Recent Advances in One-Dimensional Micro/Nanomotors: Fabrication, Propulsion and Application
Corresponding Author: Renfeng Dong
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 20
Abstract
Due to their tiny size, autonomous motion and functionalize modifications, micro/nanomotors have shown great potential for environmental remediation, biomedicine and micro/nano-engineering. One-dimensional (1D) micro/nanomotors combine the characteristics of anisotropy and large aspect ratio of 1D materials with the advantages of functionalization and autonomous motion of micro/nanomotors for revolutionary applications. In this review, we discuss current research progress on 1D micro/nanomotors, including the fabrication methods, driving mechanisms, and recent advances in environmental remediation and biomedical applications, as well as discuss current challenges and possible solutions. With continuous attention and innovation, the advancement of 1D micro/nanomotors will pave the way for the continued development of the micro/nanomotor field.
Highlights:
1 In-depth overview of the classification of one-dimensional (1D) micro/nanomotors and strategies for fabricating them are reviewed.
2 Driving mechanisms and progress of 1D micro/nanomotors for applications are summarized.
3 Challenges and future prospects of 1D micro/nanomotors are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Sengupta, M.E. Ibele, A. Sen, Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51(34), 8434–8445 (2012). https://doi.org/10.1002/anie.201202044
- C. Hu, S. Pané, B.J. Nelson, Soft micro- and nanorobotics. Annu. Rev. Control Robot. Auton. Syst. 1(1), 53–75 (2018). https://doi.org/10.1146/annurev-control-060117-104947
- H. Zhou, C.C. Mayorga-Martinez, S. Pane, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
- W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13424–13431 (2004). https://doi.org/10.1021/ja047697z
- J. Li, B.E.F. de Avila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
- S. Palagi, P. Fischer, Bioinspired microrobots. Nat. Rev. Mater. 3(6), 113–124 (2018). https://doi.org/10.1038/s41578-018-0016-9
- X. Lin, Z. Wu, Y. Wu, M. Xuan, Q. He, Self-propelled micro-/nanomotors based on controlled assembled architectures. Adv. Mater. 28(6), 1060–1072 (2016). https://doi.org/10.1002/adma.201502583
- J. Katuri, X. Ma, M.M. Stanton, S. Sanchez, Designing micro- and nanoswimmers for specific applications. Acc. Chem. Res. 50(1), 2–11 (2017). https://doi.org/10.1021/acs.accounts.6b00386
- B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33(4), 2002047 (2021). https://doi.org/10.1002/adma.202002047
- B. Xu, B. Zhang, L. Wang, G. Huang, Y. Mei, Tubular micro/nanomachines: from the basics to recent advances. Adv. Funct. Mater. 28(25), 1705872 (2018). https://doi.org/10.1002/adfm.201705872
- L. Li, L. Liang, H. Wu, X. Zhu, One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res. Lett. 11(1), 121 (2016). https://doi.org/10.1186/s11671-016-1320-1
- Y. Zhao, L. Jiang, Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 21(36), 3621–3638 (2009). https://doi.org/10.1002/adma.200803645
- L. Zhang, G. Liu, H. Chen, X. Liu, T. Ran et al., Bioinspired unidirectional liquid transport micro-nano structures: a review. J. Bionic Eng. 18(1), 1–29 (2021). https://doi.org/10.1007/s42235-021-0009-z
- Y.L. Shi, X.D. Wang, 1D organic micro/nanostructures for photonics. Adv. Funct. Mater. 31(7), 2008149 (2020). https://doi.org/10.1002/adfm.202008149
- G. Centi, S. Perathoner, Creating and mastering nano-objects to design advanced catalytic materials. Coord. Chem. Rev. 255(13–14), 1480–1498 (2011). https://doi.org/10.1016/j.ccr.2011.01.021
- X. Liu, R. Dong, Y. Chen, Q. Zhang, S. Yu et al., Motion mode-driven adsorption by magnetically propelled MOF-based nanomotor. Mater. Today Nano 18, 100182 (2022). https://doi.org/10.1016/j.mtnano.2022.100182
- J. Wang, Z. Xiong, J. Zheng, X. Zhan, J. Tang, Light-driven micro/nanomotor for promising biomedical tools: principle, challenge, and prospect. Acc. Chem. Res. 51(9), 1957–1965 (2018). https://doi.org/10.1021/acs.accounts.8b00254
- P. Mandal, G. Patil, H. Kakoty, A. Ghosh, Magnetic active matter based on helical propulsion. Acc. Chem. Res. 51(11), 2689–2698 (2018). https://doi.org/10.1021/acs.accounts.8b00315
- L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46(22), 6905–6926 (2017). https://doi.org/10.1039/c7cs00516d
- A.L. Balk, L.O. Mair, P.P. Mathai, P.N. Patrone, W. Wang et al., Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanops. ACS Nano 8(8), 8300–8309 (2014). https://doi.org/10.1021/nn502753x
- A. Serrà, G. Vázquez-Mariño, J. García-Torres, M. Bosch, E. Vallés, Magnetic actuation of multifunctional nanorobotic platforms to induce cancer cell death. Adv. Biosys. (2018). https://doi.org/10.1002/adbi.201700220
- F. Mou, Y. Li, C. Chen, W. Li, Y. Yin et al., Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 11(21), 2564–2570 (2015). https://doi.org/10.1002/smll.201403372
- R. Dong, C. Wang, Q. Wang, A. Pei, X. She et al., Zno-based microrockets with light-enhanced propulsion. Nanoscale 9(39), 15027–15032 (2017). https://doi.org/10.1039/c7nr05168a
- W. Gao, D. Kagan, O.S. Pak, C. Clawson, S. Campuzano et al., Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3), 460–467 (2012). https://doi.org/10.1002/smll.201101909
- U.K. Demirok, R. Laocharoensuk, K.M. Manesh, J. Wang, Ultrafast catalytic alloy nanomotors. Angew. Chem. Int. Ed. 47(48), 9349–9351 (2008). https://doi.org/10.1002/anie.200803841
- J. Wang, Template electrodeposition of catalytic nanomotors. Faraday Discuss. 164, 9–18 (2013). https://doi.org/10.1039/c3fd00105a
- A. Radi, D. Pradhan, Y. Sohn, K.T. Leung, Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core–shell nanops on Si(100) by one-step, templateless, capping-agent-free electrodeposition. ACS Nano 4(3), 1553–1560 (2010). https://doi.org/10.1021/nn100023h
- C. Fradin, F. Celestini, F. Guittard, T. Darmanin, Templateless electrodeposition of conducting polymer nanotubes on mesh substrates. Macromol. Chem. Phys. 221(6), 1900529 (2020). https://doi.org/10.1002/macp.201900529
- Q. Zhou, X. Liu, Y. Zhao, N. Jia, L. Liu et al., Single crystal tin nano-rod arrays electrodeposited by a soft template. Chem. Commun. 39, 4941–4942 (2005). https://doi.org/10.1039/b509818a
- Q. Zhou, S. Wang, N. Jia, L. Liu, J. Yang et al., Synthesis of highly crystalline silver dendrites microscale nanostructures by electrodeposition. Mater. Lett. 60(29–30), 3789–3792 (2006). https://doi.org/10.1016/j.matlet.2006.03.115
- C. Mu, Y.X. Yu, R.M. Wang, K. Wu, D.S. Xu et al., Uniform metal nanotube arrays by multistep template replication and electrodeposition. Adv. Mater. 16(17), 1550–1553 (2004). https://doi.org/10.1002/adma.200400129
- A. Serrà, E. Vallés, Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: fundamentals and applications. Appl. Mater. Today 12, 207–234 (2018). https://doi.org/10.1016/j.apmt.2018.05.006
- D.Y. Zhong, S. Liu, E.G. Wang, Patterned growth of coiled carbon nanotubes by a template-assisted technique. Appl. Phys. Lett. 83(21), 4423–4425 (2003). https://doi.org/10.1063/1.1630164
- X.R. Zhu, C.M. Wang, Q.B. Fu, Z. Jiao, W.D. Wang et al., Preparation of Ag/Cu Janus nanowires: electrodeposition in track-etched polymer templates. Nucl. Instrum. Methods Phys. Res. Sect. B 356–357, 57–61 (2015). https://doi.org/10.1016/j.nimb.2015.04.061
- B.A. Taleatu, A.Y. Fasasi, G. Di Santo, S. Bernstorff, A. Goldoni et al., Electro-chemical deposition of zinc oxide nanostructures by using two electrodes. AIP Adv. (2011). https://doi.org/10.1063/1.3633476
- O.K. Echendu, K.B. Okeoma, C.I. Oriaku, I.M. Dharmadasa, Electrochemical deposition of CdTe semiconductor thin films for solar cell application using two-electrode and three-electrode configurations: a comparative study. Adv. Mater. Sci. Eng. 2016, 3581725 (2016). https://doi.org/10.1155/2016/3581725
- J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam et al., Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 6(16), 9415–9420 (2014). https://doi.org/10.1039/c3nr04760a
- L. Liu, S.H. Yoo, S.A. Lee, S. Park, Wet-chemical synthesis of palladium nanosprings. Nano Lett. 11(9), 3979–3982 (2011). https://doi.org/10.1021/nl202332x
- B.E.F. de Avila, D.E. Ramirez-Herrera, S. Campuzano, P. Angsantikul, L. Zhang et al., Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: toward rapid cell apoptosis. ACS Nano 11(6), 5367–5374 (2017). https://doi.org/10.1021/acsnano.7b01926
- B.E.F. de Avila, M.A. Lopez-Ramirez, R. Mundaca-Uribe, X. Wei, D.E. Ramirez-Herrera et al., Multicompartment tubular micromotors toward enhanced localized active delivery. Adv. Mater. 32(25), 2000091 (2020). https://doi.org/10.1002/adma.202000091
- W. Gao, A. Uygun, J. Wang, Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 134(2), 897–900 (2012). https://doi.org/10.1021/ja210874s
- C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang et al., Electrochemical deposition: an advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res. 51(8), 1764–1773 (2018). https://doi.org/10.1021/acs.accounts.8b00119
