Additive Engineering for Stable and Efficient Dion–Jacobson Phase Perovskite Solar Cells
Corresponding Author: Thierry Pauporté
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 134
Abstract
Because of their better chemical stability and fascinating anisotropic characteristics, Dion–Jacobson (DJ)-layered halide perovskites, which owe crystallographic two-dimensional structures, have fascinated growing attention for solar devices. DJ-layered halide perovskites have special structural and photoelectronic features that allow the van der Waals gap to be eliminated or reduced. DJ-layered halide perovskites have improved photophysical characteristics, resulting in improved photovoltaic performance. Nevertheless, owing to the nature of the solution procedure and the fast crystal development of DJ perovskite thin layers, the precursor compositions and processing circumstances can cause a variety of defects to occur. The application of additives can impact DJ perovskite crystallization and film generation, trap passivation in the bulk and/or at the surface, interface structure, and energetic tuning. This study discusses recent developments in additive engineering for DJ multilayer halide perovskite film production. Several additive-assisted bulk and interface optimization methodologies are summarized. Lastly, an overview of research developments in additive engineering in the production of DJ-layered halide perovskite solar cells is offered.
Highlights:
1 Soluble compounds are added to the Dion–Jacobson (DJ) perovskite precursor solutions.
2 Current studies and development trends of additive compounds in DJ-phase perovskite solar cells are reviewed.
3 The innate functions of additive compounds in DJ-phase perovskite solar cells are developed.
4 An insightful perspective is outlined for future research in additive compounds for DJ-phase perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dahal, W. Li, Configuration of methylammonium lead iodide perovskite solar cell and its effect on the device’s performance: a review. Adv. Mater. Interfaces 9(19), 2200042 (2022). https://doi.org/10.1002/admi.202200042
- Q. Dou, T. Whatley, T. Syed, W. Wei, H. Wang, Carbon nanomaterials-polymer composites for perovskite solar cells: preparation, properties and applications. J. Mater. Chem. A 10(37), 19211–19230 (2022). https://doi.org/10.1039/d2ta02175g
- E.C. Kohlrausch, D.d.V. Freitas, C.I. da Silva Filho, L.F. Loguercio, L.A. Santa-Cruz et al., Advances in carbon materials applied to carbon-based perovskite solar cells. Energy Technol. 2200676 (2023). https://doi.org/10.1002/ente.202200676
- X. Luo, X. Lin, F. Gao, Y. Zhao, X. Li et al., Recent progress in perovskite solar cells: from device to commercialization. Sci. China-Chem. 65(12), 2369–2416 (2022). https://doi.org/10.1007/s11426-022-1426-x
- D. Sharma, R. Mehra, B. Raj, Comparative study of hole transporting layers commonly used in high-efficiency perovskite solar cells. J. Mater. Sci. 57(45), 21172–21191 (2022). https://doi.org/10.1007/s10853-022-07958-3
- F. Zhu, G. Lian, B.C. Yu, T. Zhang, L. Zhang et al., Pressure-enhanced vertical orientation and compositional control of Ruddlesden-Popper perovskites for efficient and stable solar cells and self-powered photodetectors. ACS Appl. Mater. Interfaces 14(1), 1526–1536 (2022). https://doi.org/10.1021/acsami.1c18522
- D.M. Zheng, C. Schwob, Y. Prado, Z. Ouzit, L. Coolen et al., How do gold nanops boost the performance of perovskite solar cells? Nano Energy 94, 106934 (2022). https://doi.org/10.1016/j.nanoen.2022.106934
- D. Zheng, F. Raffin, P. Volovitch, T. Pauporte, Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures. Nat. Commun. 13(1), 6655 (2022). https://doi.org/10.1038/s41467-022-34332-3
- C. Liang, H. Gu, Y.D. Xia, Z. Wang, X.T. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6(1), 38 (2021). https://doi.org/10.1038/s41560-020-00721-5
- Z.Q. Li, J.J. Dong, C.Y. Liu, J.X. Guo, L. Shen et al., Surface passivation of perovskite solar cells toward improved efficiency and stability. Nano-Micro Lett. 11(1), 50 (2019). https://doi.org/10.1007/s40820-019-0282-0
- Y.W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6(1), 63 (2021). https://doi.org/10.1038/s41560-020-00749-7
- Q. Dai, Q. Ling, L. Huang, X. Liu, H. Zhang et al., Regulating radial morphology in hot-casting two-dimensional ruddlesden-popper perovskite film growth for high-efficient photovoltaics. ACS Appl. Energy Mater. 6(3), 1585–1594 (2023). https://doi.org/10.1021/acsaem.2c03458
- P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu et al., Dredging the charge-carrier transfer pathway for efficient low-dimensional ruddlesden-popper perovskite solar cells. Angew. Chem. Int. Ed. 62(13), e202217910 (2023). https://doi.org/10.1002/anie.202217910
- J.S. Du, D. Shin, T.K. Stanev, C. Musumeci, Z. Xie et al., Halide perovskite nanocrystal arrays: multiplexed synthesis and size-dependent emission. Sci. Adv. 6(39), eabc4959 (2020). https://doi.org/10.1126/sciadv.abc4959
- W.J. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13(1), 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
- J. Xu, J. Chen, S. Chen, H. Gao, Y. Li et al., Organic spacer engineering of ruddlesden-popper perovskite materials toward efficient and stable solar cells. Chem. Eng. J. 453(1), 139790 (2023). https://doi.org/10.1016/j.cej.2022.139790
- N. Zhou, H.P. Zhou, Spacer organic cation engineering for quasi-2D metal halide perovskites and the optoelectronic application. Small Struct. 3(7), 2100232 (2022). https://doi.org/10.1002/sstr.202100232
- L.F. Yan, J.J. Ma, P.W. Li, S.Q. Zang, L.Y. Han et al., Charge-carrier transport in quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Mater. 34(7), 2106822 (2022). https://doi.org/10.1002/adma.202106822
- J.M. Hoffman, C.D. Malliakas, S. Sidhik, I. Hadar, R. McClain et al., Long periodic ripple in a 2D hybrid halide perovskite structure using branched organic spacers. Chem. Sci. 11(44), 12139–12148 (2020). https://doi.org/10.1039/d0sc04144k
- L.L. Xu, G.Y. Liu, H.Y. Xiang, R. Wang, Q.S. Shan et al., Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: from materials to devices. Appl. Phys. Rev. 9(2), 021308 (2022). https://doi.org/10.1063/5.0080087
- T. Zhu, D.M. Zheng, J.W. Liu, L. Coolen, T. Pauporte, Peai-based interfacial layer for high-efficiency and stable solar cells based on a macl-mediated grown FA(0.94)MA(0.06)PbI(3) perovskite. ACS Appl. Mater. Interfaces 12(33), 37197–37207 (2020). https://doi.org/10.1021/acsami.0c09970
- Z.Y. Xu, L. Li, X.Y. Dong, D. Lu, R. Wang et al., CsPbl(3)-based phase-stable 2D Ruddlesden-Popper perovskites for efficient solar cells. Nano Lett. 22(7), 2874–2880 (2022). https://doi.org/10.1021/acs.nanolett.2c00002
- P. Acharyya, T. Ghosh, K. Pal, K. Kundu, K.S. Rana et al., Intrinsically ultralow thermal conductivity in Ruddlesden-Popper 2D perovskite Cs2PbI2Cl2: localized anharmonic vibrations and dynamic octahedral distortions. J. Am. Chem. Soc. 142(36), 15595–15603 (2020). https://doi.org/10.1021/jacs.0c08044
- M.D. Malouangou, Y.F. Yang, Y.J. Zhang, L.Y. Bai, J.T. Matondo et al., Recent progress in perovskite materials using diammonium organic cations toward stable and efficient solar cell devices: Dion–Jacobson. Energy Technol. 10(5), 2101155 (2022). https://doi.org/10.1002/ente.202101155
- Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Long. Highly efficient and stable FA-based quasi-2D Ruddlesden-Popper perovskite solar cells by the incorporation of beta-fluorophenylethanamine cations. Adv. Mater. e2210836 (2023). https://doi.org/10.1002/adma.202210836
- M.C. Shih, H.C. Hsu, C.C. Lin, S.K. Huang, T.P. Chen et al., Atomically resolved quantum-confined electronic structures at organic-inorganic interfaces of two-dimensional Ruddlesden-Popper halide perovskites. Nano Lett. 21(19), 8066–8072 (2021). https://doi.org/10.1021/acs.nanolett.1c02409
