Homologous Strategy to Construct High-Performance Coupling Electrodes for Advanced Potassium-Ion Hybrid Capacitors
Corresponding Author: Shiyou Zheng
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 14
Abstract
Potassium-ion hybrid capacitors (PIHCs) have been considered as promising potentials in mid- to large-scale storage system applications owing to their high energy and power density. However, the process involving the intercalation of K+ into the carbonaceous anode is a sluggish reaction, while the adsorption of anions onto the cathode surface is relatively faster, resulting in an inability to exploit the advantage of high energy. To achieve a high-performance PIHC, it is critical to promote the K+ insertion/desertion in anodic materials and design suitable cathodic materials matching the anodes. In this study, we propose a facile “homologous strategy” to construct suitable anode and cathode for high-performance PIHCs, that is, unique multichannel carbon fiber (MCCF)-based anode and cathode materials are firstly prepared by electrospinning, and then followed by sulfur doping and KOH activation treatment, respectively. Owing to a multichannel structure with a large interlayer spacing for introducing S in the sulfur-doped multichannel carbon fiber (S-MCCF) composite, it presents high capacity, super rate capability, and long cycle stability as an anode in potassium-ion cells. The cathode composite of activated multichannel carbon fiber (aMCCF) has a considerably high specific surface area of 1445 m2 g−1 and exhibits outstanding capacitive performance. In particular, benefiting from advantages of the fabricated S-MCCF anode and aMCCF cathode by homologous strategy, PIHCs assembled with the unique MCCF-based anode and cathode show outstanding electrochemical performance, which can deliver high energy and power densities (100 Wh kg−1 at 200 W kg−1, and 58.3 Wh kg−1 at 10,000 W kg−1) and simultaneously exhibit superior cycling stability (90% capacity retention over 7000 cycles at 1.0 A g−1). The excellent electrochemical performance of the MCCF-based composites for PIHC electrodes combined with their simple construction renders such materials attractive for further in-depth investigations of alkali-ion battery and capacitor applications.
Highlights:
1 A novel and facile homologous strategy is proposed to construct unique multichannel carbon fiber (MCCF)-based electrode materials for potassium-ion hybrid capacitors.
2 The S-MCCF anodes present high capacity, super rate capability, and long cycle stability in potassium-ion half-cells, and the aMCCF cathodes have a high specific surface area of 1445 m2 g−1 and exhibit outstanding capacitive performance.
3 The fabricated PIHC (manode:mcathode = 1:2) devices show high energy and power densities together with excellent cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Ren, Z. Ren, Q. Li, W. Wen, X. Li et al., Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors. Adv. Energy Mater. 9, 1900091 (2019). https://doi.org/10.1002/aenm.201900091
- D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
- J. Xu, Y. Li, L. Wang, Q. Cai, Q. Li et al., High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes. Nanoscale 8, 16761–16768 (2016). https://doi.org/10.1039/c6nr05480c
- Y. Zhao, J. Ruan, S. Luo, H. Sun, Y. Pang, J. Yang, S. Zheng, Rational construction of a binder-free and universal electrode for stable and fast alkali-ion storage. ACS Appl. Mater. Interfaces 11, 40006–40013 (2019). https://doi.org/10.1021/acsami.9b13889
- W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8, 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- P. Xiong, P. Bai, S. Tu, M. Cheng, J. Zhang, J. Sun, Y. Xu, Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 14, 1802140 (2018). https://doi.org/10.1002/smll.201802140
- Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28, 1802684 (2018). https://doi.org/10.1002/adfm.201802684
- L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu et al., Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 232, 106–113 (2017). https://doi.org/10.1016/j.electacta.2017.02.096
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji, X. Zhang, Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces. 10, 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- J. Chen, B. Yang, H. Hou, H. Li, L. Liu, L. Zhang, X. Yan, Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9, 1803894 (2019). https://doi.org/10.1002/aenm.201803894