- W. Gao, S. Sattayasamitsathit, K.M. Manesh, D. Weihs, J. Wang, Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132(41), 14403–14405 (2010). https://doi.org/10.1021/ja1072349
- R. Laocharoensuk, J. Burdick, J. Wang, Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2(5), 1069–1075 (2008). https://doi.org/10.1021/nn800154g
- J. Li, W. Gao, R. Dong, A. Pei, S. Sattayasamitsathit et al., Nanomotor lithography. Nat. Commun. 5, 5026 (2014). https://doi.org/10.1038/ncomms6026
- J. Li, T. Li, T. Xu, M. Kiristi, W. Liu et al., Magneto-acoustic hybrid nanomotor. Nano Lett. 15(7), 4814–4821 (2015). https://doi.org/10.1021/acs.nanolett.5b01945
- Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78(4), 407–409 (2001). https://doi.org/10.1063/1.1342050
- S. Bagga, J. Akhtar, S. Mishra, Synthesis and applications of ZnO nanowire: a review. AIP Conf. Proc. 1989, 020004 (2018). https://doi.org/10.1063/1.5047680
- Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 624520 (2012). https://doi.org/10.1155/2012/624520
- J. Wang, Z. Xiong, M. Liu, X.M. Li, J. Zheng et al., Rational design of reversible redox shuttle for highly efficient light-driven microswimmer. ACS Nano 14(3), 3272–3280 (2020). https://doi.org/10.1021/acsnano.9b08799
- J. Shi, X. Wang, Functional semiconductor nanowires via vapor deposition. J. Vaccum Sci. Technol. B 29(6), 060801 (2011). https://doi.org/10.1116/1.3641913
- J. Wang, Z. Xiong, X. Zhan, B. Dai, J. Zheng et al., A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv. Mater. 29(30), 1701451 (2017). https://doi.org/10.1002/adma.201701451
- G. Richter, K. Hillerich, D.S. Gianola, R. Monig, O. Kraft et al., Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9(8), 3048–3052 (2009). https://doi.org/10.1021/nl9015107
- S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova-Rohlfing, Physical vapor deposition in solid-state battery development: from materials to devices. Adv. Sci. 8(11), 2002044 (2021). https://doi.org/10.1002/advs.202002044
- H. Li, J. Zhou, L. Tan, M. Li, C. Jiang et al., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8(28), eabo7422 (2022). https://doi.org/10.1126/sciadv.abo7422
- C. Bundesmann, H. Neumann, Tutorial: the systematics of ion beam sputtering for deposition of thin films with tailored properties. J. Appl. Phys. (2018). https://doi.org/10.1063/1.5054046
- C. Peng, Y. Zhao, S. Jin, J. Wang, R. Liu et al., Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating. ACS Appl. Mater. Interfaces 11(1), 125–136 (2019). https://doi.org/10.1021/acsami.8b14038
- Z. Zheng, X. Zu, Y. Zhang, W. Zhou, Rational design of type-II nano-heterojunctions for nanoscale optoelectronics. Mater. Today Phys. 15, 100262 (2020). https://doi.org/10.1016/j.mtphys.2020.100262
- X. Zhan, J. Zheng, Y. Zhao, B. Zhu, R. Cheng et al., From strong dichroic nanomotor to polarotactic microswimmer. Adv. Mater. 31(48), 1903329 (2019). https://doi.org/10.1002/adma.201903329
- J. Zheng, J. Wang, Z. Xiong, Z. Wan, X. Zhan et al., Full spectrum tunable visible-light-driven alloy nanomotor. Adv. Funct. Mater. 29(27), 1901768 (2019). https://doi.org/10.1002/adfm.201901768
- Y. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40(5), 2109–2119 (2011). https://doi.org/10.1039/c0cs00078g
- J. Deng, X. Lu, L. Liu, L. Zhang, O.G. Schmidt, Introducing rolled-up nanotechnology for advanced energy storage devices. Adv. Energy Mater. 6(23), 1600797 (2016). https://doi.org/10.1002/aenm.201600797
- S.M. Harazim, W. Xi, C.K. Schmidt, S. Sanchez, O.G. Schmidt, Fabrication and applications of large arrays of multifunctional rolled-up SiO/SiO2 microtubes. J. Mater. Chem. 22(7), 2878–2884 (2012). https://doi.org/10.1039/c1jm14800a
- C. Deneke, C. Muller, N.Y. Jin-Phillipp, O.G. Schmidt, Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes. Semicond. Sci. Technol. 17(12), 1278–1281 (2002). https://doi.org/10.1088/0268-1242/17/12/312
- R. Songmuang, C. Deneke, O.G. Schmidt, Rolled-up micro- and nanotubes from single-material thin films. Appl. Phys. Lett. 89(22), 223109 (2006). https://doi.org/10.1063/1.2390647
- L. Baptista-Pires, J. Orozco, P. Guardia, A. Merkoci, Architecting graphene oxide rolled-up micromotors: a simple paper-based manufacturing technology. Small 14(3), 1702746 (2018). https://doi.org/10.1002/smll.201702746
- Y. Mei, G. Huang, A.A. Solovev, E.B. Ureña, I. Mönch et al., Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20(21), 4085–4090 (2008). https://doi.org/10.1002/adma.200801589
- C. Xu, X. Wu, G. Huang, Y. Mei, Rolled-up nanotechnology: materials issue and geometry capability. Adv. Mater. Technol. 4(1), 1800486 (2018). https://doi.org/10.1002/admt.201800486
- S. Giudicatti, S.M. Marz, L. Soler, A. Madani, M.R. Jorgensen et al., Photoactive rolled-up TiO2 microtubes: fabrication, characterization and applications. J. Mater. Chem. C 2(29), 5892–5901 (2014). https://doi.org/10.1039/c4tc00796d
- S.K. Srivastava, M. Guix, O.G. Schmidt, Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 16(1), 817–821 (2016). https://doi.org/10.1021/acs.nanolett.5b05032
- K. Yao, M. Manjare, C.A. Barrett, B. Yang, T.T. Salguero et al., Nanostructured scrolls from graphene oxide for microjet engines. J. Phys. Chem. Lett. 3(16), 2204–2208 (2012). https://doi.org/10.1021/jz300749p
- B. Zhang, G. Huang, L. Wang, T. Wang, L. Liu et al., Rolled-up monolayer graphene tubular micromotors: enhanced performance and antibacterial property. Chem. Asian J. 14(14), 2479–2484 (2019). https://doi.org/10.1002/asia.201900301
- S. Naeem, J. Mujtaba, F. Naeem, K. Xu, G. Huang et al., Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors. RSC Adv. 10(60), 36526–36530 (2020). https://doi.org/10.1039/d0ra07347d
- S. Feng, R. Xu, New materials in hydrothermal synthesis. Acc. Chem. Res. 34(3), 239–247 (2001). https://doi.org/10.1021/ar0000105
- J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanops: applications and future directions. Chem. Rev. 117(17), 11125–11238 (2017). https://doi.org/10.1021/acs.chemrev.6b00417
- H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 130(15), 5361–5367 (2008). https://doi.org/10.1021/ja800109u
- A.B. Djurisic, Y.Y. Xi, Y.F. Hsu, W.K. Chan, Hydrothermal synthesis of nanostructures. Recent Pat. Nanotechnol. 1(2), 121–128 (2007). https://doi.org/10.2174/187221007780859591
- Y. Wang, C. Zhou, W. Wang, D. Xu, F. Zeng et al., Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing. Angew. Chem. Int. Ed. 57(40), 13110–13113 (2018). https://doi.org/10.1002/anie.201807033
- K. Villa, C.L.M. Palenzuela, Z. Sofer, S. Matejkova, M. Pumera, Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12), 12482–12491 (2018). https://doi.org/10.1021/acsnano.8b06914
- Z.L. Wu, Y.N. Qi, X.J. Yin, X. Yang, C.M. Chen et al., Polymer-based device fabrication and applications using direct laser writing technology. Polymers (2019). https://doi.org/10.3390/polym11030553
- J. Sun, H. Tan, S. Lan, F. Peng, Y. Tu, Progress on the fabrication strategies of self-propelled micro/nanomotors. JCIS Open 2, 100011 (2021). https://doi.org/10.1016/j.jciso.2021.100011
- M. Medina-Sanchez, M. Guix, S. Harazim, L. Schwarz, O.G. Schmidt, Rapid 3D printing of complex polymeric tubular catalytic micromotors. In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (2016), pp. 1–6. https://doi.org/10.1109/MARSS.2016.7561721
- L. Yang, X. Chen, L. Wang, Z. Hu, C. Xin et al., Targeted single-cell therapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vortices. Adv. Funct. Mater. 29(45), 1905745 (2019). https://doi.org/10.1002/adfm.201905745
- Y. Chen, B. Xu, Y. Mei, Design and fabrication of tubular micro/nanomotors via 3D laser lithography. Chem. Asian J. 14(14), 2472–2478 (2019). https://doi.org/10.1002/asia.201900300
- P.O. Oviroh, R. Akbarzadeh, D. Pan, R.A.M. Coetzee, T.C. Jen, New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 20(1), 465–496 (2019). https://doi.org/10.1080/14686996.2019.1599694
- J. Li, W. Liu, J. Wang, I. Rozen, S. He et al., Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv. Funct. Mater. 27(24), 1700598 (2017). https://doi.org/10.1002/adfm.201700598
- C. Wang, R. Dong, Q. Wang, C. Zhang, X. She et al., One modification, two functions: single Ni-modified light-driven ZnO microrockets with both efficient propulsion and steerable motion. Chem. Asian J. 14(14), 2485–2490 (2019). https://doi.org/10.1002/asia.201900348
- W. Gao, X. Feng, A. Pei, C.R. Kane, R. Tam et al., Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14(1), 305–310 (2014). https://doi.org/10.1021/nl404044d
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
- D. Gong, J. Cai, N. Celi, L. Feng, Y. Jiang et al., Bio-inspired magnetic helical microswimmers made of nickel-plated Spirulina with enhanced propulsion velocity. J. Magn. Magn. Mater. 468, 148–154 (2018). https://doi.org/10.1016/j.jmmm.2018.08.001
