Surface-Renewable AgNPs/CNT/rGO Nanocomposites as Bifunctional Impedimetric Sensors
Corresponding Author: Azadeh Azadbakht
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 4
Abstract
In this study, glassy carbon electrode modified by silver nanoparticles/carbon nanotube/reduced graphene oxide (AgNPs/CNT/rGO) composite has been utilized as a platform to immobilize cis-dioxomolybdenum (VI)–salicylaldehyde-histidine (MoO2/Sal-His). The modified electrode shows two reversible redox couples for MoO2/Sal-His. Electrocatalytic oxidation of cysteine (CySH) and electrocatalytic reduction of iodate on the surface of the modified electrode were investigated with cyclic voltammetry and electrochemical impedance spectroscopy methods. The presence of MoO2/Sal-His on AgNPs/CNT/rGO shifted the catalytic current of iodate reduction to a more positive potential and the catalytic current of cysteine oxidation to a more negative potential. The change of interfacial charge transfer resistance (R ct) recorded by the modified electrode was monitored for sensitive quantitative detection of CySH and iodate. Moreover, the sensor has a good stability, and it can be renewed easily and repeatedly through a mechanical or electrochemical process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113(30), 13103–13107 (2009). doi:10.1021/jp902214f
- J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, Y. Ma, F. Li, T. Guo, Y. Chen, Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 113(22), 9921–9927 (2009). doi:10.1021/jp901284d
- G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009). doi:10.1021/nl8035367
- T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso et al., Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(1), 327–331 (2008). doi:10.1038/nnano.2008.96
- P. Si, H.L. Chen, P. Kannan, D. Kim, Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes. Analyst 136, 5134–5138 (2011). doi:10.1039/c1an15772h
- T.A. Mir, M.H. Akhtar, N.G. Gurudatt, J.I. Kim, C.S. Choi, Y.B. Shim, An amperometric nanobiosensor for the selective detection of K-induced dopamine released from living cells. Biosens. Bioelectron. 68, 421–428 (2015). doi:10.1016/j.bios.2015.01.024
- A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 111(21), 7565–7569 (2007). doi:10.1021/jp071761s
- Y. Gan, L. Sun, F. Banhart, One- and two-dimensional diffusion of metal atoms in graphene. Small 4(5), 587–591 (2008). doi:10.1002/smll.200700929
- R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112(14), 5263–5266 (2008). doi:10.1021/jp800977b
- F. Lorestani, Z. Shahnavaz, P. Mn, Y. Alias, N.S. Manan, One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide senso. Sens. Actuat. B 208, 389–398 (2015). doi:10.1016/j.snb.2014.11.074
- M. Hung, D.M. Stanbury, Catalytic and direct oxidation of cysteine by octacyanomolybdate (V). Inorg. Chem. 44(10), 443541–443550 (2005). doi:10.1021/ic050427c
- G. Chwatko, E. Bald, Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta 52(3), 509–515 (2000). doi:10.1016/S0039-9140(00)00394-5
- K. Arlt, S. Brandt, J. Kehr, Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J. Chromatogr. A 926(2), 319–325 (2001). doi:10.1016/S0021-9673(01)01052-4
- F. Tanaka, N. Mase, C.F. Barbas Iii, Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chem. Commun. 15(15), 1762–1763 (2004). doi:10.1039/b405642f
- S. Ge, M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song, S. Yu, Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosen. Bioelectron. 31(1), 49–54 (2012). doi:10.1016/j.bios.2011.09.038
- H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of l-cysteine. Biosens. Bioelectron. 42(1), 426–429 (2013). doi:10.1016/j.bios.2012.09.062