- J. Chen, B. Yang, H. Li, P. Ma, J. Lang, X. Yan, Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. J. Mater. Chem. A 7, 9247–9252 (2019). https://doi.org/10.1039/c9ta01653h
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8, 1802386 (2018). https://doi.org/10.1002/aenm.201802386
- C. Liu, N. Xiao, H. Li, Q. Dong, Y. Wang et al., Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 382, 121759 (2020). https://doi.org/10.1016/j.cej.2019.05.120
- J. Ruan, Y. Zhao, S. Luo, T. Yuan, J. Yang, D. Sun, S. Zheng, Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network. Energy Storage Mater. 23, 46–54 (2019). https://doi.org/10.1016/j.ensm.2019.05.037
- L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao et al., Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms. Energy Storage Mater. 27, 212–225 (2020). https://doi.org/10.1016/j.ensm.2020.02.004
- X. Qi, K. Huang, X. Wu, W. Zhao, H. Wang, Q. Zhuang, Z. Ju, Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018). https://doi.org/10.1016/j.carbon.2018.01.094
- Y. Sun, H. Xiao, H. Li, Y. He, Y. Zhang et al., Nitrogen/oxygen co-doped hierarchically porous carbon for high-performance potassium storage. Chem. Eur. J. 25, 7359–7365 (2019). https://doi.org/10.1002/chem.201900448
- P. Xiong, X. Zhao, Y. Xu, Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. Chemsuschem 11, 202–208 (2018). https://doi.org/10.1002/cssc.201701759
- K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen doped graphene for improved high capacity potassium ion battery anodes. ACS Nano 10, 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- S. Gong, Q. Wang, Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability. J. Phys. Chem. C 121, 24418–24424 (2017). https://doi.org/10.1021/acs.jpcc.7b07583
- G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing, Q. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5, 7854–7861 (2017). https://doi.org/10.1039/c7ta01108c
- D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29, 1903496 (2019). https://doi.org/10.1002/adfm.201903496
- B. Yang, J. Chen, L. Liu, P. Ma, B. Liu et al., 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
- D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao et al., A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 (2016). https://doi.org/10.1002/aenm.201501929
- L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 1500195 (2015). https://doi.org/10.1002/advs.201500195
- J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8, 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31, 1900429 (2019). https://doi.org/10.1002/adma.201900429
- S. Tian, D. Guan, J. Lu, Y. Zhang, T. Liu et al., Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. J. Power Sources 448, 227572 (2020). https://doi.org/10.1016/j.jpowsour.2019.227572
- R. Hou, B. Liu, Y. Sun, L. Liu, J. Meng et al., Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72, 104728 (2020). https://doi.org/10.1016/j.nanoen.2020.104728
- J. Chen, B. Yang, B. Liu, J. Lang, X. Yan, Recent advances in anode materials for sodium- and potassium-ion hybrid capacitors. Curr. Opin. Electrochem. 18, 1–8 (2019). https://doi.org/10.1016/j.coelec.2019.07.003
- Y. Xu, T. Yuan, Y. Zhao, H. Yao, J. Yang, S. Zheng, Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life. Adv. Mater. Interfaces 7, 1901829 (2019). https://doi.org/10.1002/admi.201901829
- S.-H. Park, H.-R. Jung, W.-J. Lee, Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim. Acta 102, 423–428 (2013). https://doi.org/10.1016/j.electacta.2013.04.044
- Y. Zhou, J. He, H. Wang, K. Qi, B. Ding, S. Cui, Carbon nanofiber yarns fabricated from co-electrospun nanofibers. Mater. Design 95, 591–598 (2016). https://doi.org/10.1016/j.matdes.2016.01.132
- N. Kaerkitcha, S. Chuangchote, T. Sagawa, Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Nanoscale Res. Lett. 11, 186 (2016). https://doi.org/10.1186/s11671-016-1416-7
- B. Zhang, F. Kang, J.-M. Tarascon, J.-K. Kim, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016). https://doi.org/10.1016/j.pmatsci.2015.08.002
- R. Shi, C. Han, X. Xu, X. Qin, L. Xu et al., Electrospun N-doped hierarchical porous carbon nanofiber with improved degree of graphitization for high-performance lithium ion capacitor. Chem. Eur. J. 24, 10460–10467 (2018). https://doi.org/10.1002/chem.201801345
- Z.Y. Yang, Y.H. Wang, Z. Dai, Z.W. Lu, X.Y. Gu et al., Nature of improved double-layer capacitance by KOH activation on carbon nanotube-carbon nanofiber hierarchical hybrids. Carbon 146, 610–617 (2019). https://doi.org/10.1016/j.carbon.2019.02.057
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30, 1700104 (2018). https://doi.org/10.1002/adma.201700104
