Fabrication of a Highly Sensitive Hydrazine Electrochemical Sensor Based on Bimetallic Au-Pt Hybrid Nanocomposite onto Modified Electrode
Corresponding Author: Azadeh Azadbakht
Nano-Micro Letters,
Vol. 2 No. 4 (2010), Article Number: 296-305
Abstract
In this research a novel nickel complex was used as electrocatalyst for electrooxidation of hydrazine. A nano-structured nickel-complex was electrodeposited on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified electrode. The electrode possesses a three-dimensional (3D) porous network nanoarchitecture, in which the bimetallic Au-Pt NPs serving as metal nanoparticle based microelectrode ensembles are distributed in the matrix of interlaced 3, 3′, 5, 5′-Tetramethylbenzidine (TMB) organic nanofibers (NFs). Surface structure and composition of the sensor was characterized by scanning electron microscopy. Electrocatalytic oxidation of hydrazine on the surface of modified electrode was investigated with cyclic voltammetry method. The results showed that the nickel-complex films displayed excellent electrochemical catalytic activities towards hydrazine oxidation. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of hydrazine. Under optimized conditions the calibration plots were linear in the concentration range of 0.2–85 μM and detection limit was found to be 0.1 μM. The modified electrode exhibited reproducible behavior and a high level stability during the electrochemical experiments, making it particularly suitable for the analytical purposes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Safavi and A. A. Ensafi, Anal. Chim. Acta 300, 307 (1995).
- W. X. Yin, Z. P. Li, J. K. Zhu and H. Y. Qin, J. Power Sources 182, 520 (2008). doi:10.1016/j.jpowsour.2008. 04.028
- J. S. Budkuley, Microchim, Acta 108 103 (1992). doi: 10.1007/BF01240376
- J. W. Mo, B. Ogorevc, X. Zhang and B. Pihlar, Electroanalysis 12, 48 (2000). doi:10.1002/(SICI)1521-4109(20000101)12:1<48::AID-ELAN48>3.0.CO;2-H
- A. L. Ensafi and B. Rezaei, Talanta 47, 645 (1998). doi:10.1016/S0039-9140(98)00113-1
- A. Safavi and M. A. Karimi, Talanta 58, 785 (2002). doi: 10.1016/S0039-9140(02)00362-4
- M. H. Pournaghi-Azar and R. Sabzi, J. Electroanal. Chem. 543, 115 (2003). doi:10.1016/S0022-0728(02)01480-8
- S. J. R. Prabakar and S. S. Narayanan, J. Electroanal. Chem. 617, 111 (2008). doi:10.1016/j.jelechem.2008.01.020
- N. Maleki, A. Safavi, E. Farjami and F. Tajabadi, Anal. Chim. Acta 611, 151 (2008). doi:10.1016/j.aca.2008.01.075
- M. Revenga-Parra, T. Garcia, E. Lorenzo and F. Pariente, Sens. Actuators B 130, 730 (2008). doi:10.1016/j.snb.2007.10.038
- M. Y. Elahi, H. Heli, S. Z. Bathaie and M. F. Mousavi, J. Solid State Electrochem. 11, 273 (2007). doi:10.1007/s10008-006-0104-4
- A. L. Briseno, S. C. B. Mannsfeld, E. Formo, Y. J. Xiong, X. M. Lu, Z. N. Bao, S. A. Jenekhe and Y. N. J. Xia, Mater. Chem. 18, 5395 (2008). doi:10.1039/b809228c
- T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporte, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wohrle, K. Funabiki, M. Matsui, H. Miura and H. Yanagi, Adv. Funct. Mater. 19, 17 (2009). doi:10.1002/adfm.200700188
- D. J. Milliron, I. Gur and A. P. Alivisatos, MRS Bull. 30, 41 (2005).