- P. Das, M. Gupta, A. Jain, K.K. Verma, Single drop microextraction or solid phase microextraction–gas chromatography–mass spectrometry for the determination of iodine in pharmaceuticals, iodized salt, milk powder and vegetables involving conversion into 4-iodo-N, N-dimethylaniline. J. Chromatogr. A 1023(1), 33–39 (2004). doi:10.1016/j.chroma.2003.09.056
- A. Azadbakht, A.R. Abbasi, Fabrication of a highly sensitive hydrazine electrochemical sensor based on bimetallic Au-Pt hybrid nanocomposite onto modified electrode. Nano-Micro Lett. 2(1), 296–305 (2010). doi:10.1007/BF03353858
- H. Ji, L. Zhu, D. Liang, Y. Liu, L. Cai, S. Zhang, S. Liu, Use of a 12-molybdovanadate (V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor. Electrochim. Acta 54, 7429–7434 (2009). doi:10.1016/j.electacta.2009.07.076
- C.-D. Zhang, C.-Y. Sun, S.-X. Liu, H.-M. Ji, Z.-M. Su, An equatorial tri-iron substituted Wells–Dawson type tungstophosphate with magnetic and bifunctional electrocatalytic properties. Inorg. Chim. Acta 363(4), 718–722 (2010). doi:10.1016/j.ica.2009.11.029
- E. Zamanifar, F. Farzaneh, J. Simpson, M. Maghami, Synthesis, crystal structure and catalytic activity of a new Mo Schiff base complex with Mo histidine immobilized on Al-MCM-41 for oxidation of sulfides. Inorg. Chim. Acta 414(1), 63–70 (2014). doi:10.1016/j.ica.2014.01.028
- G.J. Chen, J.W. Mc, Synthesis of molybdenum(IV) and molybdenum(V) complexes using oxo abstraction by phosphines. Mechanistic implication. Inorg. Chem. 15(11), 2612–2615 (1976). doi:10.1021/ic50165a008
- Z. Derikvand, M.M. Olmstead, B.Q. Mercado, A. Shokrollahi, M. Shahryar, Solution and solid state studies of three new supramolecular compounds of zinc(II), nickel(II) and uranium(VI) with chelidamic acid and 9-aminoacridine. Inorg. Chim. Acta 406(1), 256–265 (2013). doi:10.1016/j.ica.2013.04.041
- O.A. Rajan, A. Chakravorty, Molybdenum complexes. 1. Acceptor behavior and related properties of Mo(VI)O2(tridentate) systems. Inorg. Chem. 20(3), 660–664 (1981). doi:10.1021/ic50217a005
- Z. Asgharpour, F. Farzaneh, A. Abbasi, M. Ghias, Synthesis, crystal structure and DFT studies of a new dioxomolybdenum(VI) Schiff base complex as an olefin epoxidation catalyst. Polyhedron 101(1), 282–289 (2015). doi:10.1016/j.poly.2015.09.030
- N. Sumita Rao, M.N. Jaiswal, D.D. Mishra, R.C. Maurya, Synthesis and characterization of cis-dioxomolybdenum(VI) Schiff base complexes derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone. Polyhedron 12(16), 2045–2050 (1993). doi:10.1016/S0277-5387(00)81479-5
- R. Offeman, W. Hummers, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). doi:10.1021/ja01539a017
- L. Guadagnini, D. Tonelli, Carbon electrodes unmodified and decorated with silver nanoparticles for the determination of nitrite, nitrate and iodate. Sens. Actuat. B 188(1), 806–814 (2013). doi:10.1016/j.snb.2013.07.077
- A.-K. Duhme-Klair, D.C.L. de Alwis, F.A. Schultz, Electrochemistry of molybdenum (VI)–catecholamide siderophore complexes in aqueous solution. Inorg. Chim. Acta 351(1), 150–158 (2003). doi:10.1016/S0020-1693(03)00210-X
- A. Papadakis, A. Souliotis, E. Papaconstantinou, Functionalization of electrodes with polyoxometalates P2Mo18O62 6− and P2W18O62 6−. J. Electroanal. Chem. 435(1–2), 17–21 (1997). doi:10.1016/S0022-0728(97)00017-X
- A.P. Brown, F.C. Anson, Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal. Chem. 49(11), 1589–1595 (1977). doi:10.1021/ac50019a033
- J. Wang, Analytical Electrochemistry (VCH, New York, 1933), pp. 171–172. (1994 search PubMed)
- A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation. Nano-Micro Lett. 7(2), 152–164 (2015). doi:10.1007/s40820-014-0028-y