- N.L. Chen, X.H. Yi, J. Zhuang, Y.Z. Wei, Y.Y. Zhang et al., An efficient trap passivator for perovskite solar cells: Poly(propylene glycol) bis(2-aminopropyl ether). Nano-Micro Lett. 12(1), 177 (2020). https://doi.org/10.1007/s40820-020-00517-y
- M. Chen, Z. Shan, X. Dong, S.F. Liu, Z. Xu, Discovering layered lead-free perovskite solar absorbers via cation transmutation. Nanoscale Horiz. (2023). https://doi.org/10.1039/d2nh00499b
- W. Deng, F. Wan, X. Peng, X. Ren, J. Wang et al., Super hydrophilic, ultra bubble repellent substrate for pinhole free Dion–Jacobson perovskite solar cells. Appl. Phys. Lett. 121(23), (2022). https://doi.org/10.1063/5.0127262
- N. Li, Y.F. Yang, Z.H. Shi, Z.G. Lan, A. Arramel et al., Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. Iscience 25(2), 103753 (2022). https://doi.org/10.1016/j.isci.2022.103753
- F. Cheng, J. Zhang, T. Pauporte, Chlorides, other halides, and pseudo-halides as additives for the fabrication of efficient and stable perovskite solar. Chemsuschem 14(18), 3665–3692 (2021). https://doi.org/10.1002/cssc.202101089
- D.M. Zheng, T. Pauporte, Control of the quality and homogeneity of halide perovskites by mixed-chloride additives upon the film formation process. J. Mater. Chem. A 9(33), 17801–17811 (2021). https://doi.org/10.1039/d1ta04651a
- L.L. Gao, X.T. Li, B. Traore, Y.L. Zhang, J. Fang et al., M-phenylenediammonium as a new spacer for Dion–Jacobson two-dimensional perovskites. J. Am. Chem. Soc. 143(31), 12063–12073 (2021). https://doi.org/10.1021/jacs.1c03687
- Y.P. Fu, X.Y. Jiang, X.T. Li, B. Traore, I. Spanopoulos et al., Cation engineering in two-dimensional Ruddlesden-Popper lead iodide perovskites with mixed large a-site cations in the cages. J. Am. Chem. Soc. 142(8), 4008–4021 (2020). https://doi.org/10.1021/jacs.9b13587
- R.L.Z. Hoye, J. Hidalgo, R.A. Jagt, J.P. Correa-Baena, T. Fix et al., The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater. 12(4), 2100499 (2022). https://doi.org/10.1002/aenm.202100499
- X. Guo, Y. Gao, F. Long, L. Lin, Y. Wang et al., The interplay of organic spacers and small cations for efficient Dion–Jacobson perovskite solar cells. Sol. RRL 2201021 (2023). https://doi.org/10.1002/solr.202201021
- Yukta, R.D. Chavan, D. Prochowicz, P. Yadav, M.M. Tavakoli et al., Thiocyanate-passivated diaminonaphthalene-incorporated Dion–Jacobson perovskite for highly efficient and stable solar cells. ACS Appl. Mater. Interfaces 14(1), 850–860 (2022). https://doi.org/10.1021/acsami.1c19546
- H.H. Yao, G.Q. Peng, Z.Z. Li, Q. Wang, Y.K. Xu et al., Fine coverage and uniform phase distribution in 2D (PEA)(2)Cs3Pb4I13 solar cells with a record efficiency beyond 15%. Nano Energy 92, 106790 (2022). https://doi.org/10.1016/j.nanoen.2021.106790
- H.M. Xiang, P.Y. Liu, R. Ran, W. Wang, W. Zhou et al., Two-dimensional Dion–Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renew. Sust. Energ. Rev. 166, 112614 (2022). https://doi.org/10.1016/j.rser.2022.112614
- X.J. Wang, Y. Zhao, L. Bin, X.F. Han, Z.M. Jin et al., Interfacial modification via a 1,4-butanediamine-based 2D capping layer for perovskite solar cells with enhanced stability and efficiency. ACS Appl. Mater. Interfaces 14(20), 22879–22888 (2022). https://doi.org/10.1021/acsami.1c21036
- J. Lu, T.H. Yang, T.Q. Niu, N. Bu, Y.L. Zhang et al., Formamidinium-based Ruddlesden-Popper perovskite films fabricated via two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy Environ. Sci. 15(3), 1144–1155 (2022). https://doi.org/10.1039/d1ee02851k
- R. Shi, R. Long, W.-H. Fang, O.V. Prezhdo, Rapid interlayer charge separation and extended carrier lifetimes due to spontaneous symmetry breaking in organic and mixed organic-inorganic Dion–Jacobson perovskites. J. Am. Chem. Soc. 145(9), 5297–5309 (2023). https://doi.org/10.1021/jacs.2c12903
- Ul Haq, G. Rehman, I. Ahmad, H.A. Yakout, I. Khan, Lead-free Dion–Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and x, y = Cl, Br, I) used for optoelectronic applications via first principle calculations. J. Phys. Chem. Solids 174, 111157 (2023). https://doi.org/10.1016/j.jpcs.2022.111157
- A. Ummadisingu, A. Mishra, D.J. Kubicki, T. LaGrange, A. Ducinskas et al., Multi-length scale structure of 2D/3D Dion–Jacobson hybrid perovskites based on an aromatic diammonium spacer. Small 18(5), 2104287 (2022). https://doi.org/10.1002/smll.202104287
- L. Gollino, T. Pauporte, Lead-less halide perovskite solar cells. Sol. RRL 5(3), 2000616 (2021). https://doi.org/10.1002/solr.202000616
- Q. Sun, Z. Fang, Y.P. Zheng, Z.B. Yang, F. Hu et al., Regulating the phase stability and bandgap of quasi-2D Dion–Jacobson CsSnI3 perovskite via intercalating organic cations. J. Mater. Chem. A 10(8), 3996–4005 (2022). https://doi.org/10.1039/d1ta10246j
- Z.F. Shi, Z.Y. Ni, J.S. Huang, Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett. 7(3), 984–987 (2022). https://doi.org/10.1021/acsenergylett.2c00098
- J. Xi, J. Byeon, U. Kim, K. Bang, G.R. Han et al., Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden-Popper perovskite solar cells. Energy Environ. Sci. 14(9), 4915–4925 (2021). https://doi.org/10.1039/d1ee00984b
- P. Kour, M.C. Reddy, S. Pal, S. Sidhik, T. Das et al., An organic-inorganic perovskitoid with zwitterion cysteamine linker and its crystal-crystal transformation to Ruddlesden-Popper phase. Angew. Chem. Int. Ed. 60(34), 18750–18760 (2021). https://doi.org/10.1002/anie.202105918
- J. Gong, M.W. Hao, Y.L. Zhang, M.Z. Liu, Y.Y. Zhou, Layered 2D halide perovskites beyond the Ruddlesden-Popper phase: tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 61(10), e202112022 (2022). https://doi.org/10.1002/anie.202112022
- Y.-C. Liu, J.-T. Lin, Y.-L. Lee, C.-M. Hung, T.-C. Chou et al., Recognizing the importance of fast nonisothermal crystallization for high-performance two-dimensional Dion–Jacobson perovskite solar cells with high fill factors: a comprehensive mechanistic study. J. Am. Chem. Soc. 144(33), 14897–14906 (2022). https://doi.org/10.1021/jacs.2c06342
- M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2d perovskite solar cells. Adv. Mater. 34(1), e2107211 (2022). https://doi.org/10.1002/adma.202107211
- S. Chen, G.Q. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29(24), 1605448 (2017). https://doi.org/10.1002/adma.201605448
- J. Wu, H. Zeng, Y. Li, Z. Jiang, C. Liu, J. Zhang et al., Tailoring two-dimensional ruddlesden-popper perovskite via 1D perovskitoid enables efficient and stable solar cells. ACS Energy Lett. 8(1), 637–646 (2022). https://doi.org/10.1021/acsenergylett.2c02373
- F.U. Kosasih, C. Ducati, Attaining high photovoltaic efficiency and stability with multidimensional perovskites. Chemsuschem 11(24), 4193–4202 (2018). https://doi.org/10.1002/cssc.201801905
- C. Liang, D.D. Zhao, Y. Li, X.J. Li, S.M. Peng et al., Ruddlesden-Popper perovskite for stable solar cells. Energy Environ. Sci. 1(4), 221–231 (2018). https://doi.org/10.1002/eem2.12022
- L. Cheng, Z. Liu, S.D. Li, Y.F. Zhai, X. Wang et al., Highly thermostable and efficient formamidinium-based low-dimensional perovskite solar cells. Angew. Chem. Int. Ed. 60(2), 856–864 (2021). https://doi.org/10.1002/anie.202006970
- L.N. Quan, F.P.G. de Arquer, R.P. Sabatini, E.H. Sargent, Perovskites for light emission. Adv. Mater. 30(45), 1801996 (2018). https://doi.org/10.1002/adma.201801996
- X.P. Gao, X.T. Zhang, W.X. Yin, H. Wang, Y. Hu et al., Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications. Adv. Sci. 6(22), 1900941 (2019). https://doi.org/10.1002/advs.201900941
- X.Q. Jiang, J.F. Zhang, S. Ahmad, D.D. Tu, X. Liu et al., Dion–Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy 75, 104892 (2020). https://doi.org/10.1016/j.nanoen.2020.104892