- A. L. Briseno, S. C. B. Mannsfeld, X. Liu, Y. Xiong, S. A. Jenekhe, Z. Bao and Y. Xia, Nano Lett. 7, 668 (2007). doi: 10.1021/nl0627036
- G. Lu, C. Li, J. Shen, Z. Chen and G. Shi, J. Phys. Chem. C 111, 5926 (2007). doi:10.1021/jp070387t
- R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner and Y. Yang, Nano Lett. 5, 1077 (2005). doi:10.1021/nl050587l
- J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti and M. Niederberger, Angew. Chem. Int. Ed. 45, 261 (2006). doi:10.1002/anie.200502823
- S. Forster and M. Antonietti, Adv. Mater. 10, 195 (1998). doi:10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
- C. Sanchez, B. Juli’an, P. Belleville and M. Popall, J. Mater. Chem. 15, 3559 (2005). doi:10.1039/b509097k
- J. W. Kriesel and T. D. Tilley, Adv. Mater. 15, 1645 (2003).
- P. Gomez-Romero, Adv. Mater. 15, 163 (2003).
- J. Gong, T. Zhou, D. Song, L. Zhang and X. Hu, Anal. Chem. 82, 567 (2010) doi:10.1021/ac901846a
- H. Sabahudin, L. Yali, B. M. Keith and H. T. L. John, Anal. Chem. 76, 1083 (2004). doi:10.1021/ac035143t
- X. Dai, G. G. Wildgoose, C. Salter, A. Crossley and R. G. Compton, Anal. Chem. 78, 6102 (2006). doi:10.1021/ ac060582o
- V. R. Holland, B. C. Saunders, F. L. Rose and A. L. Walpole, Tetrahedron 30, 3299 (1974). doi:10.1016/S0040-4020(01)97504-0
- E. Majid, S. Harpovic, Y. Liu, K. B. Male and J. H. T. Luong, Anal. Chem. 78, 762 (2006). doi:10.1021/ac0513562
- J. H. Yang, H. S. Wang, L. H. Lu, Y. B. Wang, W. D. Shi and H. J. Zhang, Synth Met. 158, 572 (2008). doi:10.1016/j.synthmet.2008.04.005
- T. F. Otero and E. D. Larreta-Azelain, Polymer 29, 1522 (1988). doi:10.1016/0032-3861(88)90320-5
- S. Majdi, A. J. Abbari, H. Heli and A. A. Moosavi- Movahedi, Electrochim. Acta. 52, 4622 (2007). doi:10.1016/j.electacta.2007.01.022
- J. B. He, X. Q. Lin and J. Pan, Electroanalysis 17, 1681 (2005). doi:10.1002/elan.200503274
- A. J. Bard, L. R. Faulkner, “Electrochemical Methods- Fundamentals and Applications”, John Wiley and Sons, New York (2000).
- T. R. I. Cataldi, D. Centonze and G. Ricciardi, Electro- analysis, 7, 312 (1995). doi:10.1002/elan.1140070403
- V. Rosca, M. T. M. Koper, Electrochim. Acta 53, 5199 (2008). doi:10.1016/j.electacta.2008.02.054
- Y. Wanga, Y. Wan and D. Zhang, Electrochem. Commun. 12, 187 (2010). doi:10.1016/j.elecom.2009.11. 019
- J. A. Harrison and Z. A. Khan, J. Electroanal. Chem. 28, 131(1970). doi:10.1016/S0022-0728(70)80288-1
- A. J. Bard and L. R. Faulkner, “Electrochemical methods, in: Fundamentals and Applications”, Wiley, New York (1980).
- A. Umar, M. M. Rahman, S. H. Kim and Y. B. Hahn, Chem. Commun. 2, 166 (2008). doi:10.1039/b711215g
- A. Umar, M. M. Rahman and Y. B. Hahn, Talanta, 77, 1444 (2009).