- C. Yuan, X. Liu, M. Jia, Z. Luo, J. Yao, Facile preparation of N- and O- doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors. J. Mater. Chem. A 3, 3409–3415 (2015). https://doi.org/10.1039/C4TA06411A
- Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang, Y. Qian, Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
- J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2016). https://doi.org/10.1002/adma.201604108
- R.A. Adams, J.-M. Syu, Y. Zhao, C.-T. Lo, A. Varma, V.G. Pol, Binder-free N- and O- rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl. Mater. Interfaces 9, 17872–17881 (2017). https://doi.org/10.1021/acsami.7b02476
- W. Shao, F. Hu, C. Song, J. Wang, C. Liu, Z. Weng, X. Jian, Hierarchical N/S co-doped carbon anodes fabricated through facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7, 6363–6373 (2019). https://doi.org/10.1039/C8TA11921J
- L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li, C. Yan, Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28, 1801989 (2018). https://doi.org/10.1002/adfm.201801989
- K. Huang, Z. Xing, L. Wang, X. Wu, W. Zhao et al., Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 6, 434–442 (2017). https://doi.org/10.1039/C7TA08171E
- X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang, Y. Xu, High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A 5, 19237–19244 (2017). https://doi.org/10.1039/C7TA04264G
- A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu et al., Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 31, 1805430 (2019). https://doi.org/10.1002/adma.201805430
- Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29, 1702268 (2017). https://doi.org/10.1002/adma.201702268
- Z. Tai, Q. Zhang, Y. Liu, H. Liu, S. Dou, Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123, 54–61 (2017). https://doi.org/10.1016/j.carbon.2017.07.041
- G. Lu, H. Wang, Y. Zheng, H. Zhang, Y. Yang et al., Metal-organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochim. Acta 319, 541–551 (2019). https://doi.org/10.1016/j.electacta.2019.07.026
- W. Cao, E. Zhang, J. Wang, Z. Liu, J. Ge et al., Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim. Acta 293, 364–370 (2019). https://doi.org/10.1016/j.electacta.2018.10.036
- C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang et al., High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources 415, 165–171 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073
- H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang, D. Cao, H. Zhu, Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18, 7407–7413 (2018). https://doi.org/10.1021/acs.nanolett.8b03845
- J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201904045
- D. Luo, J. Xu, Q. Guo, L. Fang, X. Zhu, Q. Xia, H. Xia, Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater. 28, 1805371 (2018). https://doi.org/10.1002/adfm.201805371
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018). https://doi.org/10.1002/advs.201700322
- E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun et al., High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 26, 3711–3719 (2016). https://doi.org/10.1002/adfm.201505548
- Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7, 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen, X. Zhang, G. Yu, Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 28, 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
- D. Li, C. Ye, X. Chen, S. Wang, H. Wang, A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode. J. Power Sources 382, 116–121 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.036
- L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, 1800804 (2018). https://doi.org/10.1002/adma.201800804
References
X. Ren, Z. Ren, Q. Li, W. Wen, X. Li et al., Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors. Adv. Energy Mater. 9, 1900091 (2019). https://doi.org/10.1002/aenm.201900091
D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
J. Xu, Y. Li, L. Wang, Q. Cai, Q. Li et al., High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes. Nanoscale 8, 16761–16768 (2016). https://doi.org/10.1039/c6nr05480c
Y. Zhao, J. Ruan, S. Luo, H. Sun, Y. Pang, J. Yang, S. Zheng, Rational construction of a binder-free and universal electrode for stable and fast alkali-ion storage. ACS Appl. Mater. Interfaces 11, 40006–40013 (2019). https://doi.org/10.1021/acsami.9b13889
W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8, 1701648 (2018). https://doi.org/10.1002/aenm.201701648