- A. Leblanc, N. Mercier, M. Allain, J. Dittmer, V. Fernandez et al., Lead- and iodide-deficient (CH(3) NH(3) )PbI(3) (d-MAPI): the bridge between 2D and 3D hybrid perovskites. Angew. Chem. Int. Ed. 56(50), 16067–16072 (2017). https://doi.org/10.1002/anie.201710021
- A. Krishna, S. Gottis, M.K. Nazeeruddin, F. Sauvage, Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv. Funct. Mater. 29(8), 1806482 (2019). https://doi.org/10.1002/adfm.201806482
- P. Fu, Y. Liu, S.W. Yu, H. Yin, B.W. Yang et al., Dion–Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells. Nano Energy 88, 106249 (2021). https://doi.org/10.1016/j.nanoen.2021.106249
- F.A. Roghabadi, M. Alidaei, S.M. Mousavi, T. Ashjari, A.S. Tehrani et al., Stability progress of perovskite solar cells dependent on the crystalline structure: from 3D ABX(3) to 2D Ruddlesden-Popper perovskite absorbers. J. Mater. Chem. A 7(11), 5898–5933 (2019). https://doi.org/10.1039/c8ta10444a
- G.B. Wu, T.H. Yang, X. Li, N. Ahmad, X.N. Zhang, S.L. Yue et al., Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%. Matter 4(2), 582–599 (2021). https://doi.org/10.1016/j.matt.2020.11.011
- X.X. Tian, Y.Z. Zhang, R.K. Zheng, D. Wei, J.Q. Liu, Two-dimensional organic-inorganic hybrid Ruddlesden-Popper perovskite materials: preparation, enhanced stability, and applications in photodetection. Sustain. Energy Fuels 4(5), 2087–2113 (2020). https://doi.org/10.1039/c9se01181a
- P.P. Sun, D.R. Kripalani, W.J. Chi, S.A. Snyder, K. Zhou, High carrier mobility and remarkable photovoltaic performance of two-dimensional Ruddlesden-Popper organic-inorganic metal halides (PA)(2)(MA)(2)M3I10 for perovskite solar cell applications. Mater. Today 47, 45–52 (2021). https://doi.org/10.1016/j.mattod.2021.02.007
- J. Xi, I. Spanopoulos, K. Bang, J. Xu, H. Dong et al., Alternative organic spacers for more efficient perovskite solar cells containing Ruddlesden-Popper phases. J. Am. Chem. Soc. 142(46), 19705–19714 (2020). https://doi.org/10.1021/jacs.0c09647
- Y. Zhao, F. Ma, F. Gao, Z.G. Yin, X.W. Zhang et al., Research progress in large-area perovskite solar cells. Photonics Res. 8(7), A1–A15 (2020). https://doi.org/10.1364/prj.392996
- L.L. Gao, J.X. You, S.Z. Liu, Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. J. Energy Chem. 57, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.08.0222095-4956/
- M.S. de Holanda, R.F. Moral, P.E. Marchezi, F.C. Marques, A.F. Nogueira, Layered metal halide perovskite solar cells: a review from structure-properties perspective towards maximization of their performance and stability. Ecomat 3(4), e12124 (2021). https://doi.org/10.1002/eom2.12124
- X. Bao, Y. Gao, Y. Liu, Z. Xu, F. Zhang et al., Molecular bridging strategy enables high performance and stable quasi-2D perovskite light-emitting devices. ACS Energy Lett. 8(2), 1018–1025 (2023). https://doi.org/10.1021/acsenergylett.2c02877
- W. Guo, Z. Yang, J.L. Dang, M.Q. Wang, Progress and perspective in Dion–Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy 86, 106129 (2021). https://doi.org/10.1016/j.nanoen.2021.106129
- X.T. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- P.Y. Liu, N. Han, W. Wang, R. Ran, W. Zhou et al., High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 33(10), 2002582 (2021). https://doi.org/10.1002/adma.202002582
- J.V. Milic, S.M. Zakeeruddin, M. Gratzel, Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc. Chem. Res. 54(12), 2729–2740 (2021). https://doi.org/10.1021/acs.accounts.0c00879
- M. Righetto, D. Giovanni, S.S. Lim, T.C. Sum, The photophysics of Ruddlesden-Popper perovskites: a tale of energy, charges, and spins. Appl. Phys. Rev. 8(1), 011318 (2021). https://doi.org/10.1063/5.0031821
- G.B. Wu, R. Liang, Z.P. Zhang, M.Z. Ge, G.C. Xing et al., 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small 17(43), 2000395 (2021). https://doi.org/10.1002/smll.202103514
- Q.L. Cao, P.W. Li, W. Chen, S.Q. Zang, L.Y. Han et al., Two-dimensional perovskites: impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
- H.L. Loi, J.P. Cao, X.Y. Guo, C.K. Liu, N.X. Wang et al., Gradient 2D/3D perovskite films prepared by hot-casting for sensitive photodetectors. Adv. Sci. 7(14), 2000776 (2020). https://doi.org/10.1002/advs.202000776
- S.W. Cui, J.F. Wang, H.P. Xie, Y. Zhao, Z.M. Li et al., Rubidium ions enhanced crystallinity for Ruddlesden-Popper perovskites. Adv. Sci. 7(24), 2002445 (2020). https://doi.org/10.1002/advs.202002445
- Y. Kusumawati, M.A. Martoprawiro, T. Pauporté, Effects of graphene in graphene/TiO2 composite films applied to solar cell photoelectrode. J. Phys. Chem. C 118(19), 9974–9981 (2014). https://doi.org/10.1021/jp502385p
- L.L. Mao, W.J. Ke, L. Pedesseau, Y.L. Wu, C. Katan et al., Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
- S. Liu, Y.J. Guan, Y.S. Sheng, Y. Hu, Y.G. Rong et al., A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10(13), 1902492 (2020). https://doi.org/10.1002/aenm.201902492
- Z.Y. Xu, D. Lu, X.Y. Dong, M.Q. Chen, Q. Fu et al., Highly efficient and stable Dion–Jacobson perovskite solar cells enabled by extended pi-conjugation of organic spacer. Adv. Mater. 33(51), 2105083 (2021). https://doi.org/10.1002/adma.202105083
- R. Shi, Z.S. Zhang, W.H. Fang, R. Long, Charge localization control of electron-hole recombination in multilayer two-dimensional Dion–Jacobson hybrid perovskites. J. Mater. Chem. A 8(18), 9168–9176 (2020). https://doi.org/10.1039/d0ta01944e
- K. Hojo, S. Nishioka, Y. Miseki, Y. Kamakura, T. Oshima et al., An improved z-scheme for overall water splitting using dye-sensitized calcium niobate nanosheets synthesized by a flux method. ACS Appl. Energy Mater. 4(9), 10145–10152 (2021). https://doi.org/10.1021/acsaem.1c02050
- Z. Fang, X.M. Hou, Y.P. Zheng, Z.B. Yang, K.C. Chou et al., First-principles optimization of out-of-plane charge transport in Dion–Jacobson CsPbI3 perovskites with pi-conjugated aromatic spacers. Adv. Funct. Mater. 31(28), 2102330 (2021). https://doi.org/10.1002/adfm.202102330
- H. Li, Y. Xu, S. Ramakrishnan, Y. Zhang, M. Cotlet et al., Pseudo-halide anion engineering for efficient quasi-2D Ruddlesden-Popper tin perovskite solar cells. Cell Rep. Phys. Sci. 3(10), (2022). https://doi.org/10.1016/j.xcrp.2022.101060
- X. Zhang, T.H. Yang, X.D. Ren, L. Zhang, K. Zhao et al., Film formation control for high performance Dion–Jacobson 2D perovskite solar cells. Adv. Energy Mater. 11(19), 2002733 (2021). https://doi.org/10.1002/aenm.202002733
- Y.Q. Liu, L.K. Ono, G.Q. Tong, T.L. Bu, H. Zhang et al., Spectral stable blue-light-emitting diodes via asymmetric organic diamine based Dion–Jacobson perovskites. J. Am. Chem. Soc. 143(47), 19711–19718 (2021). https://doi.org/10.1021/jacs.1c07757
- W.J. Ke, C.C. Stoumpos, M.H. Zhu, L.L. Mao, I. Spanopoulos et al., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI(3). Sci. Adv. 3(8), e1701293 (2017). https://doi.org/10.1126/sciadv.1701293
- D.X. Li, Z. Xing, L. Huang, X.C. Meng, X.T. Hu et al., Spontaneous formation of upper gradient 2D structure for efficient and stable quasi-2D perovskites. Adv. Mater. 33(34), 2101823 (2021). https://doi.org/10.1002/adma.202101823
- B.E. Cohen, T. Binyamin, T. Ben-Tzvi, O. Goldberg, A. Schlesinger et al., Hydroxyl functional groups in two-dimensional Dion–Jacobson perovskite solar cells. ACS Energy Lett. 7(1), 217–225 (2022). https://doi.org/10.1021/acsenergylett.1c01990
- I.H. Park, Q.N. Zhang, K.C. Kwon, Z.Y. Zhu, W. Yu et al., Ferroelectricity and rashba effect in a two-dimensional Dion–Jacobson hybrid organic-inorganic perovskite. J. Am. Chem. Soc. 141(40), 15972–15976 (2019). https://doi.org/10.1021/jacs.9b07776
- H.T. Lai, D. Lu, Z.Y. Xu, N. Zheng, Z.Q. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32(33), 2001470 (2020). https://doi.org/10.1002/adma.202001470
- S. Ahmad, P. Fu, S.W. Yu, Q. Yang, X. Liu et al., Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3(3), 794–806 (2019). https://doi.org/10.1016/j.Joule2018.11.026