- J. Liu, J. Li, G. Wang, W. Yang, J. Yang et al., Bioinspired zeolitic imidazolate framework (ZIF-8) magnetic micromotors for highly efficient removal of organic pollutants from water. J. Colloid Interface Sci. 555, 234–244 (2019). https://doi.org/10.1016/j.jcis.2019.07.059
- Z. Wu, Y. Wu, W. He, X. Lin, J. Sun et al., Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52(27), 7000–7003 (2013). https://doi.org/10.1002/anie.201301643
- S. Ai, G. Lu, Q. He, J. Li, Highly flexible polyelectrolyte nanotubes. J. Am. Chem. Soc. 125(37), 11140–11141 (2003). https://doi.org/10.1021/ja0356378
- Y. Tian, Q. He, Y. Cui, C. Tao, J. Li, Assembly of nanotubes of poly(4-vinylpyridine) and poly(acrylic acid) through hydrogen bonding. Chem. Eur. J. 12(18), 4808–4812 (2006). https://doi.org/10.1002/chem.200600208
- Y. Tian, Q. He, Y. Cui, J. Li, Fabrication of protein nanotubes based on layer-by-layer assembly. Biomacromolecules 7(9), 2539–2542 (2006). https://doi.org/10.1021/bm060412l
- C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994). https://doi.org/10.1126/science.266.5193.1961
- Y. Mao, F. Zhang, S.S. Wong, Ambient template-directed synthesis of single-crystalline alkaline-earth metal fluoride nanowires. Adv. Mater. 18(14), 1895–1899 (2006). https://doi.org/10.1002/adma.200600358
- R.C. Arbulu, Y.B. Jiang, E.J. Peterson, Y. Qin, Metal-organic framework (MOF) nanorods, nanotubes, and nanowires. Angew. Chem. Int. Ed. 57(20), 5813–5817 (2018). https://doi.org/10.1002/anie.201802694
- Y. Ying, A.M. Pourrahimi, Z. Sofer, S. Matejkova, M. Pumera, Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal-organic frameworks. ACS Nano 13(10), 11477–11487 (2019). https://doi.org/10.1021/acsnano.9b04960
- T. He, Z. Wang, F. Zhong, H. Fang, P. Wang et al., Etching techniques in 2D materials. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900064
- Shubhava, A. Jayarama, G.K. Kannarpady, S. Kale, S. Prabhu et al., Chemical etching of glasses in hydrofluoric acid: a brief review. Mater. Today Proc. 55, 46–51 (2022). https://doi.org/10.1016/j.matpr.2021.12.110
- R.P. Srivastava, D.Y. Khang, Structuring of Si into multiple scales by metal-assisted chemical etching. Adv. Mater. 33(47), 2005932 (2021). https://doi.org/10.1002/adma.202005932
- K. Racka-Szmidt, B. Stonio, J. Zelazko, M. Filipiak, M. Sochacki, A review: inductively coupled plasma reactive ion etching of silicon carbide. Materials (2021). https://doi.org/10.3390/ma15010123
- H. Liang, F. Ming, H.N. Alshareef, Applications of plasma in energy conversion and storage materials. Adv. Energy Mater. 8(29), 1801804 (2018). https://doi.org/10.1002/aenm.201801804
- J. Chen, X. Lu, Q. Wen, F. Jiang, J. Lu et al., Review on laser-induced etching processing technology for transparent hard and brittle materials. Int. J. Adv. Manuf. Technol. 117(9–10), 2545–2564 (2021). https://doi.org/10.1007/s00170-021-07853-2
- J. Wu, K. Yin, S. Xiao, Z. Wu, Z. Zhu et al., Laser fabrication of bioinspired gradient surfaces for wettability applications. Adv. Mater. Interfaces 8(5), 2001610 (2021). https://doi.org/10.1002/admi.202001610
- J.H. Yang, X. Xu, M. Chen, D. Yang, H. Lu et al., Morphology-controllable nanocrystal β-Ni(OH)2/NF designed by hydrothermal etching method as high-efficiency electrocatalyst for overall water splitting. J. Electroanal. Chem. 882, 115035 (2021). https://doi.org/10.1016/j.jelechem.2021.115035
- C. Garcı́a de Andrés, F.G. Caballero, C. Capdevila, D. San Martı́n, Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Mater. Charact. 49(2), 121–127 (2002). https://doi.org/10.1016/s1044-5803(03)00002-0
- G.S. Oehrlein, D. Metzler, C. Li, Atomic layer etching at the tipping point: an overview. ECS J. Solid State Sci. Technol. 4(6), N5041–N5053 (2015). https://doi.org/10.1149/2.0061506jss
- Z. Liang, D. Fan, Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 4(9), eaau0981 (2018). https://doi.org/10.1126/sciadv.aau0981
- B.E.F. de Avila, C. Angell, F. Soto, M.A. Lopez-Ramirez, D.F. Baez et al., Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10(5), 4997–5005 (2016). https://doi.org/10.1021/acsnano.6b01415
- J.Z. Jiang, M.H. Guo, F.Z. Yao, J. Li, J.J. Sun, Propulsion of copper microswimmers in folded fluid channels by bipolar electrochemistry. RSC Adv. 7(11), 6297–6302 (2017). https://doi.org/10.1039/c6ra25162e
- S. Ahmed, W. Wang, L. Bai, D.T. Gentekos, M. Hoyos et al., Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10(4), 4763–4769 (2016). https://doi.org/10.1021/acsnano.6b01344
- A. Szkudlarek, K.E. Hnida-Gut, K. Kollbek, M.M. Marzec, K. Pitala et al., Cobalt-platinum nanomotors for local gas generation. Nanotechnology 31(7), 07LT01 (2020). https://doi.org/10.1088/1361-6528/ab53bd
- B. Chen, L. Liu, K. Liu, F. Tong, S. Wang et al., Photoelectrochemical TiO2–Au-nanowire-based motor for precise modulation of single-neuron activities. Adv. Funct. Mater. 31(10), 2008667 (2020). https://doi.org/10.1002/adfm.202008667
- F. Wong, A. Sen, Progress toward light-harvesting self-electrophoretic motors: highly efficient bimetallic nanomotors and micropumps in halogen media. ACS Nano 10(7), 7172–7179 (2016). https://doi.org/10.1021/acsnano.6b03474
- B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai et al., Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11(12), 1087–1092 (2016). https://doi.org/10.1038/nnano.2016.187
- L. Zhao, S. Xie, Y. Liu, Q. Liu, X. Song et al., Janus micromotors for motion-capture-lighting of bacteria. Nanoscale 11(38), 17831–17840 (2019). https://doi.org/10.1039/c9nr05503g
- H.R. Vutukuri, Z. Preisler, T.H. Besseling, A. van Blaaderen, M. Dijkstra et al., Dynamic self-organization of side-propelling colloidal rods: experiments and simulations. Soft Matter 12(48), 9657–9665 (2016). https://doi.org/10.1039/c6sm01760f
- J. Guo, J.J. Gallegos, A.R. Tom, D. Fan, Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12(2), 1179–1187 (2018). https://doi.org/10.1021/acsnano.7b06824
- T. Maric, C.C. Mayorga-Martinez, B. Khezri, M.Z.M. Nasir, X. Chia et al., Nanorobots constructed from nanoclay: using nature to create self-propelled autonomous nanomachines. Adv. Funct. Mater. 28(40), 1802762 (2018). https://doi.org/10.1002/adfm.201802762
- Y. He, J. Wu, Y. Zhao, Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett. 7(5), 1369–1375 (2007). https://doi.org/10.1021/nl070461j
- S. Du, H. Wang, C. Zhou, W. Wang, Z. Zhang, Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 142(5), 2213–2217 (2020). https://doi.org/10.1021/jacs.9b13093
- D. Zhou, L. Ren, Y.C. Li, P. Xu, Y. Gao et al., Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem. Commun. 53(83), 11465–11468 (2017). https://doi.org/10.1039/c7cc06327j
- G.Y. Karaca, F. Kuralay, E. Uygun, K. Ozaltin, S.E. Demirbuken et al., Gold-nickel nanowires as nanomotors for cancer marker biodetection and chemotherapeutic drug delivery. ACS Appl. Nano. Mater. 4(4), 3377–3388 (2021). https://doi.org/10.1021/acsanm.0c03145
- S. Ahmed, W. Wang, L.O. Mair, R.D. Fraleigh, S. Li et al., Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29(52), 16113–16118 (2013). https://doi.org/10.1021/la403946j
- J. Li, Q. Xiao, J.Z. Jiang, G.N. Chen, J.J. Sun, Au-Fe/Ni alloy hybrid nanowire motors with dramatic speed. RSC Adv. 4(52), 27522–27525 (2014). https://doi.org/10.1039/c4ra02959c
- P. Calvo-Marzal, S. Sattayasamitsathit, S. Balasubramanian, J.R. Windmiller, C. Dao et al., Propulsion of nanowire diodes. Chem. Commun. 46(10), 1623–1624 (2010). https://doi.org/10.1039/b925568k
- T.R. Kline, W.F. Paxton, T.E. Mallouk, A. Sen, Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44(5), 744–746 (2005). https://doi.org/10.1002/anie.200461890
- B. Jang, W. Wang, S. Wiget, A.J. Petruska, X. Chen et al., Catalytic locomotion of core-shell nanowire motors. ACS Nano 10(11), 9983–9991 (2016). https://doi.org/10.1021/acsnano.6b04224
- F. Novotný, J. Plutnar, M. Pumera, Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced raman scattering. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903041
- W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao et al., Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1), 117–123 (2015). https://doi.org/10.1021/nn507097k
- W.Z. Teo, H. Wang, M. Pumera, Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chem. Commun. 52(23), 4333–4336 (2016). https://doi.org/10.1039/c6cc00115g
- L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). https://doi.org/10.1021/nn405075d
- S. Wang, Z. Jiang, S. Ouyang, Z. Dai, T. Wang, Internally/externally bubble-propelled photocatalytic tubular nanomotors for efficient water cleaning. ACS Appl. Mater. Interfaces 9(28), 23974–23982 (2017). https://doi.org/10.1021/acsami.7b06402
- W. Liu, R. He, H. Zhu, H. Hu, M. Li et al., Ultrafast nanotube based diffusiophoresis nanomotors. Appl. Phys. Lett. 96(5), 053114 (2010). https://doi.org/10.1063/1.3308480
- F. Ji, T. Li, S. Yu, Z. Wu, L. Zhang, Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors. ACS Nano 15(3), 5118–5128 (2021). https://doi.org/10.1021/acsnano.0c10269