P. Xiong, P. Bai, S. Tu, M. Cheng, J. Zhang, J. Sun, Y. Xu, Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 14, 1802140 (2018). https://doi.org/10.1002/smll.201802140
Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28, 1802684 (2018). https://doi.org/10.1002/adfm.201802684
L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu et al., Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 232, 106–113 (2017). https://doi.org/10.1016/j.electacta.2017.02.096
S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji, X. Zhang, Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces. 10, 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
J. Chen, B. Yang, H. Hou, H. Li, L. Liu, L. Zhang, X. Yan, Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9, 1803894 (2019). https://doi.org/10.1002/aenm.201803894
J. Chen, B. Yang, H. Li, P. Ma, J. Lang, X. Yan, Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. J. Mater. Chem. A 7, 9247–9252 (2019). https://doi.org/10.1039/c9ta01653h
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8, 1802386 (2018). https://doi.org/10.1002/aenm.201802386
C. Liu, N. Xiao, H. Li, Q. Dong, Y. Wang et al., Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 382, 121759 (2020). https://doi.org/10.1016/j.cej.2019.05.120
J. Ruan, Y. Zhao, S. Luo, T. Yuan, J. Yang, D. Sun, S. Zheng, Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network. Energy Storage Mater. 23, 46–54 (2019). https://doi.org/10.1016/j.ensm.2019.05.037
L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao et al., Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms. Energy Storage Mater. 27, 212–225 (2020). https://doi.org/10.1016/j.ensm.2020.02.004
X. Qi, K. Huang, X. Wu, W. Zhao, H. Wang, Q. Zhuang, Z. Ju, Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018). https://doi.org/10.1016/j.carbon.2018.01.094
Y. Sun, H. Xiao, H. Li, Y. He, Y. Zhang et al., Nitrogen/oxygen co-doped hierarchically porous carbon for high-performance potassium storage. Chem. Eur. J. 25, 7359–7365 (2019). https://doi.org/10.1002/chem.201900448
P. Xiong, X. Zhao, Y. Xu, Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. Chemsuschem 11, 202–208 (2018). https://doi.org/10.1002/cssc.201701759
K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen doped graphene for improved high capacity potassium ion battery anodes. ACS Nano 10, 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
S. Gong, Q. Wang, Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability. J. Phys. Chem. C 121, 24418–24424 (2017). https://doi.org/10.1021/acs.jpcc.7b07583
G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing, Q. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5, 7854–7861 (2017). https://doi.org/10.1039/c7ta01108c
D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29, 1903496 (2019). https://doi.org/10.1002/adfm.201903496
B. Yang, J. Chen, L. Liu, P. Ma, B. Liu et al., 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao et al., A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 (2016). https://doi.org/10.1002/aenm.201501929
L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 1500195 (2015). https://doi.org/10.1002/advs.201500195
J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8, 1800171 (2018). https://doi.org/10.1002/aenm.201800171
J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31, 1900429 (2019). https://doi.org/10.1002/adma.201900429
S. Tian, D. Guan, J. Lu, Y. Zhang, T. Liu et al., Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. J. Power Sources 448, 227572 (2020). https://doi.org/10.1016/j.jpowsour.2019.227572
R. Hou, B. Liu, Y. Sun, L. Liu, J. Meng et al., Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72, 104728 (2020). https://doi.org/10.1016/j.nanoen.2020.104728
J. Chen, B. Yang, B. Liu, J. Lang, X. Yan, Recent advances in anode materials for sodium- and potassium-ion hybrid capacitors. Curr. Opin. Electrochem. 18, 1–8 (2019). https://doi.org/10.1016/j.coelec.2019.07.003
Y. Xu, T. Yuan, Y. Zhao, H. Yao, J. Yang, S. Zheng, Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life. Adv. Mater. Interfaces 7, 1901829 (2019). https://doi.org/10.1002/admi.201901829
S.-H. Park, H.-R. Jung, W.-J. Lee, Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim. Acta 102, 423–428 (2013). https://doi.org/10.1016/j.electacta.2013.04.044
Y. Zhou, J. He, H. Wang, K. Qi, B. Ding, S. Cui, Carbon nanofiber yarns fabricated from co-electrospun nanofibers. Mater. Design 95, 591–598 (2016). https://doi.org/10.1016/j.matdes.2016.01.132