- W.C. Zhang, X.X. Wu, J. Zhou, B. Han, X.F. Liu et al., Pseudohalide-assisted growth of oriented large grains for high-performance and stable 2D perovskite solar cells. ACS Energy Lett. 7(5), 1842–1849 (2022). https://doi.org/10.1021/acsenergylett.2c00485
- H.Y. Zheng, W.W. Wu, H.F. Xu, F.C. Zheng, G.Z. Liu et al., Self-additive low-dimensional Ruddlesden-Popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30(15), 2000034 (2020). https://doi.org/10.1002/adfm.202000034
- T.W. He, S.S. Li, Y.Z. Jiang, C.C. Qin, M.H. Cui et al., Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11(1), 1672 (2020). https://doi.org/10.1038/s41467-020-15451-1
- D. Lu, G.W. Lv, Z.Y. Xu, Y.X. Dong, X.F. Ji et al., Thiophene-based two-dimensional Dion–Jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2020). https://doi.org/10.1021/jacs.0c03363
- P.W. Li, X.L. Liu, Y.Q. Zhang, C. Liang, G.S. Chen et al., Low-dimensional Dion–Jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability. Angew. Chem. Int. Ed. 59(17), 6909–6914 (2020). https://doi.org/10.1002/anie.202000460
- J. Xiang, X. Li, S. Gong, S. Wang, X. Chen et al., Green-antisolvent-induced homogeneous phase distribution for efficient and stable MA-free 2D perovskite solar cells. Chem. Eng. J. 460, 141758 (2023). https://doi.org/10.1016/j.cej.2023.141758
- J.Y. Zhang, S. Langner, J.C. Wu, C. Kupfer, L. Luer et al., Intercalating-organic-cation-induced stability bowing in quasi-2D metal-halide perovskites. ACS Energy Lett. 7(1), 70–77 (2022). https://doi.org/10.1021/acsenergylett.1c02081
- H.X. Shi, L. Zhang, H. Huang, Y.L. Ou, X.T. Wang et al., Additive engineering for high-performance two-dimensional Dion–Jacobson Pb-Sn alloyed perovskite solar cells. Energy Technol. 10(12), 2200983 (2022). https://doi.org/10.1002/ente.202200983
- X.M. Zhao, T.R. Liu, A.B. Kaplan, C. Yao, Y.L. Loo, Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells. Nano Lett. 20(12), 8880–8889 (2020). https://doi.org/10.1021/acs.nanolett.0c03914
- L. Cheng, K. Meng, Z. Qiao, Y.F. Zhai, R.Z. Yu et al., Tailoring interlayer spacers for efficient and stable formamidinium-based low-dimensional perovskite solar cells. Adv. Mater. 34(4), 2106380 (2022). https://doi.org/10.1002/adma.202106380
- T.T. Niu, H. Ren, B. Wu, Y.D. Xia, X.J. Xie et al., Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. A 10(10), 2349–2356 (2019). https://doi.org/10.1021/acs.jpclett.9b00750
- Y.T. Zheng, T.T. Niu, J. Qiu, L.F. Chao, B.X. Li et al., Oriented and uniform distribution of Dion–Jacobson phase perovskites controlled by quantum well barrier thickness. Sol. RRL 3(9), 1900090 (2019). https://doi.org/10.1002/solr.201900090
- L. Jin, N. Ren, P. Wang, R. Li, Q. Xue et al., Secondary anti-solvent treatment for efficient 2D Dion–Jacobson perovskite solar cells. Small 19(3), e2205088 (2023). https://doi.org/10.1002/smll.202205088
- H. Wang, C.C.S. Chan, M. Chu, J.S. Xie, S.H. Zhao et al., Interlayer cross-linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling. Sol. RRL 4(4), 1900578 (2020). https://doi.org/10.1002/solr.201900578
- C.Q. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), 1800710 (2018). https://doi.org/10.1002/adma.201800710
- W.D. Zhao, Q.S. Dong, J.W. Zhang, S. Wang, M. Chen et al., Asymmetric alkyl diamine based Dion–Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%. J. Mater. Chem. A 8(19), 9919–9926 (2020). https://doi.org/10.1039/d0ta02706e
- Z. Wang, L. Liu, X.D. Liu, D.D. Song, D. Shi et al., Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 432, 134367 (2022). https://doi.org/10.1016/j.cej.2021.134367
- J.F. Wang, D.X. Lin, Y.F. Chen, S.Q. Luo, L.L. Ke et al., Suppressing the excessive solvated phase for Dion–Jacobson perovskites with improved crystallinity and vertical orientation. Sol. RRL 4(11), 2000371 (2020). https://doi.org/10.1002/solr.202000371
- D. Wang, S.C. Chen, Q.D. Zheng, Enhancing the efficiency and stability of two-dimensional Dion–Jacobson perovskite solar cells using a fluorinated diammonium spacer. J. Mater. Chem. A 9(19), 11778–11786 (2021). https://doi.org/10.1039/d1ta01447a
- E.S. Vasileiadou, X.Y. Jiang, M. Kepenekian, J. Even, M.C. De Siena et al., Thick-layer lead iodide perovskites with bifunctional organic spacers allylammonium and iodopropylammonium exhibiting trap-state emission. J. Am. Chem. Soc. 144(14), 6390–6409 (2022). https://doi.org/10.1021/jacs.2c00571
- P.Y. Su, L. Bai, H. Bi, B.B. Liu, S. Chen et al., Interfacial gradient energy band alignment modulation via ion exchange reaction toward efficient and stable methylammonium-free Dion–Jacobson quasi-2D perovskite solar cells. J. Power Sources 506, 230213 (2021). https://doi.org/10.1016/j.jpowsour.2021.230213
- J.K. Quan, S.D. Yu, B.Y. Xing, X. He, L.J. Zhang, Two-dimensional Ruddlesden-Popper halide perovskite solar absorbers with short-chain interlayer spacers. Phys. Rev. Mater. 6(6), 065405 (2022). https://doi.org/10.1103/PhysRevMaterials.6.065405
- Z.Z. Li, S.W. Yang, C.C. Ye, G. Wang, B. Ma et al., Ordered element distributed C3N quantum dots manipulated crystallization kinetics for 2D CsPbI3 solar cells with ultra-high performance. Small 18(15), 2108090 (2022). https://doi.org/10.1002/smll.202108090
- J. Guo, Z.J. Shi, J.M. Xia, K.Y. Wang, Q. Wei et al., Phase tailoring of Ruddlesden-Popper perovskite at fixed large spacer cation ratio. Small 17(43), 2100560 (2021). https://doi.org/10.1002/smll.202100560
- C.C. Qin, L.H. Xu, Z.P. Zhou, J. Song, S.H. Ma et al., Carrier dynamics in two-dimensional perovskites: Dion–Jacobson vs. Ruddlesden-Popper thin films. J. Mater. Chem. A 10(6), 3069–3076 (2022). https://doi.org/10.1039/d1ta09549h
- W.D. Zhu, J.X. Ma, W.M. Chai, T.J. Han, D.D. Chen et al., Intermediate phase-assisted sequential deposition toward 15.24%-efficiency carbon-electrode CsPbI(2)Br perovskite solar cells. Sol. RRL 6(6), 2200020 (2022). https://doi.org/10.1002/solr.202200020
- C.L. Zhou, W.B. Ma, Z.L. Zhang, Y.L. Mao, Effect of anti-solvents on the performance of solar cells based on two-dimensional Ruddlesden-Popper-phase perovskite films. J. Phys. D 55(35), 354004 (2022). https://doi.org/10.1088/1361-6463/ac7267
- F.Z. Li, J. Zhang, S. Jo, M.C. Qin, Z. Li et al., Vertical orientated Dion–Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability. Small Methods 4(5), 1900831 (2020). https://doi.org/10.1002/smtd.201900831
- F. Zheng, D. Angmo, C.R. Hall, S. Rubanov, F.F. Yuan et al., Brownian tree-shaped dendrites in quasi-2D perovskite films and their impact on photovoltaic performance. Adv. Mater. Interfaces 9(13), 2102231 (2022). https://doi.org/10.1002/admi.202102231
- Z.L. Li, Z.T. Deng, A. Johnston, J.W. Luo, H.J. Chen et al., Precursor tailoring enables alkylammonium tin halide perovskite phosphors for solid-state lighting. Adv. Funct. Mater. 32(18), 2111346 (2022). https://doi.org/10.1002/adfm.202111346
- H.T. Wu, X.M. Lian, S.X. Tian, Y.Z. Zhang, M.C. Qin et al., Additive-assisted hot-casting free fabrication of Dion–Jacobson 2D perovskite solar cell with efficiency beyond 16%. Sol. RRL 4(7), 2000087 (2020). https://doi.org/10.1002/solr.202000087
- H.T. Wu, X.M. Lian, J. Li, Y.Z. Zhang, G.Q. Zhou et al., Merged interface construction toward ultra-low Voc loss in inverted two-dimensional Dion–Jacobson perovskite solar cells with efficiency over 18%. J. Mater. Chem. A 9(21), 12566–12573 (2021). https://doi.org/10.1039/d1ta02015c
- S.M. Gowdru, J.C. Lin, S.T. Wang, Y.C. Chen, K.C. Wu et al., Accelerated formation of 2D Ruddlesden-Popper perovskite thin films by lewis bases for high efficiency solar cell applications. Nanomaterials 12(11), 1816 (2022). https://doi.org/10.3390/nano12111816
- R.D. Yukta, P. Chavan, S. Yadav, Satapathi, Ammonium thiocyanate-passivated quasi-two-dimensional Dion–Jacobson perovskite solar cells for improved efficiency and stability. ACS Appl. Energy Mater. 5(11), 13723–13734 (2022). https://doi.org/10.1021/acsaem.2c02398