- B. Jang, A. Aho, B.J. Nelson, S. Pane, Fabrication and locomotion of flexible nanoswimmers, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (2018) pp. 6193–6198. https://doi.org/10.1109/IROS.2018.8594047
- W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6(7), 6122–6132 (2012). https://doi.org/10.1021/nn301312z
- T. Xu, L.P. Xu, X. Zhang, Ultrasound propulsion of micro-/nanomotors. Appl. Mater. Today 9, 493–503 (2017). https://doi.org/10.1016/j.apmt.2017.07.011
- K. Kim, J. Guo, Z.X. Liang, F.Q. Zhu, D.L. Fan, Man-made rotary nanomotors: a review of recent developments. Nanoscale 8(20), 10471–10490 (2016). https://doi.org/10.1039/c5nr08768f
- C. Chen, F. Soto, E. Karshalev, J. Li, J. Wang, Hybrid nanovehicles: one machine, two engines. Adv. Funct. Mater. 29(2), 1806290 (2019). https://doi.org/10.1002/adfm.201806290
- F. Nadal, E. Lauga, Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys. Fluids 26(8), 082001 (2014). https://doi.org/10.1063/1.4891446
- M. Hansen-Bruhn, B.E.F. de Avila, M. Beltran-Gastelum, J. Zhao, D.E. Ramirez-Herrera et al., Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57(10), 2657–2661 (2018). https://doi.org/10.1002/anie.201713082
- J.R. Qualliotine, G. Bolat, M. Beltran-Gastelum, B.E.F. de Avila, J. Wang et al., Acoustic nanomotors for detection of human papillomavirus-associated head and neck cancer. Otolaryngol. Head Neck Surg. 161(5), 814–822 (2019). https://doi.org/10.1177/0194599819866407
- C. Zhou, J. Yin, C. Wu, L. Du, Y. Wang, Efficient target capture and transport by fuel-free micromotors in a multichannel microchip. Soft Matter 13(44), 8064–8069 (2017). https://doi.org/10.1039/c7sm01905j
- G. Loget, A. Kuhn, Propulsion of microobjects by dynamic bipolar self-regeneration. J. Am. Chem. Soc. 132(45), 15918–15919 (2010). https://doi.org/10.1021/ja107644x
- J.R. Ostberg, R.K. Barth, J.G. Frelinger, The Roman god Janus: a paradigm for the function of CD43. Immunol. Today 19(12), 546–550 (1998). https://doi.org/10.1016/s0167-5699(98)01343-7
- B. Qiu, L. Xie, J. Zeng, T. Liu, M. Yan et al., Interfacially super-assembled asymmetric and H2O2 sensitive multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and removing heavy metal ions. Adv. Funct. Mater. 31(21), 2010694 (2021). https://doi.org/10.1002/adfm.202010694
- Y. Xing, M. Zhou, T. Xu, S. Tang, Y. Fu et al., Core@satellite Janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem. Int. Ed. 59(34), 14368–14372 (2020). https://doi.org/10.1002/anie.202006421
- T. Kwon, N. Kumari, A. Kumar, J. Lim, C.Y. Son et al., Au/Pt-egg-in-nest nanomotor for glucose-powered catalytic motion and enhanced molecular transport to living cells. Angew. Chem. Int. Ed. 60(32), 17579–17586 (2021). https://doi.org/10.1002/anie.202103827
- A. Llopis-Lorente, A. Garcia-Fernandez, N. Murillo-Cremaes, A.C. Hortelao, T. Patino et al., Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano 13(10), 12171–12183 (2019). https://doi.org/10.1021/acsnano.9b06706
- F. Mou, Q. Xie, J. Liu, S. Che, L. Bahmane et al., ZnO-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl. Sci. Rev. 8(11), nwab066 (2021). https://doi.org/10.1093/nsr/nwab066
- K. Xiong, L. Xu, J. Lin, F. Mou, J. Guan, Mg-based micromotors with motion responsive to dual stimuli. Research 2020, 6213981 (2020). https://doi.org/10.34133/2020/6213981
- R. Dong, Y. Cai, Y. Yang, W. Gao, B. Ren, Photocatalytic micro/nanomotors: from construction to applications. Acc. Chem. Res. 51(9), 1940–1947 (2018). https://doi.org/10.1021/acs.accounts.8b00249
- D. Wang, J. Jiang, B. Hao, M. Li, Z. Chen et al., Bio-inspired micro/nanomotor with visible light dependent in situ rotation and phototaxis. Appl. Mater. Today 29, 101652 (2022). https://doi.org/10.1016/j.apmt.2022.101652
- Z. Zhang, D. Zhang, B. Qiu, W. Cao, Y. Liu et al., Icebreaker-inspired Janus nanomotors to combat barriers in the delivery of chemotherapeutic agents. Nanoscale 13(13), 6545–6557 (2021). https://doi.org/10.1039/d0nr08853f
- R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10(1), 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940
- V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay et al., Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10), 9232–9240 (2013). https://doi.org/10.1021/nn403851v
- S. Fu, D. Fu, D. Xie, L. Liu, B. Chen et al., Light driven micromotor swarm for tumor photothermal therapy. Appl. Mater. Today 26, 101348 (2022). https://doi.org/10.1016/j.apmt.2021.101348
- J. Puigmartí-Luis, E. Pellicer, B. Jang, G. Chatzipirpiridis, S. Sevim et al., 26-magnetically and chemically propelled nanowire-based swimmers. In Magnetic Nano- and Microwires, 2nd edn., pp. 777–799 (2020). https://doi.org/10.1016/B978-0-08-102832-2.00026-8
- J. Shao, S. Cao, D.S. Williams, L. Abdelmohsen, J.C.M. van Hest, Photoactivated polymersome nanomotors: traversing biological barriers. Angew. Chem. Int. Ed. 59(39), 16918–16925 (2020). https://doi.org/10.1002/anie.202003748
- Y. Wang, X. Liu, C. Chen, Y. Chen, Y. Li et al., Magnetic nanorobots as maneuverable immunoassay probes for automated and efficient enzyme linked immunosorbent assay. ACS Nano 16(1), 180–191 (2022). https://doi.org/10.1021/acsnano.1c05267
- Z. Liu, T. Xu, M. Wang, C. Mao, B. Chi, Magnetic mesoporous silica/ε-polylysine nanomotor-based removers of blood Pb2+. J. Mater. Chem. B 8(48), 11055–11062 (2020). https://doi.org/10.1039/d0tb02270e
- M. Wan, Z. Liu, T. Li, H. Chen, Q. Wang et al., Zwitterion-based hydrogen sulfide nanomotors induce multiple acidosis in tumor cells by destroying tumor metabolic symbiosis. Angew. Chem. Int. Ed. 60(29), 16139–16148 (2021). https://doi.org/10.1002/anie.202104304
- S. Zheng, Y. Wang, S. Pan, E. Ma, S. Jin et al., Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Adv. Funct. Mater. 31(24), 2100936 (2021). https://doi.org/10.1002/adfm.202100936
- M. Uygun, B. Jurado-Sanchez, D.A. Uygun, V.V. Singh, L. Zhang et al., Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale 9(46), 18423–18429 (2017). https://doi.org/10.1039/c7nr07396h
- H. Ye, Y. Wang, D. Xu, X. Liu, S. Liu et al., Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today 23, 101007 (2021). https://doi.org/10.1016/j.apmt.2021.101007
- B.E.F. de Avila, A. Martin, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9(7), 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
- Z. Wu, T. Li, W. Gao, T. Xu, B. Jurado-Sánchez et al., Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 25(25), 3881–3887 (2015). https://doi.org/10.1002/adfm.201501050
- J. Garcia-Torres, A. Serra, P. Tierno, X. Alcobe, E. Valles, Magnetic propulsion of recyclable catalytic nanocleaners for pollutant degradation. ACS Appl. Mater. Interfaces 9(28), 23859–23868 (2017). https://doi.org/10.1021/acsami.7b07480
- J. Wu, S. Balasubramanian, D. Kagan, K.M. Manesh, S. Campuzano et al., Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36 (2010). https://doi.org/10.1038/ncomms1035
- D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh et al., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). https://doi.org/10.1021/ja905142q
- V.V. Singh, K. Kaufmann, B.E.F. de Avila, M. Uygun, J. Wang, Nanomotors responsive to nerve-agent vapor plumes. Chem. Commun. 52(16), 3360–3363 (2016). https://doi.org/10.1039/c5cc10670b
- S. Sattayasamitsathit, K. Kaufmann, M. Galarnyk, R. Vazquez-Duhalt, J. Wang, Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Adv. 4(52), 27565–27570 (2014). https://doi.org/10.1039/c4ra04341c
- J. Wang, S. Wu, W. Zhang, H. Wang, P. Zhang et al., Selective decorating Ag and MnOx nanops on halloysite and used as micromotor for bacterial killing. Appl. Clay Sci. 216, 106352 (2022). https://doi.org/10.1016/j.clay.2021.106352
- J.A. Delezuk, D.E. Ramirez-Herrera, B.E.F. de Avila, J. Wang, Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 9(6), 2195–2200 (2017). https://doi.org/10.1039/c6nr09799e
- B.E.F. de Avila, P. Angsantikul, J. Li, M.A. Lopez-Ramirez, D.E. Ramirez-Herrera et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017). https://doi.org/10.1038/s41467-017-00309-w
- D. Vilela, N. Blanco-Cabra, A. Eguskiza, A.C. Hortelao, E. Torrents et al., Drug-free enzyme-based bactericidal nanomotors against pathogenic bacteria. ACS Appl. Mater. Interfaces 13(13), 14964–14973 (2021). https://doi.org/10.1021/acsami.1c00986
- J. Orozco, L.A. Mercante, R. Pol, A. Merkoçi, Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 4(9), 3371–3378 (2016). https://doi.org/10.1039/c5ta09850e
- M. Ussia, M. Urso, K. Dolezelikova, H. Michalkova, V. Adam et al., Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 31(27), 2101178 (2021). https://doi.org/10.1002/adfm.202101178
- J. Orozco, G. Pan, S. Sattayasamitsathit, M. Galarnyk, J. Wang, Micromotors to capture and destroy anthrax simulant spores. Analyst 140(5), 1421–1427 (2015). https://doi.org/10.1039/c4an02169j
- J. Orozco, V. Garcia-Gradilla, M. D’Agostino, W. Gao, A. Cortes et al., Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1), 818–824 (2013). https://doi.org/10.1021/nn305372n
