. 15, 014205 (2014). https://doi.org/10.1088/1468-6996/15/1/014205
C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharmac. Investig. 5, 124–133 (2015). https://doi.org/10.4103/2230-973X.160844
F.M. Mustafa, H.A. Hodali, Use of mesoporous silicate nanoparticles as drug carrier for mefenamic acid. Marer. Sci. Eng. 92, 1–6 (2015). https://doi.org/10.1088/1757-899X/92/1/012018
A.D. Furasova, A.F. Fakhardo, V.A. Milichko, E. Tervoort, M. Niederberger, V.V. Vinogradov, Synthesis of a rare-earth doped hafnia hydrosol: towards injectable luminescent nanocolloids. Colloid Surface B 154, 21–26 (2017). https://doi.org/10.1016/J.COLSURFB.2017.02.029
R. Bakry, M. Najam-ul-haq, C.W. Huck, Medicinal applications of fullerenes. Int. J. Nanomed. 2, 639–649 (2007). https://doi.org/10.2147/nano.2007.2.1.117
G.C. Pradhan, S. Dash, S.K. Swain, Barrier properties of nano silicon carbide designed chitosan nanocomposites. Carbohydr. Polym. 134, 60–65 (2015). https://doi.org/10.1016/J.CARBPOL.2015.06.081
S.E. McNeil, Nanotechnology for the biologist. J. Leukoc. Biol. 78, 585–594 (2005). https://doi.org/10.1189/jlb.0205074
I.K. Herrmann, How nanotechnology-enabled concepts could contribute to the prevention, diagnosis and therapy of bacterial infections. Crit. Care 19, 239 (2015). https://doi.org/10.1186/s13054-015-0957-y
L. Salvia-trujillo, O. Martín-belloso, D.J. Mcclements, Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials 6, 1–16 (2016). https://doi.org/10.3390/nano6010017