- H. Wang, Z.T. Qin, J.S. Xie, S.H. Zhao, K. Liu et al., Efficient slantwise aligned Dion–Jacobson phase perovskite solar cells based on trans-1,4-cyclohexanediamine. Small 16(42), 2003098 (2020). https://doi.org/10.1002/smll.202003098
- A. Caiazzo, K. Datta, J.K. Jiang, M.C. Gelvez-Rueda, J.Y. Li et al., Effect of co-solvents on the crystallization and phase distribution of mixed-dimensional perovskites. Adv. Energy Mater. 11(42), 2102144 (2021). https://doi.org/10.1002/aenm.202102144
- Y.P. Lv, H.R. Ma, Y.F. Yin, Q.S. Dong, W.D. Zhao et al., NH3(CH2)(6)NH3 PbI4 as Dion–Jacobson phase bifunctional capping layer for 2D/3D perovskite solar cells with high efficiency and excellent UV stability. J. Mater. Chem. A 8(20), 10283–10290 (2020). https://doi.org/10.1039/d0ta02437f
- W.J. Ke, L.L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9(10), 1803384 (2019). https://doi.org/10.1002/aenm.201803384
- Y. Zheng, C.H. Zhao, Y.F. Li, W.Q. Zhang, T. Wu et al., Directly visualizing and exploring local heterointerface with high electro-catalytic activity. Nano Energy 78, 105236 (2020). https://doi.org/10.1016/j.nanoen.2020.105236
- X.T. Li, W.J. Ke, B. Traore, P.J. Guo, I. Hadar et al., Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141(32), 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
- M. Safdari, D. Phuyal, B. Philippe, P.H. Svensson, S.M. Butorin et al., Impact of synthetic routes on the structural and physical properties of butyl-1,4-diammonium lead iodide semiconductors. J. Mater. Chem. A 5(23), 11730–11738 (2017). https://doi.org/10.1039/c6ta10123b
- M. Safdari, P.H. Svensson, M.T. Hoang, I. Oh, L. Kloo et al., Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. J. Mater. Chem. A 4(40), 15638–15646 (2016). https://doi.org/10.1039/c6ta05055g
- H. Ren, S.D. Yu, L.F. Chao, Y.D. Xia, Y.H. Sun et al., Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14(3), 154 (2020). https://doi.org/10.1038/s41566-019-0572-6
- S. Yu, Y.J. Yan, M. Abdellah, T. Pullerits, K.B. Zheng et al., Nonconfinement structure revealed in Dion–Jacobson type quasi-2D perovskite expedites interlayer charge transport. Small 15(49), 1905081 (2019). https://doi.org/10.1002/smll.201905081
- E. Mahal, S.C. Mandal, B. Pathak, Band edge engineering of 2D perovskite structures through spacer cation engineering for solar cell applications. J. Phys. Chem. C 126(23), 9937–9947 (2022). https://doi.org/10.1021/acs.jpcc.2c01840
- B.D. Lee, J.W. Lee, M. Kim, W.B. Park, K.S. Sohn, Discovery of Pb-free hybrid organic-inorganic 2D perovskites using a stepwise optimization strategy. NPJ Comput. Mater. 8(1), 83 (2022). https://doi.org/10.1038/s41524-022-00781-z
- Y. Wei, B.Q. Chen, F. Zhang, Y.Y. Tian, X.C. Yang et al., Compositionally designed 2D Ruddlesden-Popper perovskites for efficient and stable solar cells. Sol. RRL 5(4), 2000661 (2021). https://doi.org/10.1002/solr.202000661
- Z.H. Liu, L. Wang, X.Y. Xie, C.Y. Xu, J.F. Tang et al., High-performance Ruddlesden-Popper two-dimensional perovskite solar cells via solution processed inorganic charge transport layers. Phys. Chem. Chem. Phys. 24(26), 15912–15919 (2022). https://doi.org/10.1039/d2cp02033e
- M. Rahil, R.M. Ansari, C. Prakash, S.S. Islam, A. Dixit et al., Ruddlesden-Popper 2D perovskites of type (C6H9C2H4NH3)(2) (CH3NH3)(n-1)PbnI3n+1(n=1-4) for optoelectronic applications. Sci. Rep. 12(1), 2176 (2022). https://doi.org/10.1038/s41598-022-06108-8
- W.J. Ke, C.C. Stoumpos, I. Spanopoulos, M. Chen, M.R. Wasielewski et al., Diammonium cations in the FASnI(3) perovskite structure lead to lower dark currents and more efficient solar cells. ACS Energy Lett. 3(7), 1470–1476 (2018). https://doi.org/10.1021/acsenergylett.8b00687
- B. Ma, J.W. Chen, M.H. Wang, X. Xu, J. Qian et al., Passivating charged defects with 1,6-hexamethylenediamine to realize efficient and stable tin-based perovskite solar cells. J. Phys. Chem. C 124(30), 16289–16299 (2020). https://doi.org/10.1021/acs.jpcc.0c03401
- H.Y. Fu, Dion–Jacobson halide perovskites for photovoltaic and photodetection applications. J. Mater. Chem. C 9(20), 6378–6394 (2021). https://doi.org/10.1039/d1tc01061a
- L. Zhang, Q. Kang, Y.P. Song, D. Chi, S.H. Huang et al., Grain boundary passivation with Dion–Jacobson phase perovskites for high-performance Pb-Sn mixed narrow-bandgap perovskite solar cells. Sol. RRL 5(4), 2000681 (2021). https://doi.org/10.1002/solr.202000681
- C. Hanmandlu, A. Singh, K.M. Boopathi, C.S. Lai, C.W. Chu, Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells. Rep. Prog. Phys. 83(8), 086502 (2020). https://doi.org/10.1088/1361-6633/ab9f88
- T.Q. Niu, Q.F. Xue, H.L. Yip, Advances in Dion–Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics 10(8), 2069–2102 (2021). https://doi.org/10.1515/nanoph-2021-0052
- W.J. Ke, C. Chen, I. Spanopoulos, L.L. Mao, I. Hadar et al., Narrow-bandgap mixed lead/tin-based 2D Dion–Jacobson perovskites boost the performance of solar cells. J. Am. Chem. Soc. 142(35), 15049–15057 (2020). https://doi.org/10.1021/jacs.0c06288
- Y.L. Zhang, N.G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
- J.M. Yang, S.B. Xiong, J.N. Song, H.B. Wu, Y.H. Zeng et al., Energetics and energy loss in 2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. 10(23), 2000687 (2020). https://doi.org/10.1002/aenm.202000687
- P.W. Li, C. Liang, X.L. Liu, F.Y. Li, Y.Q. Zhang et al., Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv. Mater. 31(35), 1901966 (2019). https://doi.org/10.1002/adma.201901966
- T. Duong, H. Pham, T.C. Kho, P. Phang, K.C. Fong et al., High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10(9), 1903553 (2020). https://doi.org/10.1002/aenm.201903553
- N.E. Wright, X.X. Qin, J.W. Xu, L.L. Kelly, S.P. Harvey et al., D. Stiff-Roberts. Influence of annealing and composition on the crystal structure of mixed-halide, Ruddlesden-Popper perovskites. Chem. Mater. 34(7), 3109–3122 (2022). https://doi.org/10.1021/acs.chemmater.1c04213
- Z. Wang, X.D. Liu, H. Ren, L. Liu, X.Y. Tang et al., Insight into the enhanced charge transport in quasi-2D perovskite via fluorination of ammonium cations for photovoltaic applications. ACS Appl. Mater. Interfaces 14(6), 7917–7925 (2022). https://doi.org/10.1021/acsami.1c21715
- C.Q. Ma, M.F. Lo, C.S. Lee, A simple method for phase control in two-dimensional perovskite solar cells. J. Mater. Chem. A 6(39), 18871–18876 (2018). https://doi.org/10.1039/c8ta06976j
- S. Ahmad, W. Yu, R.X. Lu, Y. Liu, T.G. Jiu et al., Formamidinium-incorporated Dion–Jacobson phase 2D perovskites for highly efficient and stable photovoltaics. J. Energy Chem. 57, 632–638 (2021). https://doi.org/10.1016/j.jechem.2020.08.055
- P.Y. Su, L. Bai, H. Bi, B.B. Liu, D.M. He et al., Crystal orientation modulation and defect passivation for efficient and stable methylammonium-free Dion–Jacobson quasi-2D perovskite solar cells. ACS Appl. Mater. Interfaces 13(25), 29567–29575 (2021). https://doi.org/10.1021/acsami.1c05498
- Y.J. Chen, J.L. Hu, Z.H. Xu, Z.Y. Jiang, S. Chen et al., Managing phase orientation and crystallinity of printed Dion–Jacobson 2D perovskite layers via controlling crystallization kinetics. Adv. Funct. Mater. 32(19), 2112146 (2022). https://doi.org/10.1002/adfm.202112146
- S. Aharon, D.R. Ceratti, N.P. Jasti, L. Cremonesi, Y. Feldman et al., 2D Pb-halide perovskites can self-heal photodamage better than 3D ones. Adv. Funct. Mater. 32(24), 2113354 (2022). https://doi.org/10.1002/adfm.202113354
- S.M. Yang, W.D. Liu, Y. Han, Z.K. Liu, W.J. Zhao et al., 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 10(46), 2002882 (2020). https://doi.org/10.1002/aenm.202002882
- Y. Guo, M.Y. Sun, W.J. Yang, S.Y. Yuan, H. Xiong et al., Enhanced charge transport by regulating the electronic structure in 2D tin-based perovskite solar cells. J. Phys. Chem. C 126(22), 9425–9436 (2022). https://doi.org/10.1021/acs.jpcc.2c02830