- T. Ralph, M. Hitchman, J. Millington, F. Walsh, The electrochemistry of l-cystine and l-cysteine: part 1: thermodynamic and kinetic studies. J. Electroanal. Chem. 375(1–2), 1–15 (1994)
- B.-X. Zou, X.-X. Liu, D. Diamond, K.-T. Lau, Electrochemical synthesis of WO 3/PANI composite for electrocatalytic reduction of iodate. Electrochim. Acta 55(12), 3915–3920 (2010). doi:10.1016/j.electacta.2010.02.034
- X. Huang, Y. Li, Y. Chen, L. Wang, Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuat. B 134(2), 780–786 (2008). doi:10.1016/j.snb.2008.06.028
- H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Fabrication of bulk-modified carbon paste electrode containing α-PW12O40 3− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis. Talanta 74(4), 909–914 (2008). doi:10.1016/j.talanta.2007.07.026
- B. Haghighi, H. Hamidi, L. Gorton, Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: Toward sensitive and fast detection of hydrogen peroxide and iodate. Electrochim. Acta 55(16), 4750–4757 (2010). doi:10.1016/j.electacta.2010.03.041
- A. Azadbakht, A.R. Abbasi, Z. Derikvand, S. Amraei, Immobilized organoruthenium (II) complexes onto polyethyleneimine-wrapped carbon nanotubes/in situ formed gold nanoparticles as a novel electrochemical sensing platform. Mater. Sci. Eng. C 48(1), 270–278 (2015). doi:10.1016/j.msec.2014.12.034
- S. Fei, J. Chen, S. Yao, G. Deng, D. He, Y. Kuang, Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem. 339(1), 29–35 (2005). doi:10.1016/j.ab.2005.01.002
- B.B. Prasad, R. Singh, A new micro-contact imprinted l-cysteine sensor based on sol–gel decorated graphite/multiwalled carbon nanotubes/gold nanoparticles composite modified sandpaper electrode. Sens. Actuat. B 212(9), 155–164 (2015). doi:10.1016/j.snb.2015.01.119
- S.M. Majd, H. Teymourian, A. Salimi, Fabrication of an electrochemical l-Cysteine sensor based on graphene nanosheets decorated manganese oxide nanocomposite modified glassy carbon electrode. Electroanalysis 25(1), 2201–2210 (2013). doi:10.1002/elan.201300245
- J.C. Ndamanisha, J. Bai, B. Qi, L. Guo, Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal. Biochem. 386(1), 79–84 (2009). doi:10.1016/j.ab.2008.11.041
- C. Xiao, J. Chen, B. Liu, X. Chu, L. Wu, S. Yao, Sensitive and selective electrochemical sensing of l-cysteine based on a caterpillar-like manganese dioxide–carbon nanocomposite. Phys. Chem. Chem. Phys. 13(4), 1568–1574 (2011). doi:10.1039/C0CP00980F
References
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113(30), 13103–13107 (2009). doi:10.1021/jp902214f
J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, Y. Ma, F. Li, T. Guo, Y. Chen, Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 113(22), 9921–9927 (2009). doi:10.1021/jp901284d
G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009). doi:10.1021/nl8035367
T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso et al., Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(1), 327–331 (2008). doi:10.1038/nnano.2008.96
P. Si, H.L. Chen, P. Kannan, D. Kim, Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes. Analyst 136, 5134–5138 (2011). doi:10.1039/c1an15772h
T.A. Mir, M.H. Akhtar, N.G. Gurudatt, J.I. Kim, C.S. Choi, Y.B. Shim, An amperometric nanobiosensor for the selective detection of K-induced dopamine released from living cells. Biosens. Bioelectron. 68, 421–428 (2015). doi:10.1016/j.bios.2015.01.024
A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 111(21), 7565–7569 (2007). doi:10.1021/jp071761s
Y. Gan, L. Sun, F. Banhart, One- and two-dimensional diffusion of metal atoms in graphene. Small 4(5), 587–591 (2008). doi:10.1002/smll.200700929