- W. Yang, J. Li, Z. Xu, J. Yang, Y. Liu et al., A Eu-MOF/EDTA-NiAl-CLDH fluorescent micromotor for sensing and removal of Fe3+ from water. J. Mater. Chem. C 7(33), 10297–10308 (2019). https://doi.org/10.1039/c9tc03328a
- A. Molinero-Fernandez, A. Jodra, M. Moreno-Guzman, M.A. Lopez, A. Escarpa, Magnetic reduced graphene oxide/nickel/platinum nanops micromotors for mycotoxin analysis. Chem. Eur. J. 24(28), 7172–7176 (2018). https://doi.org/10.1002/chem.201706095
- X. Lu, H. Ou, Y. Wei, X. Ding, X. Wang et al., Superfast fuel-free tubular hydrophobic micromotors powered by ultrasound. Sens. Actuators B 372, 132667 (2022). https://doi.org/10.1016/j.snb.2022.132667
- K. Yuan, V. de la Asunción-Nadal, Y. Li, B. Jurado-Sánchez, A. Escarpa, Graphdiyne tubular micromotors: electrosynthesis, characterization and self-propelled capabilities. Appl. Mater. Today 20, 100743 (2020). https://doi.org/10.1016/j.apmt.2020.100743
References
S. Sengupta, M.E. Ibele, A. Sen, Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51(34), 8434–8445 (2012). https://doi.org/10.1002/anie.201202044
C. Hu, S. Pané, B.J. Nelson, Soft micro- and nanorobotics. Annu. Rev. Control Robot. Auton. Syst. 1(1), 53–75 (2018). https://doi.org/10.1146/annurev-control-060117-104947
H. Zhou, C.C. Mayorga-Martinez, S. Pane, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13424–13431 (2004). https://doi.org/10.1021/ja047697z
J. Li, B.E.F. de Avila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
S. Palagi, P. Fischer, Bioinspired microrobots. Nat. Rev. Mater. 3(6), 113–124 (2018). https://doi.org/10.1038/s41578-018-0016-9
X. Lin, Z. Wu, Y. Wu, M. Xuan, Q. He, Self-propelled micro-/nanomotors based on controlled assembled architectures. Adv. Mater. 28(6), 1060–1072 (2016). https://doi.org/10.1002/adma.201502583
J. Katuri, X. Ma, M.M. Stanton, S. Sanchez, Designing micro- and nanoswimmers for specific applications. Acc. Chem. Res. 50(1), 2–11 (2017). https://doi.org/10.1021/acs.accounts.6b00386
B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33(4), 2002047 (2021). https://doi.org/10.1002/adma.202002047
B. Xu, B. Zhang, L. Wang, G. Huang, Y. Mei, Tubular micro/nanomachines: from the basics to recent advances. Adv. Funct. Mater. 28(25), 1705872 (2018). https://doi.org/10.1002/adfm.201705872
L. Li, L. Liang, H. Wu, X. Zhu, One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res. Lett. 11(1), 121 (2016). https://doi.org/10.1186/s11671-016-1320-1
Y. Zhao, L. Jiang, Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 21(36), 3621–3638 (2009). https://doi.org/10.1002/adma.200803645
L. Zhang, G. Liu, H. Chen, X. Liu, T. Ran et al., Bioinspired unidirectional liquid transport micro-nano structures: a review. J. Bionic Eng. 18(1), 1–29 (2021). https://doi.org/10.1007/s42235-021-0009-z
Y.L. Shi, X.D. Wang, 1D organic micro/nanostructures for photonics. Adv. Funct. Mater. 31(7), 2008149 (2020). https://doi.org/10.1002/adfm.202008149
G. Centi, S. Perathoner, Creating and mastering nano-objects to design advanced catalytic materials. Coord. Chem. Rev. 255(13–14), 1480–1498 (2011). https://doi.org/10.1016/j.ccr.2011.01.021
X. Liu, R. Dong, Y. Chen, Q. Zhang, S. Yu et al., Motion mode-driven adsorption by magnetically propelled MOF-based nanomotor. Mater. Today Nano 18, 100182 (2022). https://doi.org/10.1016/j.mtnano.2022.100182
J. Wang, Z. Xiong, J. Zheng, X. Zhan, J. Tang, Light-driven micro/nanomotor for promising biomedical tools: principle, challenge, and prospect. Acc. Chem. Res. 51(9), 1957–1965 (2018). https://doi.org/10.1021/acs.accounts.8b00254
P. Mandal, G. Patil, H. Kakoty, A. Ghosh, Magnetic active matter based on helical propulsion. Acc. Chem. Res. 51(11), 2689–2698 (2018). https://doi.org/10.1021/acs.accounts.8b00315
L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46(22), 6905–6926 (2017). https://doi.org/10.1039/c7cs00516d
A.L. Balk, L.O. Mair, P.P. Mathai, P.N. Patrone, W. Wang et al., Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanops. ACS Nano 8(8), 8300–8309 (2014). https://doi.org/10.1021/nn502753x
A. Serrà, G. Vázquez-Mariño, J. García-Torres, M. Bosch, E. Vallés, Magnetic actuation of multifunctional nanorobotic platforms to induce cancer cell death. Adv. Biosys. (2018). https://doi.org/10.1002/adbi.201700220
F. Mou, Y. Li, C. Chen, W. Li, Y. Yin et al., Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 11(21), 2564–2570 (2015). https://doi.org/10.1002/smll.201403372
R. Dong, C. Wang, Q. Wang, A. Pei, X. She et al., Zno-based microrockets with light-enhanced propulsion. Nanoscale 9(39), 15027–15032 (2017). https://doi.org/10.1039/c7nr05168a
W. Gao, D. Kagan, O.S. Pak, C. Clawson, S. Campuzano et al., Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3), 460–467 (2012). https://doi.org/10.1002/smll.201101909
U.K. Demirok, R. Laocharoensuk, K.M. Manesh, J. Wang, Ultrafast catalytic alloy nanomotors. Angew. Chem. Int. Ed. 47(48), 9349–9351 (2008). https://doi.org/10.1002/anie.200803841
J. Wang, Template electrodeposition of catalytic nanomotors. Faraday Discuss. 164, 9–18 (2013). https://doi.org/10.1039/c3fd00105a
A. Radi, D. Pradhan, Y. Sohn, K.T. Leung, Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core–shell nanops on Si(100) by one-step, templateless, capping-agent-free electrodeposition. ACS Nano 4(3), 1553–1560 (2010). https://doi.org/10.1021/nn100023h
C. Fradin, F. Celestini, F. Guittard, T. Darmanin, Templateless electrodeposition of conducting polymer nanotubes on mesh substrates. Macromol. Chem. Phys. 221(6), 1900529 (2020). https://doi.org/10.1002/macp.201900529
Q. Zhou, X. Liu, Y. Zhao, N. Jia, L. Liu et al., Single crystal tin nano-rod arrays electrodeposited by a soft template. Chem. Commun. 39, 4941–4942 (2005). https://doi.org/10.1039/b509818a
Q. Zhou, S. Wang, N. Jia, L. Liu, J. Yang et al., Synthesis of highly crystalline silver dendrites microscale nanostructures by electrodeposition. Mater. Lett. 60(29–30), 3789–3792 (2006). https://doi.org/10.1016/j.matlet.2006.03.115
C. Mu, Y.X. Yu, R.M. Wang, K. Wu, D.S. Xu et al., Uniform metal nanotube arrays by multistep template replication and electrodeposition. Adv. Mater. 16(17), 1550–1553 (2004). https://doi.org/10.1002/adma.200400129
A. Serrà, E. Vallés, Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: fundamentals and applications. Appl. Mater. Today 12, 207–234 (2018). https://doi.org/10.1016/j.apmt.2018.05.006
D.Y. Zhong, S. Liu, E.G. Wang, Patterned growth of coiled carbon nanotubes by a template-assisted technique. Appl. Phys. Lett. 83(21), 4423–4425 (2003). https://doi.org/10.1063/1.1630164
X.R. Zhu, C.M. Wang, Q.B. Fu, Z. Jiao, W.D. Wang et al., Preparation of Ag/Cu Janus nanowires: electrodeposition in track-etched polymer templates. Nucl. Instrum. Methods Phys. Res. Sect. B 356–357, 57–61 (2015). https://doi.org/10.1016/j.nimb.2015.04.061
B.A. Taleatu, A.Y. Fasasi, G. Di Santo, S. Bernstorff, A. Goldoni et al., Electro-chemical deposition of zinc oxide nanostructures by using two electrodes. AIP Adv. (2011). https://doi.org/10.1063/1.3633476
O.K. Echendu, K.B. Okeoma, C.I. Oriaku, I.M. Dharmadasa, Electrochemical deposition of CdTe semiconductor thin films for solar cell application using two-electrode and three-electrode configurations: a comparative study. Adv. Mater. Sci. Eng. 2016, 3581725 (2016). https://doi.org/10.1155/2016/3581725
J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam et al., Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 6(16), 9415–9420 (2014). https://doi.org/10.1039/c3nr04760a
L. Liu, S.H. Yoo, S.A. Lee, S. Park, Wet-chemical synthesis of palladium nanosprings. Nano Lett. 11(9), 3979–3982 (2011). https://doi.org/10.1021/nl202332x
B.E.F. de Avila, D.E. Ramirez-Herrera, S. Campuzano, P. Angsantikul, L. Zhang et al., Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: toward rapid cell apoptosis. ACS Nano 11(6), 5367–5374 (2017). https://doi.org/10.1021/acsnano.7b01926
B.E.F. de Avila, M.A. Lopez-Ramirez, R. Mundaca-Uribe, X. Wei, D.E. Ramirez-Herrera et al., Multicompartment tubular micromotors toward enhanced localized active delivery. Adv. Mater. 32(25), 2000091 (2020). https://doi.org/10.1002/adma.202000091
W. Gao, A. Uygun, J. Wang, Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 134(2), 897–900 (2012). https://doi.org/10.1021/ja210874s
C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang et al., Electrochemical deposition: an advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res. 51(8), 1764–1773 (2018). https://doi.org/10.1021/acs.accounts.8b00119
W. Gao, S. Sattayasamitsathit, K.M. Manesh, D. Weihs, J. Wang, Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132(41), 14403–14405 (2010). https://doi.org/10.1021/ja1072349
R. Laocharoensuk, J. Burdick, J. Wang, Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2(5), 1069–1075 (2008). https://doi.org/10.1021/nn800154g
J. Li, W. Gao, R. Dong, A. Pei, S. Sattayasamitsathit et al., Nanomotor lithography. Nat. Commun. 5, 5026 (2014). https://doi.org/10.1038/ncomms6026