- C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traore, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)(3))(CH3NH3)(n)PbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139(45), 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
- Y.L. Zhang, P.J. Wang, M.C. Tang, D. Barrit, W.J. Ke et al., Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J. Am. Chem. Soc. 141(6), 2684–2694 (2019). https://doi.org/10.1021/jacs.8b13104
- G.J. Yan, G.M. Sui, W.T. Chen, K. Su, Y.Q. Feng et al., Selectively fluorinated benzylammonium-based spacer cation enables graded quasi-2D perovskites for efficient and stable solar cells. Chem. Mater. 34(7), 3346–3356 (2022). https://doi.org/10.1021/acs.chemmater.2c00146
- S. Chen, N. Shen, L.H. Zhang, L.Z. Zhang, S.H. Cheung et al., Understanding the interplay of binary organic spacer in Ruddlesden-Popper perovskites toward efficient and stable solar cells. Adv. Funct. Mater. 30(10), 1907759 (2020). https://doi.org/10.1002/adfm.201907759
- H. Gu, C. Liang, Y.D. Xia, Q. Wei, T.H. Liu et al., Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy 65, 104050 (2019). https://doi.org/10.1016/j.nanoen.2019.104050
- T.Y. Xu, S. Lu, Y.J. Wang, X.Y. Gan, L.L. Guo et al., Optimization of multilayered Ruddlesden-Popper perovskite with 4-bromophenylethylamine by ionic liquid for solar cell applications. J. Mater. Sci. 57(16), 7896–7908 (2022). https://doi.org/10.1007/s10853-022-07154-3
- W.B. Ma, Z.L. Zhang, M. Kang, Y.F. Liu, H.F. Zhang et al., Enhanced efficiency and stability of Dion–Jacobson quasi-two-dimensional perovskite solar cells by additive. J. Phys. D 55(41), 414002 (2022). https://doi.org/10.1088/1361-6463/ac84e8
- S. Ahmad, R. Lu, Y. Liu, X. Liu, Q. Yang et al., Cesium-doped Dion–Jacobson 2D perovskites for highly stable photovoltaics with an 18.3% efficiency. Nano Energy 103, 107822 (2022). https://doi.org/10.1016/j.nanoen.2022.107822
- G. Huang, J. Chen, B. Wang, Q. Cheng, Y. Li et al., Solvent effect on film formation and trap states of two-dimensional Dion–Jacobson perovskite. Nano Lett. 22(18), 7545–7553 (2022). https://doi.org/10.1021/acs.nanolett.2c02533
- G.X. Ren, C. Yan, L.A. Xiao, X. Wu, S.C. Peng et al., Additive-induced film morphology evolution for inverted Dion–Jacobson quasi-two-dimensional perovskite solar cells with enhanced performance. ACS Appl. Energy Mater. 5(8), 9837–9845 (2022). https://doi.org/10.1021/acsaem.2c01559
- M.C. Gelvez-Rueda, P. Ahlawat, L. Merten, F. Jahanbakhshi, M. Mladenovic et al., Formamidinium-based Dion–Jacobson layered hybrid perovskites: structural complexity and optoelectronic properties. Adv. Funct. Mater. 30(38), 2003428 (2020). https://doi.org/10.1002/adfm.202003428
References
B. Dahal, W. Li, Configuration of methylammonium lead iodide perovskite solar cell and its effect on the device’s performance: a review. Adv. Mater. Interfaces 9(19), 2200042 (2022). https://doi.org/10.1002/admi.202200042
Q. Dou, T. Whatley, T. Syed, W. Wei, H. Wang, Carbon nanomaterials-polymer composites for perovskite solar cells: preparation, properties and applications. J. Mater. Chem. A 10(37), 19211–19230 (2022). https://doi.org/10.1039/d2ta02175g
E.C. Kohlrausch, D.d.V. Freitas, C.I. da Silva Filho, L.F. Loguercio, L.A. Santa-Cruz et al., Advances in carbon materials applied to carbon-based perovskite solar cells. Energy Technol. 2200676 (2023). https://doi.org/10.1002/ente.202200676
X. Luo, X. Lin, F. Gao, Y. Zhao, X. Li et al., Recent progress in perovskite solar cells: from device to commercialization. Sci. China-Chem. 65(12), 2369–2416 (2022). https://doi.org/10.1007/s11426-022-1426-x
D. Sharma, R. Mehra, B. Raj, Comparative study of hole transporting layers commonly used in high-efficiency perovskite solar cells. J. Mater. Sci. 57(45), 21172–21191 (2022). https://doi.org/10.1007/s10853-022-07958-3
F. Zhu, G. Lian, B.C. Yu, T. Zhang, L. Zhang et al., Pressure-enhanced vertical orientation and compositional control of Ruddlesden-Popper perovskites for efficient and stable solar cells and self-powered photodetectors. ACS Appl. Mater. Interfaces 14(1), 1526–1536 (2022). https://doi.org/10.1021/acsami.1c18522
D.M. Zheng, C. Schwob, Y. Prado, Z. Ouzit, L. Coolen et al., How do gold nanops boost the performance of perovskite solar cells? Nano Energy 94, 106934 (2022). https://doi.org/10.1016/j.nanoen.2022.106934
D. Zheng, F. Raffin, P. Volovitch, T. Pauporte, Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures. Nat. Commun. 13(1), 6655 (2022). https://doi.org/10.1038/s41467-022-34332-3
C. Liang, H. Gu, Y.D. Xia, Z. Wang, X.T. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6(1), 38 (2021). https://doi.org/10.1038/s41560-020-00721-5
Z.Q. Li, J.J. Dong, C.Y. Liu, J.X. Guo, L. Shen et al., Surface passivation of perovskite solar cells toward improved efficiency and stability. Nano-Micro Lett. 11(1), 50 (2019). https://doi.org/10.1007/s40820-019-0282-0
Y.W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6(1), 63 (2021). https://doi.org/10.1038/s41560-020-00749-7
Q. Dai, Q. Ling, L. Huang, X. Liu, H. Zhang et al., Regulating radial morphology in hot-casting two-dimensional ruddlesden-popper perovskite film growth for high-efficient photovoltaics. ACS Appl. Energy Mater. 6(3), 1585–1594 (2023). https://doi.org/10.1021/acsaem.2c03458
P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu et al., Dredging the charge-carrier transfer pathway for efficient low-dimensional ruddlesden-popper perovskite solar cells. Angew. Chem. Int. Ed. 62(13), e202217910 (2023). https://doi.org/10.1002/anie.202217910
J.S. Du, D. Shin, T.K. Stanev, C. Musumeci, Z. Xie et al., Halide perovskite nanocrystal arrays: multiplexed synthesis and size-dependent emission. Sci. Adv. 6(39), eabc4959 (2020). https://doi.org/10.1126/sciadv.abc4959
W.J. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13(1), 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
J. Xu, J. Chen, S. Chen, H. Gao, Y. Li et al., Organic spacer engineering of ruddlesden-popper perovskite materials toward efficient and stable solar cells. Chem. Eng. J. 453(1), 139790 (2023). https://doi.org/10.1016/j.cej.2022.139790
N. Zhou, H.P. Zhou, Spacer organic cation engineering for quasi-2D metal halide perovskites and the optoelectronic application. Small Struct. 3(7), 2100232 (2022). https://doi.org/10.1002/sstr.202100232
L.F. Yan, J.J. Ma, P.W. Li, S.Q. Zang, L.Y. Han et al., Charge-carrier transport in quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Mater. 34(7), 2106822 (2022). https://doi.org/10.1002/adma.202106822
J.M. Hoffman, C.D. Malliakas, S. Sidhik, I. Hadar, R. McClain et al., Long periodic ripple in a 2D hybrid halide perovskite structure using branched organic spacers. Chem. Sci. 11(44), 12139–12148 (2020). https://doi.org/10.1039/d0sc04144k
L.L. Xu, G.Y. Liu, H.Y. Xiang, R. Wang, Q.S. Shan et al., Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: from materials to devices. Appl. Phys. Rev. 9(2), 021308 (2022). https://doi.org/10.1063/5.0080087
T. Zhu, D.M. Zheng, J.W. Liu, L. Coolen, T. Pauporte, Peai-based interfacial layer for high-efficiency and stable solar cells based on a macl-mediated grown FA(0.94)MA(0.06)PbI(3) perovskite. ACS Appl. Mater. Interfaces 12(33), 37197–37207 (2020). https://doi.org/10.1021/acsami.0c09970
Z.Y. Xu, L. Li, X.Y. Dong, D. Lu, R. Wang et al., CsPbl(3)-based phase-stable 2D Ruddlesden-Popper perovskites for efficient solar cells. Nano Lett. 22(7), 2874–2880 (2022). https://doi.org/10.1021/acs.nanolett.2c00002
P. Acharyya, T. Ghosh, K. Pal, K. Kundu, K.S. Rana et al., Intrinsically ultralow thermal conductivity in Ruddlesden-Popper 2D perovskite Cs2PbI2Cl2: localized anharmonic vibrations and dynamic octahedral distortions. J. Am. Chem. Soc. 142(36), 15595–15603 (2020). https://doi.org/10.1021/jacs.0c08044