R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112(14), 5263–5266 (2008). doi:10.1021/jp800977b
F. Lorestani, Z. Shahnavaz, P. Mn, Y. Alias, N.S. Manan, One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide senso. Sens. Actuat. B 208, 389–398 (2015). doi:10.1016/j.snb.2014.11.074
M. Hung, D.M. Stanbury, Catalytic and direct oxidation of cysteine by octacyanomolybdate (V). Inorg. Chem. 44(10), 443541–443550 (2005). doi:10.1021/ic050427c
G. Chwatko, E. Bald, Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta 52(3), 509–515 (2000). doi:10.1016/S0039-9140(00)00394-5
K. Arlt, S. Brandt, J. Kehr, Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J. Chromatogr. A 926(2), 319–325 (2001). doi:10.1016/S0021-9673(01)01052-4
F. Tanaka, N. Mase, C.F. Barbas Iii, Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chem. Commun. 15(15), 1762–1763 (2004). doi:10.1039/b405642f
S. Ge, M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song, S. Yu, Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosen. Bioelectron. 31(1), 49–54 (2012). doi:10.1016/j.bios.2011.09.038
H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of l-cysteine. Biosens. Bioelectron. 42(1), 426–429 (2013). doi:10.1016/j.bios.2012.09.062
P. Das, M. Gupta, A. Jain, K.K. Verma, Single drop microextraction or solid phase microextraction–gas chromatography–mass spectrometry for the determination of iodine in pharmaceuticals, iodized salt, milk powder and vegetables involving conversion into 4-iodo-N, N-dimethylaniline. J. Chromatogr. A 1023(1), 33–39 (2004). doi:10.1016/j.chroma.2003.09.056
A. Azadbakht, A.R. Abbasi, Fabrication of a highly sensitive hydrazine electrochemical sensor based on bimetallic Au-Pt hybrid nanocomposite onto modified electrode. Nano-Micro Lett. 2(1), 296–305 (2010). doi:10.1007/BF03353858
H. Ji, L. Zhu, D. Liang, Y. Liu, L. Cai, S. Zhang, S. Liu, Use of a 12-molybdovanadate (V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor. Electrochim. Acta 54, 7429–7434 (2009). doi:10.1016/j.electacta.2009.07.076
C.-D. Zhang, C.-Y. Sun, S.-X. Liu, H.-M. Ji, Z.-M. Su, An equatorial tri-iron substituted Wells–Dawson type tungstophosphate with magnetic and bifunctional electrocatalytic properties. Inorg. Chim. Acta 363(4), 718–722 (2010). doi:10.1016/j.ica.2009.11.029
E. Zamanifar, F. Farzaneh, J. Simpson, M. Maghami, Synthesis, crystal structure and catalytic activity of a new Mo Schiff base complex with Mo histidine immobilized on Al-MCM-41 for oxidation of sulfides. Inorg. Chim. Acta 414(1), 63–70 (2014). doi:10.1016/j.ica.2014.01.028
G.J. Chen, J.W. Mc, Synthesis of molybdenum(IV) and molybdenum(V) complexes using oxo abstraction by phosphines. Mechanistic implication. Inorg. Chem. 15(11), 2612–2615 (1976). doi:10.1021/ic50165a008
Z. Derikvand, M.M. Olmstead, B.Q. Mercado, A. Shokrollahi, M. Shahryar, Solution and solid state studies of three new supramolecular compounds of zinc(II), nickel(II) and uranium(VI) with chelidamic acid and 9-aminoacridine. Inorg. Chim. Acta 406(1), 256–265 (2013). doi:10.1016/j.ica.2013.04.041
O.A. Rajan, A. Chakravorty, Molybdenum complexes. 1. Acceptor behavior and related properties of Mo(VI)O2(tridentate) systems. Inorg. Chem. 20(3), 660–664 (1981). doi:10.1021/ic50217a005
Z. Asgharpour, F. Farzaneh, A. Abbasi, M. Ghias, Synthesis, crystal structure and DFT studies of a new dioxomolybdenum(VI) Schiff base complex as an olefin epoxidation catalyst. Polyhedron 101(1), 282–289 (2015). doi:10.1016/j.poly.2015.09.030
N. Sumita Rao, M.N. Jaiswal, D.D. Mishra, R.C. Maurya, Synthesis and characterization of cis-dioxomolybdenum(VI) Schiff base complexes derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone. Polyhedron 12(16), 2045–2050 (1993). doi:10.1016/S0277-5387(00)81479-5