J. Li, T. Li, T. Xu, M. Kiristi, W. Liu et al., Magneto-acoustic hybrid nanomotor. Nano Lett. 15(7), 4814–4821 (2015). https://doi.org/10.1021/acs.nanolett.5b01945
Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78(4), 407–409 (2001). https://doi.org/10.1063/1.1342050
S. Bagga, J. Akhtar, S. Mishra, Synthesis and applications of ZnO nanowire: a review. AIP Conf. Proc. 1989, 020004 (2018). https://doi.org/10.1063/1.5047680
Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 624520 (2012). https://doi.org/10.1155/2012/624520
J. Wang, Z. Xiong, M. Liu, X.M. Li, J. Zheng et al., Rational design of reversible redox shuttle for highly efficient light-driven microswimmer. ACS Nano 14(3), 3272–3280 (2020). https://doi.org/10.1021/acsnano.9b08799
J. Shi, X. Wang, Functional semiconductor nanowires via vapor deposition. J. Vaccum Sci. Technol. B 29(6), 060801 (2011). https://doi.org/10.1116/1.3641913
J. Wang, Z. Xiong, X. Zhan, B. Dai, J. Zheng et al., A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv. Mater. 29(30), 1701451 (2017). https://doi.org/10.1002/adma.201701451
G. Richter, K. Hillerich, D.S. Gianola, R. Monig, O. Kraft et al., Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9(8), 3048–3052 (2009). https://doi.org/10.1021/nl9015107
S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova-Rohlfing, Physical vapor deposition in solid-state battery development: from materials to devices. Adv. Sci. 8(11), 2002044 (2021). https://doi.org/10.1002/advs.202002044
H. Li, J. Zhou, L. Tan, M. Li, C. Jiang et al., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8(28), eabo7422 (2022). https://doi.org/10.1126/sciadv.abo7422
C. Bundesmann, H. Neumann, Tutorial: the systematics of ion beam sputtering for deposition of thin films with tailored properties. J. Appl. Phys. (2018). https://doi.org/10.1063/1.5054046
C. Peng, Y. Zhao, S. Jin, J. Wang, R. Liu et al., Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating. ACS Appl. Mater. Interfaces 11(1), 125–136 (2019). https://doi.org/10.1021/acsami.8b14038
Z. Zheng, X. Zu, Y. Zhang, W. Zhou, Rational design of type-II nano-heterojunctions for nanoscale optoelectronics. Mater. Today Phys. 15, 100262 (2020). https://doi.org/10.1016/j.mtphys.2020.100262
X. Zhan, J. Zheng, Y. Zhao, B. Zhu, R. Cheng et al., From strong dichroic nanomotor to polarotactic microswimmer. Adv. Mater. 31(48), 1903329 (2019). https://doi.org/10.1002/adma.201903329
J. Zheng, J. Wang, Z. Xiong, Z. Wan, X. Zhan et al., Full spectrum tunable visible-light-driven alloy nanomotor. Adv. Funct. Mater. 29(27), 1901768 (2019). https://doi.org/10.1002/adfm.201901768
Y. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40(5), 2109–2119 (2011). https://doi.org/10.1039/c0cs00078g
J. Deng, X. Lu, L. Liu, L. Zhang, O.G. Schmidt, Introducing rolled-up nanotechnology for advanced energy storage devices. Adv. Energy Mater. 6(23), 1600797 (2016). https://doi.org/10.1002/aenm.201600797
S.M. Harazim, W. Xi, C.K. Schmidt, S. Sanchez, O.G. Schmidt, Fabrication and applications of large arrays of multifunctional rolled-up SiO/SiO2 microtubes. J. Mater. Chem. 22(7), 2878–2884 (2012). https://doi.org/10.1039/c1jm14800a
C. Deneke, C. Muller, N.Y. Jin-Phillipp, O.G. Schmidt, Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes. Semicond. Sci. Technol. 17(12), 1278–1281 (2002). https://doi.org/10.1088/0268-1242/17/12/312
R. Songmuang, C. Deneke, O.G. Schmidt, Rolled-up micro- and nanotubes from single-material thin films. Appl. Phys. Lett. 89(22), 223109 (2006). https://doi.org/10.1063/1.2390647
L. Baptista-Pires, J. Orozco, P. Guardia, A. Merkoci, Architecting graphene oxide rolled-up micromotors: a simple paper-based manufacturing technology. Small 14(3), 1702746 (2018). https://doi.org/10.1002/smll.201702746
Y. Mei, G. Huang, A.A. Solovev, E.B. Ureña, I. Mönch et al., Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20(21), 4085–4090 (2008). https://doi.org/10.1002/adma.200801589
C. Xu, X. Wu, G. Huang, Y. Mei, Rolled-up nanotechnology: materials issue and geometry capability. Adv. Mater. Technol. 4(1), 1800486 (2018). https://doi.org/10.1002/admt.201800486
S. Giudicatti, S.M. Marz, L. Soler, A. Madani, M.R. Jorgensen et al., Photoactive rolled-up TiO2 microtubes: fabrication, characterization and applications. J. Mater. Chem. C 2(29), 5892–5901 (2014). https://doi.org/10.1039/c4tc00796d
S.K. Srivastava, M. Guix, O.G. Schmidt, Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 16(1), 817–821 (2016). https://doi.org/10.1021/acs.nanolett.5b05032
K. Yao, M. Manjare, C.A. Barrett, B. Yang, T.T. Salguero et al., Nanostructured scrolls from graphene oxide for microjet engines. J. Phys. Chem. Lett. 3(16), 2204–2208 (2012). https://doi.org/10.1021/jz300749p
B. Zhang, G. Huang, L. Wang, T. Wang, L. Liu et al., Rolled-up monolayer graphene tubular micromotors: enhanced performance and antibacterial property. Chem. Asian J. 14(14), 2479–2484 (2019). https://doi.org/10.1002/asia.201900301
S. Naeem, J. Mujtaba, F. Naeem, K. Xu, G. Huang et al., Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors. RSC Adv. 10(60), 36526–36530 (2020). https://doi.org/10.1039/d0ra07347d
S. Feng, R. Xu, New materials in hydrothermal synthesis. Acc. Chem. Res. 34(3), 239–247 (2001). https://doi.org/10.1021/ar0000105
J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanops: applications and future directions. Chem. Rev. 117(17), 11125–11238 (2017). https://doi.org/10.1021/acs.chemrev.6b00417
H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 130(15), 5361–5367 (2008). https://doi.org/10.1021/ja800109u
A.B. Djurisic, Y.Y. Xi, Y.F. Hsu, W.K. Chan, Hydrothermal synthesis of nanostructures. Recent Pat. Nanotechnol. 1(2), 121–128 (2007). https://doi.org/10.2174/187221007780859591
Y. Wang, C. Zhou, W. Wang, D. Xu, F. Zeng et al., Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing. Angew. Chem. Int. Ed. 57(40), 13110–13113 (2018). https://doi.org/10.1002/anie.201807033
K. Villa, C.L.M. Palenzuela, Z. Sofer, S. Matejkova, M. Pumera, Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12), 12482–12491 (2018). https://doi.org/10.1021/acsnano.8b06914
Z.L. Wu, Y.N. Qi, X.J. Yin, X. Yang, C.M. Chen et al., Polymer-based device fabrication and applications using direct laser writing technology. Polymers (2019). https://doi.org/10.3390/polym11030553
J. Sun, H. Tan, S. Lan, F. Peng, Y. Tu, Progress on the fabrication strategies of self-propelled micro/nanomotors. JCIS Open 2, 100011 (2021). https://doi.org/10.1016/j.jciso.2021.100011
M. Medina-Sanchez, M. Guix, S. Harazim, L. Schwarz, O.G. Schmidt, Rapid 3D printing of complex polymeric tubular catalytic micromotors. In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (2016), pp. 1–6. https://doi.org/10.1109/MARSS.2016.7561721
L. Yang, X. Chen, L. Wang, Z. Hu, C. Xin et al., Targeted single-cell therapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vortices. Adv. Funct. Mater. 29(45), 1905745 (2019). https://doi.org/10.1002/adfm.201905745
Y. Chen, B. Xu, Y. Mei, Design and fabrication of tubular micro/nanomotors via 3D laser lithography. Chem. Asian J. 14(14), 2472–2478 (2019). https://doi.org/10.1002/asia.201900300
P.O. Oviroh, R. Akbarzadeh, D. Pan, R.A.M. Coetzee, T.C. Jen, New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 20(1), 465–496 (2019). https://doi.org/10.1080/14686996.2019.1599694
J. Li, W. Liu, J. Wang, I. Rozen, S. He et al., Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv. Funct. Mater. 27(24), 1700598 (2017). https://doi.org/10.1002/adfm.201700598
C. Wang, R. Dong, Q. Wang, C. Zhang, X. She et al., One modification, two functions: single Ni-modified light-driven ZnO microrockets with both efficient propulsion and steerable motion. Chem. Asian J. 14(14), 2485–2490 (2019). https://doi.org/10.1002/asia.201900348
W. Gao, X. Feng, A. Pei, C.R. Kane, R. Tam et al., Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14(1), 305–310 (2014). https://doi.org/10.1021/nl404044d
X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
D. Gong, J. Cai, N. Celi, L. Feng, Y. Jiang et al., Bio-inspired magnetic helical microswimmers made of nickel-plated Spirulina with enhanced propulsion velocity. J. Magn. Magn. Mater. 468, 148–154 (2018). https://doi.org/10.1016/j.jmmm.2018.08.001
J. Liu, J. Li, G. Wang, W. Yang, J. Yang et al., Bioinspired zeolitic imidazolate framework (ZIF-8) magnetic micromotors for highly efficient removal of organic pollutants from water. J. Colloid Interface Sci. 555, 234–244 (2019). https://doi.org/10.1016/j.jcis.2019.07.059
Z. Wu, Y. Wu, W. He, X. Lin, J. Sun et al., Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52(27), 7000–7003 (2013). https://doi.org/10.1002/anie.201301643
S. Ai, G. Lu, Q. He, J. Li, Highly flexible polyelectrolyte nanotubes. J. Am. Chem. Soc. 125(37), 11140–11141 (2003). https://doi.org/10.1021/ja0356378
Y. Tian, Q. He, Y. Cui, C. Tao, J. Li, Assembly of nanotubes of poly(4-vinylpyridine) and poly(acrylic acid) through hydrogen bonding. Chem. Eur. J. 12(18), 4808–4812 (2006). https://doi.org/10.1002/chem.200600208