M.D. Malouangou, Y.F. Yang, Y.J. Zhang, L.Y. Bai, J.T. Matondo et al., Recent progress in perovskite materials using diammonium organic cations toward stable and efficient solar cell devices: Dion–Jacobson. Energy Technol. 10(5), 2101155 (2022). https://doi.org/10.1002/ente.202101155
Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Long. Highly efficient and stable FA-based quasi-2D Ruddlesden-Popper perovskite solar cells by the incorporation of beta-fluorophenylethanamine cations. Adv. Mater. e2210836 (2023). https://doi.org/10.1002/adma.202210836
M.C. Shih, H.C. Hsu, C.C. Lin, S.K. Huang, T.P. Chen et al., Atomically resolved quantum-confined electronic structures at organic-inorganic interfaces of two-dimensional Ruddlesden-Popper halide perovskites. Nano Lett. 21(19), 8066–8072 (2021). https://doi.org/10.1021/acs.nanolett.1c02409
N.L. Chen, X.H. Yi, J. Zhuang, Y.Z. Wei, Y.Y. Zhang et al., An efficient trap passivator for perovskite solar cells: Poly(propylene glycol) bis(2-aminopropyl ether). Nano-Micro Lett. 12(1), 177 (2020). https://doi.org/10.1007/s40820-020-00517-y
M. Chen, Z. Shan, X. Dong, S.F. Liu, Z. Xu, Discovering layered lead-free perovskite solar absorbers via cation transmutation. Nanoscale Horiz. (2023). https://doi.org/10.1039/d2nh00499b
W. Deng, F. Wan, X. Peng, X. Ren, J. Wang et al., Super hydrophilic, ultra bubble repellent substrate for pinhole free Dion–Jacobson perovskite solar cells. Appl. Phys. Lett. 121(23), (2022). https://doi.org/10.1063/5.0127262
N. Li, Y.F. Yang, Z.H. Shi, Z.G. Lan, A. Arramel et al., Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. Iscience 25(2), 103753 (2022). https://doi.org/10.1016/j.isci.2022.103753
F. Cheng, J. Zhang, T. Pauporte, Chlorides, other halides, and pseudo-halides as additives for the fabrication of efficient and stable perovskite solar. Chemsuschem 14(18), 3665–3692 (2021). https://doi.org/10.1002/cssc.202101089
D.M. Zheng, T. Pauporte, Control of the quality and homogeneity of halide perovskites by mixed-chloride additives upon the film formation process. J. Mater. Chem. A 9(33), 17801–17811 (2021). https://doi.org/10.1039/d1ta04651a
L.L. Gao, X.T. Li, B. Traore, Y.L. Zhang, J. Fang et al., M-phenylenediammonium as a new spacer for Dion–Jacobson two-dimensional perovskites. J. Am. Chem. Soc. 143(31), 12063–12073 (2021). https://doi.org/10.1021/jacs.1c03687
Y.P. Fu, X.Y. Jiang, X.T. Li, B. Traore, I. Spanopoulos et al., Cation engineering in two-dimensional Ruddlesden-Popper lead iodide perovskites with mixed large a-site cations in the cages. J. Am. Chem. Soc. 142(8), 4008–4021 (2020). https://doi.org/10.1021/jacs.9b13587
R.L.Z. Hoye, J. Hidalgo, R.A. Jagt, J.P. Correa-Baena, T. Fix et al., The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater. 12(4), 2100499 (2022). https://doi.org/10.1002/aenm.202100499
X. Guo, Y. Gao, F. Long, L. Lin, Y. Wang et al., The interplay of organic spacers and small cations for efficient Dion–Jacobson perovskite solar cells. Sol. RRL 2201021 (2023). https://doi.org/10.1002/solr.202201021
Yukta, R.D. Chavan, D. Prochowicz, P. Yadav, M.M. Tavakoli et al., Thiocyanate-passivated diaminonaphthalene-incorporated Dion–Jacobson perovskite for highly efficient and stable solar cells. ACS Appl. Mater. Interfaces 14(1), 850–860 (2022). https://doi.org/10.1021/acsami.1c19546
H.H. Yao, G.Q. Peng, Z.Z. Li, Q. Wang, Y.K. Xu et al., Fine coverage and uniform phase distribution in 2D (PEA)(2)Cs3Pb4I13 solar cells with a record efficiency beyond 15%. Nano Energy 92, 106790 (2022). https://doi.org/10.1016/j.nanoen.2021.106790
H.M. Xiang, P.Y. Liu, R. Ran, W. Wang, W. Zhou et al., Two-dimensional Dion–Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renew. Sust. Energ. Rev. 166, 112614 (2022). https://doi.org/10.1016/j.rser.2022.112614
X.J. Wang, Y. Zhao, L. Bin, X.F. Han, Z.M. Jin et al., Interfacial modification via a 1,4-butanediamine-based 2D capping layer for perovskite solar cells with enhanced stability and efficiency. ACS Appl. Mater. Interfaces 14(20), 22879–22888 (2022). https://doi.org/10.1021/acsami.1c21036
J. Lu, T.H. Yang, T.Q. Niu, N. Bu, Y.L. Zhang et al., Formamidinium-based Ruddlesden-Popper perovskite films fabricated via two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy Environ. Sci. 15(3), 1144–1155 (2022). https://doi.org/10.1039/d1ee02851k
R. Shi, R. Long, W.-H. Fang, O.V. Prezhdo, Rapid interlayer charge separation and extended carrier lifetimes due to spontaneous symmetry breaking in organic and mixed organic-inorganic Dion–Jacobson perovskites. J. Am. Chem. Soc. 145(9), 5297–5309 (2023). https://doi.org/10.1021/jacs.2c12903
Ul Haq, G. Rehman, I. Ahmad, H.A. Yakout, I. Khan, Lead-free Dion–Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and x, y = Cl, Br, I) used for optoelectronic applications via first principle calculations. J. Phys. Chem. Solids 174, 111157 (2023). https://doi.org/10.1016/j.jpcs.2022.111157
A. Ummadisingu, A. Mishra, D.J. Kubicki, T. LaGrange, A. Ducinskas et al., Multi-length scale structure of 2D/3D Dion–Jacobson hybrid perovskites based on an aromatic diammonium spacer. Small 18(5), 2104287 (2022). https://doi.org/10.1002/smll.202104287
L. Gollino, T. Pauporte, Lead-less halide perovskite solar cells. Sol. RRL 5(3), 2000616 (2021). https://doi.org/10.1002/solr.202000616
Q. Sun, Z. Fang, Y.P. Zheng, Z.B. Yang, F. Hu et al., Regulating the phase stability and bandgap of quasi-2D Dion–Jacobson CsSnI3 perovskite via intercalating organic cations. J. Mater. Chem. A 10(8), 3996–4005 (2022). https://doi.org/10.1039/d1ta10246j
Z.F. Shi, Z.Y. Ni, J.S. Huang, Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett. 7(3), 984–987 (2022). https://doi.org/10.1021/acsenergylett.2c00098
J. Xi, J. Byeon, U. Kim, K. Bang, G.R. Han et al., Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden-Popper perovskite solar cells. Energy Environ. Sci. 14(9), 4915–4925 (2021). https://doi.org/10.1039/d1ee00984b
P. Kour, M.C. Reddy, S. Pal, S. Sidhik, T. Das et al., An organic-inorganic perovskitoid with zwitterion cysteamine linker and its crystal-crystal transformation to Ruddlesden-Popper phase. Angew. Chem. Int. Ed. 60(34), 18750–18760 (2021). https://doi.org/10.1002/anie.202105918
J. Gong, M.W. Hao, Y.L. Zhang, M.Z. Liu, Y.Y. Zhou, Layered 2D halide perovskites beyond the Ruddlesden-Popper phase: tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 61(10), e202112022 (2022). https://doi.org/10.1002/anie.202112022
Y.-C. Liu, J.-T. Lin, Y.-L. Lee, C.-M. Hung, T.-C. Chou et al., Recognizing the importance of fast nonisothermal crystallization for high-performance two-dimensional Dion–Jacobson perovskite solar cells with high fill factors: a comprehensive mechanistic study. J. Am. Chem. Soc. 144(33), 14897–14906 (2022). https://doi.org/10.1021/jacs.2c06342
M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2d perovskite solar cells. Adv. Mater. 34(1), e2107211 (2022). https://doi.org/10.1002/adma.202107211
S. Chen, G.Q. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29(24), 1605448 (2017). https://doi.org/10.1002/adma.201605448
J. Wu, H. Zeng, Y. Li, Z. Jiang, C. Liu, J. Zhang et al., Tailoring two-dimensional ruddlesden-popper perovskite via 1D perovskitoid enables efficient and stable solar cells. ACS Energy Lett. 8(1), 637–646 (2022). https://doi.org/10.1021/acsenergylett.2c02373
F.U. Kosasih, C. Ducati, Attaining high photovoltaic efficiency and stability with multidimensional perovskites. Chemsuschem 11(24), 4193–4202 (2018). https://doi.org/10.1002/cssc.201801905
C. Liang, D.D. Zhao, Y. Li, X.J. Li, S.M. Peng et al., Ruddlesden-Popper perovskite for stable solar cells. Energy Environ. Sci. 1(4), 221–231 (2018). https://doi.org/10.1002/eem2.12022
L. Cheng, Z. Liu, S.D. Li, Y.F. Zhai, X. Wang et al., Highly thermostable and efficient formamidinium-based low-dimensional perovskite solar cells. Angew. Chem. Int. Ed. 60(2), 856–864 (2021). https://doi.org/10.1002/anie.202006970