- H. Zare and N. Nasirrizadeh, Electrochim. Acta 52, 4153 (2007). doi:10.1016/j.electacta.2006.11.037
- J. Li and X.Q. Lin, Sens. Actuators B, 126, 527 (2007). doi:10.1016/j.snb.2007.03.044
- G. F. Wang, A. X. Gu, W. Wang, Y. Wei, J. J. Wu, G. Z. Wang, X. J. Zhang and B. Fang, Electrochem. Commun. 11, 631 (2009). doi:10.1016/j.elecom.2008.12.061
- J. B. Zheng, Q. L. Sheng, L. Li and Y. Shen, J. Electroanal. Chem. 611, 155 (2007). doi:10.1016/j.jelechem.2007.08.013
- J. S. Pinter, K. L. Brown, P. A. D. Young and G. F. Peaslee, Talanta, 71, 1219 (2007). doi:10.1016/j.talanta.2006.06.017
- A. Salimi and K. Abdi Talanta 63, 475 (2004). doi:10.1016/j.talanta.2003.11.021
- B. Fang, C. Zhang, W. Zhang and G. Wang, Electrochimica. Acta 55, 178 (2009). doi:10.1016/j.electacta.2009.08.036
- F. J. Welcher, Standard Methods of Chemical Analysis, 6th ed., New York, 493 (1963).
References
A. Safavi and A. A. Ensafi, Anal. Chim. Acta 300, 307 (1995).
W. X. Yin, Z. P. Li, J. K. Zhu and H. Y. Qin, J. Power Sources 182, 520 (2008). doi:10.1016/j.jpowsour.2008. 04.028
J. S. Budkuley, Microchim, Acta 108 103 (1992). doi: 10.1007/BF01240376
J. W. Mo, B. Ogorevc, X. Zhang and B. Pihlar, Electroanalysis 12, 48 (2000). doi:10.1002/(SICI)1521-4109(20000101)12:1<48::AID-ELAN48>3.0.CO;2-H
A. L. Ensafi and B. Rezaei, Talanta 47, 645 (1998). doi:10.1016/S0039-9140(98)00113-1
A. Safavi and M. A. Karimi, Talanta 58, 785 (2002). doi: 10.1016/S0039-9140(02)00362-4
M. H. Pournaghi-Azar and R. Sabzi, J. Electroanal. Chem. 543, 115 (2003). doi:10.1016/S0022-0728(02)01480-8
S. J. R. Prabakar and S. S. Narayanan, J. Electroanal. Chem. 617, 111 (2008). doi:10.1016/j.jelechem.2008.01.020
N. Maleki, A. Safavi, E. Farjami and F. Tajabadi, Anal. Chim. Acta 611, 151 (2008). doi:10.1016/j.aca.2008.01.075
M. Revenga-Parra, T. Garcia, E. Lorenzo and F. Pariente, Sens. Actuators B 130, 730 (2008). doi:10.1016/j.snb.2007.10.038
M. Y. Elahi, H. Heli, S. Z. Bathaie and M. F. Mousavi, J. Solid State Electrochem. 11, 273 (2007). doi:10.1007/s10008-006-0104-4
A. L. Briseno, S. C. B. Mannsfeld, E. Formo, Y. J. Xiong, X. M. Lu, Z. N. Bao, S. A. Jenekhe and Y. N. J. Xia, Mater. Chem. 18, 5395 (2008). doi:10.1039/b809228c
T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporte, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wohrle, K. Funabiki, M. Matsui, H. Miura and H. Yanagi, Adv. Funct. Mater. 19, 17 (2009). doi:10.1002/adfm.200700188
D. J. Milliron, I. Gur and A. P. Alivisatos, MRS Bull. 30, 41 (2005).
A. L. Briseno, S. C. B. Mannsfeld, X. Liu, Y. Xiong, S. A. Jenekhe, Z. Bao and Y. Xia, Nano Lett. 7, 668 (2007). doi: 10.1021/nl0627036
G. Lu, C. Li, J. Shen, Z. Chen and G. Shi, J. Phys. Chem. C 111, 5926 (2007). doi:10.1021/jp070387t
R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner and Y. Yang, Nano Lett. 5, 1077 (2005). doi:10.1021/nl050587l
J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti and M. Niederberger, Angew. Chem. Int. Ed. 45, 261 (2006). doi:10.1002/anie.200502823