Y. Tian, Q. He, Y. Cui, J. Li, Fabrication of protein nanotubes based on layer-by-layer assembly. Biomacromolecules 7(9), 2539–2542 (2006). https://doi.org/10.1021/bm060412l
C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994). https://doi.org/10.1126/science.266.5193.1961
Y. Mao, F. Zhang, S.S. Wong, Ambient template-directed synthesis of single-crystalline alkaline-earth metal fluoride nanowires. Adv. Mater. 18(14), 1895–1899 (2006). https://doi.org/10.1002/adma.200600358
R.C. Arbulu, Y.B. Jiang, E.J. Peterson, Y. Qin, Metal-organic framework (MOF) nanorods, nanotubes, and nanowires. Angew. Chem. Int. Ed. 57(20), 5813–5817 (2018). https://doi.org/10.1002/anie.201802694
Y. Ying, A.M. Pourrahimi, Z. Sofer, S. Matejkova, M. Pumera, Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal-organic frameworks. ACS Nano 13(10), 11477–11487 (2019). https://doi.org/10.1021/acsnano.9b04960
T. He, Z. Wang, F. Zhong, H. Fang, P. Wang et al., Etching techniques in 2D materials. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900064
Shubhava, A. Jayarama, G.K. Kannarpady, S. Kale, S. Prabhu et al., Chemical etching of glasses in hydrofluoric acid: a brief review. Mater. Today Proc. 55, 46–51 (2022). https://doi.org/10.1016/j.matpr.2021.12.110
R.P. Srivastava, D.Y. Khang, Structuring of Si into multiple scales by metal-assisted chemical etching. Adv. Mater. 33(47), 2005932 (2021). https://doi.org/10.1002/adma.202005932
K. Racka-Szmidt, B. Stonio, J. Zelazko, M. Filipiak, M. Sochacki, A review: inductively coupled plasma reactive ion etching of silicon carbide. Materials (2021). https://doi.org/10.3390/ma15010123
H. Liang, F. Ming, H.N. Alshareef, Applications of plasma in energy conversion and storage materials. Adv. Energy Mater. 8(29), 1801804 (2018). https://doi.org/10.1002/aenm.201801804
J. Chen, X. Lu, Q. Wen, F. Jiang, J. Lu et al., Review on laser-induced etching processing technology for transparent hard and brittle materials. Int. J. Adv. Manuf. Technol. 117(9–10), 2545–2564 (2021). https://doi.org/10.1007/s00170-021-07853-2
J. Wu, K. Yin, S. Xiao, Z. Wu, Z. Zhu et al., Laser fabrication of bioinspired gradient surfaces for wettability applications. Adv. Mater. Interfaces 8(5), 2001610 (2021). https://doi.org/10.1002/admi.202001610
J.H. Yang, X. Xu, M. Chen, D. Yang, H. Lu et al., Morphology-controllable nanocrystal β-Ni(OH)2/NF designed by hydrothermal etching method as high-efficiency electrocatalyst for overall water splitting. J. Electroanal. Chem. 882, 115035 (2021). https://doi.org/10.1016/j.jelechem.2021.115035
C. Garcı́a de Andrés, F.G. Caballero, C. Capdevila, D. San Martı́n, Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Mater. Charact. 49(2), 121–127 (2002). https://doi.org/10.1016/s1044-5803(03)00002-0
G.S. Oehrlein, D. Metzler, C. Li, Atomic layer etching at the tipping point: an overview. ECS J. Solid State Sci. Technol. 4(6), N5041–N5053 (2015). https://doi.org/10.1149/2.0061506jss
Z. Liang, D. Fan, Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 4(9), eaau0981 (2018). https://doi.org/10.1126/sciadv.aau0981
B.E.F. de Avila, C. Angell, F. Soto, M.A. Lopez-Ramirez, D.F. Baez et al., Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10(5), 4997–5005 (2016). https://doi.org/10.1021/acsnano.6b01415
J.Z. Jiang, M.H. Guo, F.Z. Yao, J. Li, J.J. Sun, Propulsion of copper microswimmers in folded fluid channels by bipolar electrochemistry. RSC Adv. 7(11), 6297–6302 (2017). https://doi.org/10.1039/c6ra25162e
S. Ahmed, W. Wang, L. Bai, D.T. Gentekos, M. Hoyos et al., Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10(4), 4763–4769 (2016). https://doi.org/10.1021/acsnano.6b01344
A. Szkudlarek, K.E. Hnida-Gut, K. Kollbek, M.M. Marzec, K. Pitala et al., Cobalt-platinum nanomotors for local gas generation. Nanotechnology 31(7), 07LT01 (2020). https://doi.org/10.1088/1361-6528/ab53bd
B. Chen, L. Liu, K. Liu, F. Tong, S. Wang et al., Photoelectrochemical TiO2–Au-nanowire-based motor for precise modulation of single-neuron activities. Adv. Funct. Mater. 31(10), 2008667 (2020). https://doi.org/10.1002/adfm.202008667
F. Wong, A. Sen, Progress toward light-harvesting self-electrophoretic motors: highly efficient bimetallic nanomotors and micropumps in halogen media. ACS Nano 10(7), 7172–7179 (2016). https://doi.org/10.1021/acsnano.6b03474
B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai et al., Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11(12), 1087–1092 (2016). https://doi.org/10.1038/nnano.2016.187
L. Zhao, S. Xie, Y. Liu, Q. Liu, X. Song et al., Janus micromotors for motion-capture-lighting of bacteria. Nanoscale 11(38), 17831–17840 (2019). https://doi.org/10.1039/c9nr05503g
H.R. Vutukuri, Z. Preisler, T.H. Besseling, A. van Blaaderen, M. Dijkstra et al., Dynamic self-organization of side-propelling colloidal rods: experiments and simulations. Soft Matter 12(48), 9657–9665 (2016). https://doi.org/10.1039/c6sm01760f
J. Guo, J.J. Gallegos, A.R. Tom, D. Fan, Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12(2), 1179–1187 (2018). https://doi.org/10.1021/acsnano.7b06824
T. Maric, C.C. Mayorga-Martinez, B. Khezri, M.Z.M. Nasir, X. Chia et al., Nanorobots constructed from nanoclay: using nature to create self-propelled autonomous nanomachines. Adv. Funct. Mater. 28(40), 1802762 (2018). https://doi.org/10.1002/adfm.201802762
Y. He, J. Wu, Y. Zhao, Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett. 7(5), 1369–1375 (2007). https://doi.org/10.1021/nl070461j
S. Du, H. Wang, C. Zhou, W. Wang, Z. Zhang, Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 142(5), 2213–2217 (2020). https://doi.org/10.1021/jacs.9b13093
D. Zhou, L. Ren, Y.C. Li, P. Xu, Y. Gao et al., Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem. Commun. 53(83), 11465–11468 (2017). https://doi.org/10.1039/c7cc06327j
G.Y. Karaca, F. Kuralay, E. Uygun, K. Ozaltin, S.E. Demirbuken et al., Gold-nickel nanowires as nanomotors for cancer marker biodetection and chemotherapeutic drug delivery. ACS Appl. Nano. Mater. 4(4), 3377–3388 (2021). https://doi.org/10.1021/acsanm.0c03145
S. Ahmed, W. Wang, L.O. Mair, R.D. Fraleigh, S. Li et al., Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29(52), 16113–16118 (2013). https://doi.org/10.1021/la403946j
J. Li, Q. Xiao, J.Z. Jiang, G.N. Chen, J.J. Sun, Au-Fe/Ni alloy hybrid nanowire motors with dramatic speed. RSC Adv. 4(52), 27522–27525 (2014). https://doi.org/10.1039/c4ra02959c
P. Calvo-Marzal, S. Sattayasamitsathit, S. Balasubramanian, J.R. Windmiller, C. Dao et al., Propulsion of nanowire diodes. Chem. Commun. 46(10), 1623–1624 (2010). https://doi.org/10.1039/b925568k
T.R. Kline, W.F. Paxton, T.E. Mallouk, A. Sen, Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44(5), 744–746 (2005). https://doi.org/10.1002/anie.200461890
B. Jang, W. Wang, S. Wiget, A.J. Petruska, X. Chen et al., Catalytic locomotion of core-shell nanowire motors. ACS Nano 10(11), 9983–9991 (2016). https://doi.org/10.1021/acsnano.6b04224
F. Novotný, J. Plutnar, M. Pumera, Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced raman scattering. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903041
W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao et al., Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1), 117–123 (2015). https://doi.org/10.1021/nn507097k
W.Z. Teo, H. Wang, M. Pumera, Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chem. Commun. 52(23), 4333–4336 (2016). https://doi.org/10.1039/c6cc00115g
L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). https://doi.org/10.1021/nn405075d
S. Wang, Z. Jiang, S. Ouyang, Z. Dai, T. Wang, Internally/externally bubble-propelled photocatalytic tubular nanomotors for efficient water cleaning. ACS Appl. Mater. Interfaces 9(28), 23974–23982 (2017). https://doi.org/10.1021/acsami.7b06402
W. Liu, R. He, H. Zhu, H. Hu, M. Li et al., Ultrafast nanotube based diffusiophoresis nanomotors. Appl. Phys. Lett. 96(5), 053114 (2010). https://doi.org/10.1063/1.3308480
F. Ji, T. Li, S. Yu, Z. Wu, L. Zhang, Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors. ACS Nano 15(3), 5118–5128 (2021). https://doi.org/10.1021/acsnano.0c10269
B. Jang, A. Aho, B.J. Nelson, S. Pane, Fabrication and locomotion of flexible nanoswimmers, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (2018) pp. 6193–6198. https://doi.org/10.1109/IROS.2018.8594047
W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6(7), 6122–6132 (2012). https://doi.org/10.1021/nn301312z
T. Xu, L.P. Xu, X. Zhang, Ultrasound propulsion of micro-/nanomotors. Appl. Mater. Today 9, 493–503 (2017). https://doi.org/10.1016/j.apmt.2017.07.011
K. Kim, J. Guo, Z.X. Liang, F.Q. Zhu, D.L. Fan, Man-made rotary nanomotors: a review of recent developments. Nanoscale 8(20), 10471–10490 (2016). https://doi.org/10.1039/c5nr08768f
C. Chen, F. Soto, E. Karshalev, J. Li, J. Wang, Hybrid nanovehicles: one machine, two engines. Adv. Funct. Mater. 29(2), 1806290 (2019). https://doi.org/10.1002/adfm.201806290