R. Offeman, W. Hummers, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). doi:10.1021/ja01539a017
L. Guadagnini, D. Tonelli, Carbon electrodes unmodified and decorated with silver nanoparticles for the determination of nitrite, nitrate and iodate. Sens. Actuat. B 188(1), 806–814 (2013). doi:10.1016/j.snb.2013.07.077
A.-K. Duhme-Klair, D.C.L. de Alwis, F.A. Schultz, Electrochemistry of molybdenum (VI)–catecholamide siderophore complexes in aqueous solution. Inorg. Chim. Acta 351(1), 150–158 (2003). doi:10.1016/S0020-1693(03)00210-X
A. Papadakis, A. Souliotis, E. Papaconstantinou, Functionalization of electrodes with polyoxometalates P2Mo18O62 6− and P2W18O62 6−. J. Electroanal. Chem. 435(1–2), 17–21 (1997). doi:10.1016/S0022-0728(97)00017-X
A.P. Brown, F.C. Anson, Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal. Chem. 49(11), 1589–1595 (1977). doi:10.1021/ac50019a033
J. Wang, Analytical Electrochemistry (VCH, New York, 1933), pp. 171–172. (1994 search PubMed)
A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation. Nano-Micro Lett. 7(2), 152–164 (2015). doi:10.1007/s40820-014-0028-y
T. Ralph, M. Hitchman, J. Millington, F. Walsh, The electrochemistry of l-cystine and l-cysteine: part 1: thermodynamic and kinetic studies. J. Electroanal. Chem. 375(1–2), 1–15 (1994)
B.-X. Zou, X.-X. Liu, D. Diamond, K.-T. Lau, Electrochemical synthesis of WO 3/PANI composite for electrocatalytic reduction of iodate. Electrochim. Acta 55(12), 3915–3920 (2010). doi:10.1016/j.electacta.2010.02.034
X. Huang, Y. Li, Y. Chen, L. Wang, Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuat. B 134(2), 780–786 (2008). doi:10.1016/j.snb.2008.06.028
H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Fabrication of bulk-modified carbon paste electrode containing α-PW12O40 3− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis. Talanta 74(4), 909–914 (2008). doi:10.1016/j.talanta.2007.07.026
B. Haghighi, H. Hamidi, L. Gorton, Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: Toward sensitive and fast detection of hydrogen peroxide and iodate. Electrochim. Acta 55(16), 4750–4757 (2010). doi:10.1016/j.electacta.2010.03.041
A. Azadbakht, A.R. Abbasi, Z. Derikvand, S. Amraei, Immobilized organoruthenium (II) complexes onto polyethyleneimine-wrapped carbon nanotubes/in situ formed gold nanoparticles as a novel electrochemical sensing platform. Mater. Sci. Eng. C 48(1), 270–278 (2015). doi:10.1016/j.msec.2014.12.034
S. Fei, J. Chen, S. Yao, G. Deng, D. He, Y. Kuang, Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem. 339(1), 29–35 (2005). doi:10.1016/j.ab.2005.01.002
B.B. Prasad, R. Singh, A new micro-contact imprinted l-cysteine sensor based on sol–gel decorated graphite/multiwalled carbon nanotubes/gold nanoparticles composite modified sandpaper electrode. Sens. Actuat. B 212(9), 155–164 (2015). doi:10.1016/j.snb.2015.01.119
S.M. Majd, H. Teymourian, A. Salimi, Fabrication of an electrochemical l-Cysteine sensor based on graphene nanosheets decorated manganese oxide nanocomposite modified glassy carbon electrode. Electroanalysis 25(1), 2201–2210 (2013). doi:10.1002/elan.201300245
J.C. Ndamanisha, J. Bai, B. Qi, L. Guo, Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal. Biochem. 386(1), 79–84 (2009). doi:10.1016/j.ab.2008.11.041
C. Xiao, J. Chen, B. Liu, X. Chu, L. Wu, S. Yao, Sensitive and selective electrochemical sensing of l-cysteine based on a caterpillar-like manganese dioxide–carbon nanocomposite. Phys. Chem. Chem. Phys. 13(4), 1568–1574 (2011). doi:10.1039/C0CP00980F