S. Forster and M. Antonietti, Adv. Mater. 10, 195 (1998). doi:10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
C. Sanchez, B. Juli’an, P. Belleville and M. Popall, J. Mater. Chem. 15, 3559 (2005). doi:10.1039/b509097k
J. W. Kriesel and T. D. Tilley, Adv. Mater. 15, 1645 (2003).
P. Gomez-Romero, Adv. Mater. 15, 163 (2003).
J. Gong, T. Zhou, D. Song, L. Zhang and X. Hu, Anal. Chem. 82, 567 (2010) doi:10.1021/ac901846a
H. Sabahudin, L. Yali, B. M. Keith and H. T. L. John, Anal. Chem. 76, 1083 (2004). doi:10.1021/ac035143t
X. Dai, G. G. Wildgoose, C. Salter, A. Crossley and R. G. Compton, Anal. Chem. 78, 6102 (2006). doi:10.1021/ ac060582o
V. R. Holland, B. C. Saunders, F. L. Rose and A. L. Walpole, Tetrahedron 30, 3299 (1974). doi:10.1016/S0040-4020(01)97504-0
E. Majid, S. Harpovic, Y. Liu, K. B. Male and J. H. T. Luong, Anal. Chem. 78, 762 (2006). doi:10.1021/ac0513562
J. H. Yang, H. S. Wang, L. H. Lu, Y. B. Wang, W. D. Shi and H. J. Zhang, Synth Met. 158, 572 (2008). doi:10.1016/j.synthmet.2008.04.005
T. F. Otero and E. D. Larreta-Azelain, Polymer 29, 1522 (1988). doi:10.1016/0032-3861(88)90320-5
S. Majdi, A. J. Abbari, H. Heli and A. A. Moosavi- Movahedi, Electrochim. Acta. 52, 4622 (2007). doi:10.1016/j.electacta.2007.01.022
J. B. He, X. Q. Lin and J. Pan, Electroanalysis 17, 1681 (2005). doi:10.1002/elan.200503274
A. J. Bard, L. R. Faulkner, “Electrochemical Methods- Fundamentals and Applications”, John Wiley and Sons, New York (2000).
T. R. I. Cataldi, D. Centonze and G. Ricciardi, Electro- analysis, 7, 312 (1995). doi:10.1002/elan.1140070403
V. Rosca, M. T. M. Koper, Electrochim. Acta 53, 5199 (2008). doi:10.1016/j.electacta.2008.02.054
Y. Wanga, Y. Wan and D. Zhang, Electrochem. Commun. 12, 187 (2010). doi:10.1016/j.elecom.2009.11. 019
J. A. Harrison and Z. A. Khan, J. Electroanal. Chem. 28, 131(1970). doi:10.1016/S0022-0728(70)80288-1
A. J. Bard and L. R. Faulkner, “Electrochemical methods, in: Fundamentals and Applications”, Wiley, New York (1980).
A. Umar, M. M. Rahman, S. H. Kim and Y. B. Hahn, Chem. Commun. 2, 166 (2008). doi:10.1039/b711215g
A. Umar, M. M. Rahman and Y. B. Hahn, Talanta, 77, 1444 (2009).
H. Zare and N. Nasirrizadeh, Electrochim. Acta 52, 4153 (2007). doi:10.1016/j.electacta.2006.11.037
J. Li and X.Q. Lin, Sens. Actuators B, 126, 527 (2007). doi:10.1016/j.snb.2007.03.044
G. F. Wang, A. X. Gu, W. Wang, Y. Wei, J. J. Wu, G. Z. Wang, X. J. Zhang and B. Fang, Electrochem. Commun. 11, 631 (2009). doi:10.1016/j.elecom.2008.12.061
J. B. Zheng, Q. L. Sheng, L. Li and Y. Shen, J. Electroanal. Chem. 611, 155 (2007). doi:10.1016/j.jelechem.2007.08.013
J. S. Pinter, K. L. Brown, P. A. D. Young and G. F. Peaslee, Talanta, 71, 1219 (2007). doi:10.1016/j.talanta.2006.06.017
A. Salimi and K. Abdi Talanta 63, 475 (2004). doi:10.1016/j.talanta.2003.11.021
B. Fang, C. Zhang, W. Zhang and G. Wang, Electrochimica. Acta 55, 178 (2009). doi:10.1016/j.electacta.2009.08.036
F. J. Welcher, Standard Methods of Chemical Analysis, 6th ed., New York, 493 (1963).