F. Nadal, E. Lauga, Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys. Fluids 26(8), 082001 (2014). https://doi.org/10.1063/1.4891446
M. Hansen-Bruhn, B.E.F. de Avila, M. Beltran-Gastelum, J. Zhao, D.E. Ramirez-Herrera et al., Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57(10), 2657–2661 (2018). https://doi.org/10.1002/anie.201713082
J.R. Qualliotine, G. Bolat, M. Beltran-Gastelum, B.E.F. de Avila, J. Wang et al., Acoustic nanomotors for detection of human papillomavirus-associated head and neck cancer. Otolaryngol. Head Neck Surg. 161(5), 814–822 (2019). https://doi.org/10.1177/0194599819866407
C. Zhou, J. Yin, C. Wu, L. Du, Y. Wang, Efficient target capture and transport by fuel-free micromotors in a multichannel microchip. Soft Matter 13(44), 8064–8069 (2017). https://doi.org/10.1039/c7sm01905j
G. Loget, A. Kuhn, Propulsion of microobjects by dynamic bipolar self-regeneration. J. Am. Chem. Soc. 132(45), 15918–15919 (2010). https://doi.org/10.1021/ja107644x
J.R. Ostberg, R.K. Barth, J.G. Frelinger, The Roman god Janus: a paradigm for the function of CD43. Immunol. Today 19(12), 546–550 (1998). https://doi.org/10.1016/s0167-5699(98)01343-7
B. Qiu, L. Xie, J. Zeng, T. Liu, M. Yan et al., Interfacially super-assembled asymmetric and H2O2 sensitive multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and removing heavy metal ions. Adv. Funct. Mater. 31(21), 2010694 (2021). https://doi.org/10.1002/adfm.202010694
Y. Xing, M. Zhou, T. Xu, S. Tang, Y. Fu et al., Core@satellite Janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem. Int. Ed. 59(34), 14368–14372 (2020). https://doi.org/10.1002/anie.202006421
T. Kwon, N. Kumari, A. Kumar, J. Lim, C.Y. Son et al., Au/Pt-egg-in-nest nanomotor for glucose-powered catalytic motion and enhanced molecular transport to living cells. Angew. Chem. Int. Ed. 60(32), 17579–17586 (2021). https://doi.org/10.1002/anie.202103827
A. Llopis-Lorente, A. Garcia-Fernandez, N. Murillo-Cremaes, A.C. Hortelao, T. Patino et al., Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano 13(10), 12171–12183 (2019). https://doi.org/10.1021/acsnano.9b06706
F. Mou, Q. Xie, J. Liu, S. Che, L. Bahmane et al., ZnO-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl. Sci. Rev. 8(11), nwab066 (2021). https://doi.org/10.1093/nsr/nwab066
K. Xiong, L. Xu, J. Lin, F. Mou, J. Guan, Mg-based micromotors with motion responsive to dual stimuli. Research 2020, 6213981 (2020). https://doi.org/10.34133/2020/6213981
R. Dong, Y. Cai, Y. Yang, W. Gao, B. Ren, Photocatalytic micro/nanomotors: from construction to applications. Acc. Chem. Res. 51(9), 1940–1947 (2018). https://doi.org/10.1021/acs.accounts.8b00249
D. Wang, J. Jiang, B. Hao, M. Li, Z. Chen et al., Bio-inspired micro/nanomotor with visible light dependent in situ rotation and phototaxis. Appl. Mater. Today 29, 101652 (2022). https://doi.org/10.1016/j.apmt.2022.101652
Z. Zhang, D. Zhang, B. Qiu, W. Cao, Y. Liu et al., Icebreaker-inspired Janus nanomotors to combat barriers in the delivery of chemotherapeutic agents. Nanoscale 13(13), 6545–6557 (2021). https://doi.org/10.1039/d0nr08853f
R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10(1), 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940
V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay et al., Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10), 9232–9240 (2013). https://doi.org/10.1021/nn403851v
S. Fu, D. Fu, D. Xie, L. Liu, B. Chen et al., Light driven micromotor swarm for tumor photothermal therapy. Appl. Mater. Today 26, 101348 (2022). https://doi.org/10.1016/j.apmt.2021.101348
J. Puigmartí-Luis, E. Pellicer, B. Jang, G. Chatzipirpiridis, S. Sevim et al., 26-magnetically and chemically propelled nanowire-based swimmers. In Magnetic Nano- and Microwires, 2nd edn., pp. 777–799 (2020). https://doi.org/10.1016/B978-0-08-102832-2.00026-8
J. Shao, S. Cao, D.S. Williams, L. Abdelmohsen, J.C.M. van Hest, Photoactivated polymersome nanomotors: traversing biological barriers. Angew. Chem. Int. Ed. 59(39), 16918–16925 (2020). https://doi.org/10.1002/anie.202003748
Y. Wang, X. Liu, C. Chen, Y. Chen, Y. Li et al., Magnetic nanorobots as maneuverable immunoassay probes for automated and efficient enzyme linked immunosorbent assay. ACS Nano 16(1), 180–191 (2022). https://doi.org/10.1021/acsnano.1c05267
Z. Liu, T. Xu, M. Wang, C. Mao, B. Chi, Magnetic mesoporous silica/ε-polylysine nanomotor-based removers of blood Pb2+. J. Mater. Chem. B 8(48), 11055–11062 (2020). https://doi.org/10.1039/d0tb02270e
M. Wan, Z. Liu, T. Li, H. Chen, Q. Wang et al., Zwitterion-based hydrogen sulfide nanomotors induce multiple acidosis in tumor cells by destroying tumor metabolic symbiosis. Angew. Chem. Int. Ed. 60(29), 16139–16148 (2021). https://doi.org/10.1002/anie.202104304
S. Zheng, Y. Wang, S. Pan, E. Ma, S. Jin et al., Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Adv. Funct. Mater. 31(24), 2100936 (2021). https://doi.org/10.1002/adfm.202100936
M. Uygun, B. Jurado-Sanchez, D.A. Uygun, V.V. Singh, L. Zhang et al., Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale 9(46), 18423–18429 (2017). https://doi.org/10.1039/c7nr07396h
H. Ye, Y. Wang, D. Xu, X. Liu, S. Liu et al., Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today 23, 101007 (2021). https://doi.org/10.1016/j.apmt.2021.101007
B.E.F. de Avila, A. Martin, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9(7), 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
Z. Wu, T. Li, W. Gao, T. Xu, B. Jurado-Sánchez et al., Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 25(25), 3881–3887 (2015). https://doi.org/10.1002/adfm.201501050
J. Garcia-Torres, A. Serra, P. Tierno, X. Alcobe, E. Valles, Magnetic propulsion of recyclable catalytic nanocleaners for pollutant degradation. ACS Appl. Mater. Interfaces 9(28), 23859–23868 (2017). https://doi.org/10.1021/acsami.7b07480
J. Wu, S. Balasubramanian, D. Kagan, K.M. Manesh, S. Campuzano et al., Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36 (2010). https://doi.org/10.1038/ncomms1035
D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh et al., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). https://doi.org/10.1021/ja905142q
V.V. Singh, K. Kaufmann, B.E.F. de Avila, M. Uygun, J. Wang, Nanomotors responsive to nerve-agent vapor plumes. Chem. Commun. 52(16), 3360–3363 (2016). https://doi.org/10.1039/c5cc10670b
S. Sattayasamitsathit, K. Kaufmann, M. Galarnyk, R. Vazquez-Duhalt, J. Wang, Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Adv. 4(52), 27565–27570 (2014). https://doi.org/10.1039/c4ra04341c
J. Wang, S. Wu, W. Zhang, H. Wang, P. Zhang et al., Selective decorating Ag and MnOx nanops on halloysite and used as micromotor for bacterial killing. Appl. Clay Sci. 216, 106352 (2022). https://doi.org/10.1016/j.clay.2021.106352
J.A. Delezuk, D.E. Ramirez-Herrera, B.E.F. de Avila, J. Wang, Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 9(6), 2195–2200 (2017). https://doi.org/10.1039/c6nr09799e
B.E.F. de Avila, P. Angsantikul, J. Li, M.A. Lopez-Ramirez, D.E. Ramirez-Herrera et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017). https://doi.org/10.1038/s41467-017-00309-w
D. Vilela, N. Blanco-Cabra, A. Eguskiza, A.C. Hortelao, E. Torrents et al., Drug-free enzyme-based bactericidal nanomotors against pathogenic bacteria. ACS Appl. Mater. Interfaces 13(13), 14964–14973 (2021). https://doi.org/10.1021/acsami.1c00986
J. Orozco, L.A. Mercante, R. Pol, A. Merkoçi, Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 4(9), 3371–3378 (2016). https://doi.org/10.1039/c5ta09850e
M. Ussia, M. Urso, K. Dolezelikova, H. Michalkova, V. Adam et al., Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 31(27), 2101178 (2021). https://doi.org/10.1002/adfm.202101178
J. Orozco, G. Pan, S. Sattayasamitsathit, M. Galarnyk, J. Wang, Micromotors to capture and destroy anthrax simulant spores. Analyst 140(5), 1421–1427 (2015). https://doi.org/10.1039/c4an02169j
J. Orozco, V. Garcia-Gradilla, M. D’Agostino, W. Gao, A. Cortes et al., Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1), 818–824 (2013). https://doi.org/10.1021/nn305372n
W. Yang, J. Li, Z. Xu, J. Yang, Y. Liu et al., A Eu-MOF/EDTA-NiAl-CLDH fluorescent micromotor for sensing and removal of Fe3+ from water. J. Mater. Chem. C 7(33), 10297–10308 (2019). https://doi.org/10.1039/c9tc03328a
A. Molinero-Fernandez, A. Jodra, M. Moreno-Guzman, M.A. Lopez, A. Escarpa, Magnetic reduced graphene oxide/nickel/platinum nanops micromotors for mycotoxin analysis. Chem. Eur. J. 24(28), 7172–7176 (2018). https://doi.org/10.1002/chem.201706095
X. Lu, H. Ou, Y. Wei, X. Ding, X. Wang et al., Superfast fuel-free tubular hydrophobic micromotors powered by ultrasound. Sens. Actuators B 372, 132667 (2022). https://doi.org/10.1016/j.snb.2022.132667
K. Yuan, V. de la Asunción-Nadal, Y. Li, B. Jurado-Sánchez, A. Escarpa, Graphdiyne tubular micromotors: electrosynthesis, characterization and self-propelled capabilities. Appl. Mater. Today 20, 100743 (2020). https://doi.org/10.1016/j.apmt.2020.100743