N. Kaerkitcha, S. Chuangchote, T. Sagawa, Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Nanoscale Res. Lett. 11, 186 (2016). https://doi.org/10.1186/s11671-016-1416-7
B. Zhang, F. Kang, J.-M. Tarascon, J.-K. Kim, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016). https://doi.org/10.1016/j.pmatsci.2015.08.002
R. Shi, C. Han, X. Xu, X. Qin, L. Xu et al., Electrospun N-doped hierarchical porous carbon nanofiber with improved degree of graphitization for high-performance lithium ion capacitor. Chem. Eur. J. 24, 10460–10467 (2018). https://doi.org/10.1002/chem.201801345
Z.Y. Yang, Y.H. Wang, Z. Dai, Z.W. Lu, X.Y. Gu et al., Nature of improved double-layer capacitance by KOH activation on carbon nanotube-carbon nanofiber hierarchical hybrids. Carbon 146, 610–617 (2019). https://doi.org/10.1016/j.carbon.2019.02.057
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30, 1700104 (2018). https://doi.org/10.1002/adma.201700104
C. Yuan, X. Liu, M. Jia, Z. Luo, J. Yao, Facile preparation of N- and O- doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors. J. Mater. Chem. A 3, 3409–3415 (2015). https://doi.org/10.1039/C4TA06411A
Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang, Y. Qian, Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2016). https://doi.org/10.1002/adma.201604108
R.A. Adams, J.-M. Syu, Y. Zhao, C.-T. Lo, A. Varma, V.G. Pol, Binder-free N- and O- rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl. Mater. Interfaces 9, 17872–17881 (2017). https://doi.org/10.1021/acsami.7b02476
W. Shao, F. Hu, C. Song, J. Wang, C. Liu, Z. Weng, X. Jian, Hierarchical N/S co-doped carbon anodes fabricated through facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7, 6363–6373 (2019). https://doi.org/10.1039/C8TA11921J
L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li, C. Yan, Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28, 1801989 (2018). https://doi.org/10.1002/adfm.201801989
K. Huang, Z. Xing, L. Wang, X. Wu, W. Zhao et al., Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 6, 434–442 (2017). https://doi.org/10.1039/C7TA08171E
X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang, Y. Xu, High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A 5, 19237–19244 (2017). https://doi.org/10.1039/C7TA04264G
A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu et al., Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 31, 1805430 (2019). https://doi.org/10.1002/adma.201805430
Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29, 1702268 (2017). https://doi.org/10.1002/adma.201702268
Z. Tai, Q. Zhang, Y. Liu, H. Liu, S. Dou, Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123, 54–61 (2017). https://doi.org/10.1016/j.carbon.2017.07.041
G. Lu, H. Wang, Y. Zheng, H. Zhang, Y. Yang et al., Metal-organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochim. Acta 319, 541–551 (2019). https://doi.org/10.1016/j.electacta.2019.07.026
W. Cao, E. Zhang, J. Wang, Z. Liu, J. Ge et al., Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim. Acta 293, 364–370 (2019). https://doi.org/10.1016/j.electacta.2018.10.036
C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang et al., High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources 415, 165–171 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073
H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang, D. Cao, H. Zhu, Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18, 7407–7413 (2018). https://doi.org/10.1021/acs.nanolett.8b03845
J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201904045
D. Luo, J. Xu, Q. Guo, L. Fang, X. Zhu, Q. Xia, H. Xia, Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater. 28, 1805371 (2018). https://doi.org/10.1002/adfm.201805371
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018). https://doi.org/10.1002/advs.201700322
E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun et al., High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 26, 3711–3719 (2016). https://doi.org/10.1002/adfm.201505548
Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7, 1701222 (2017). https://doi.org/10.1002/aenm.201701222
H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen, X. Zhang, G. Yu, Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 28, 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
D. Li, C. Ye, X. Chen, S. Wang, H. Wang, A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode. J. Power Sources 382, 116–121 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.036
L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, 1800804 (2018). https://doi.org/10.1002/adma.201800804