L.N. Quan, F.P.G. de Arquer, R.P. Sabatini, E.H. Sargent, Perovskites for light emission. Adv. Mater. 30(45), 1801996 (2018). https://doi.org/10.1002/adma.201801996
X.P. Gao, X.T. Zhang, W.X. Yin, H. Wang, Y. Hu et al., Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications. Adv. Sci. 6(22), 1900941 (2019). https://doi.org/10.1002/advs.201900941
X.Q. Jiang, J.F. Zhang, S. Ahmad, D.D. Tu, X. Liu et al., Dion–Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy 75, 104892 (2020). https://doi.org/10.1016/j.nanoen.2020.104892
A. Leblanc, N. Mercier, M. Allain, J. Dittmer, V. Fernandez et al., Lead- and iodide-deficient (CH(3) NH(3) )PbI(3) (d-MAPI): the bridge between 2D and 3D hybrid perovskites. Angew. Chem. Int. Ed. 56(50), 16067–16072 (2017). https://doi.org/10.1002/anie.201710021
A. Krishna, S. Gottis, M.K. Nazeeruddin, F. Sauvage, Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv. Funct. Mater. 29(8), 1806482 (2019). https://doi.org/10.1002/adfm.201806482
P. Fu, Y. Liu, S.W. Yu, H. Yin, B.W. Yang et al., Dion–Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells. Nano Energy 88, 106249 (2021). https://doi.org/10.1016/j.nanoen.2021.106249
F.A. Roghabadi, M. Alidaei, S.M. Mousavi, T. Ashjari, A.S. Tehrani et al., Stability progress of perovskite solar cells dependent on the crystalline structure: from 3D ABX(3) to 2D Ruddlesden-Popper perovskite absorbers. J. Mater. Chem. A 7(11), 5898–5933 (2019). https://doi.org/10.1039/c8ta10444a
G.B. Wu, T.H. Yang, X. Li, N. Ahmad, X.N. Zhang, S.L. Yue et al., Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%. Matter 4(2), 582–599 (2021). https://doi.org/10.1016/j.matt.2020.11.011
X.X. Tian, Y.Z. Zhang, R.K. Zheng, D. Wei, J.Q. Liu, Two-dimensional organic-inorganic hybrid Ruddlesden-Popper perovskite materials: preparation, enhanced stability, and applications in photodetection. Sustain. Energy Fuels 4(5), 2087–2113 (2020). https://doi.org/10.1039/c9se01181a
P.P. Sun, D.R. Kripalani, W.J. Chi, S.A. Snyder, K. Zhou, High carrier mobility and remarkable photovoltaic performance of two-dimensional Ruddlesden-Popper organic-inorganic metal halides (PA)(2)(MA)(2)M3I10 for perovskite solar cell applications. Mater. Today 47, 45–52 (2021). https://doi.org/10.1016/j.mattod.2021.02.007
J. Xi, I. Spanopoulos, K. Bang, J. Xu, H. Dong et al., Alternative organic spacers for more efficient perovskite solar cells containing Ruddlesden-Popper phases. J. Am. Chem. Soc. 142(46), 19705–19714 (2020). https://doi.org/10.1021/jacs.0c09647
Y. Zhao, F. Ma, F. Gao, Z.G. Yin, X.W. Zhang et al., Research progress in large-area perovskite solar cells. Photonics Res. 8(7), A1–A15 (2020). https://doi.org/10.1364/prj.392996
L.L. Gao, J.X. You, S.Z. Liu, Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. J. Energy Chem. 57, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.08.0222095-4956/
M.S. de Holanda, R.F. Moral, P.E. Marchezi, F.C. Marques, A.F. Nogueira, Layered metal halide perovskite solar cells: a review from structure-properties perspective towards maximization of their performance and stability. Ecomat 3(4), e12124 (2021). https://doi.org/10.1002/eom2.12124
X. Bao, Y. Gao, Y. Liu, Z. Xu, F. Zhang et al., Molecular bridging strategy enables high performance and stable quasi-2D perovskite light-emitting devices. ACS Energy Lett. 8(2), 1018–1025 (2023). https://doi.org/10.1021/acsenergylett.2c02877
W. Guo, Z. Yang, J.L. Dang, M.Q. Wang, Progress and perspective in Dion–Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy 86, 106129 (2021). https://doi.org/10.1016/j.nanoen.2021.106129
X.T. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
P.Y. Liu, N. Han, W. Wang, R. Ran, W. Zhou et al., High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 33(10), 2002582 (2021). https://doi.org/10.1002/adma.202002582
J.V. Milic, S.M. Zakeeruddin, M. Gratzel, Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc. Chem. Res. 54(12), 2729–2740 (2021). https://doi.org/10.1021/acs.accounts.0c00879
M. Righetto, D. Giovanni, S.S. Lim, T.C. Sum, The photophysics of Ruddlesden-Popper perovskites: a tale of energy, charges, and spins. Appl. Phys. Rev. 8(1), 011318 (2021). https://doi.org/10.1063/5.0031821
G.B. Wu, R. Liang, Z.P. Zhang, M.Z. Ge, G.C. Xing et al., 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small 17(43), 2000395 (2021). https://doi.org/10.1002/smll.202103514
Q.L. Cao, P.W. Li, W. Chen, S.Q. Zang, L.Y. Han et al., Two-dimensional perovskites: impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
H.L. Loi, J.P. Cao, X.Y. Guo, C.K. Liu, N.X. Wang et al., Gradient 2D/3D perovskite films prepared by hot-casting for sensitive photodetectors. Adv. Sci. 7(14), 2000776 (2020). https://doi.org/10.1002/advs.202000776
S.W. Cui, J.F. Wang, H.P. Xie, Y. Zhao, Z.M. Li et al., Rubidium ions enhanced crystallinity for Ruddlesden-Popper perovskites. Adv. Sci. 7(24), 2002445 (2020). https://doi.org/10.1002/advs.202002445
Y. Kusumawati, M.A. Martoprawiro, T. Pauporté, Effects of graphene in graphene/TiO2 composite films applied to solar cell photoelectrode. J. Phys. Chem. C 118(19), 9974–9981 (2014). https://doi.org/10.1021/jp502385p
L.L. Mao, W.J. Ke, L. Pedesseau, Y.L. Wu, C. Katan et al., Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
S. Liu, Y.J. Guan, Y.S. Sheng, Y. Hu, Y.G. Rong et al., A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10(13), 1902492 (2020). https://doi.org/10.1002/aenm.201902492
Z.Y. Xu, D. Lu, X.Y. Dong, M.Q. Chen, Q. Fu et al., Highly efficient and stable Dion–Jacobson perovskite solar cells enabled by extended pi-conjugation of organic spacer. Adv. Mater. 33(51), 2105083 (2021). https://doi.org/10.1002/adma.202105083
R. Shi, Z.S. Zhang, W.H. Fang, R. Long, Charge localization control of electron-hole recombination in multilayer two-dimensional Dion–Jacobson hybrid perovskites. J. Mater. Chem. A 8(18), 9168–9176 (2020). https://doi.org/10.1039/d0ta01944e
K. Hojo, S. Nishioka, Y. Miseki, Y. Kamakura, T. Oshima et al., An improved z-scheme for overall water splitting using dye-sensitized calcium niobate nanosheets synthesized by a flux method. ACS Appl. Energy Mater. 4(9), 10145–10152 (2021). https://doi.org/10.1021/acsaem.1c02050
Z. Fang, X.M. Hou, Y.P. Zheng, Z.B. Yang, K.C. Chou et al., First-principles optimization of out-of-plane charge transport in Dion–Jacobson CsPbI3 perovskites with pi-conjugated aromatic spacers. Adv. Funct. Mater. 31(28), 2102330 (2021). https://doi.org/10.1002/adfm.202102330
H. Li, Y. Xu, S. Ramakrishnan, Y. Zhang, M. Cotlet et al., Pseudo-halide anion engineering for efficient quasi-2D Ruddlesden-Popper tin perovskite solar cells. Cell Rep. Phys. Sci. 3(10), (2022). https://doi.org/10.1016/j.xcrp.2022.101060
X. Zhang, T.H. Yang, X.D. Ren, L. Zhang, K. Zhao et al., Film formation control for high performance Dion–Jacobson 2D perovskite solar cells. Adv. Energy Mater. 11(19), 2002733 (2021). https://doi.org/10.1002/aenm.202002733
Y.Q. Liu, L.K. Ono, G.Q. Tong, T.L. Bu, H. Zhang et al., Spectral stable blue-light-emitting diodes via asymmetric organic diamine based Dion–Jacobson perovskites. J. Am. Chem. Soc. 143(47), 19711–19718 (2021). https://doi.org/10.1021/jacs.1c07757
W.J. Ke, C.C. Stoumpos, M.H. Zhu, L.L. Mao, I. Spanopoulos et al., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI(3). Sci. Adv. 3(8), e1701293 (2017). https://doi.org/10.1126/sciadv.1701293
D.X. Li, Z. Xing, L. Huang, X.C. Meng, X.T. Hu et al., Spontaneous formation of upper gradient 2D structure for efficient and stable quasi-2D perovskites. Adv. Mater. 33(34), 2101823 (2021). https://doi.org/10.1002/adma.202101823
B.E. Cohen, T. Binyamin, T. Ben-Tzvi, O. Goldberg, A. Schlesinger et al., Hydroxyl functional groups in two-dimensional Dion–Jacobson perovskite solar cells. ACS Energy Lett. 7(1), 217–225 (2022). https://doi.org/10.1021/acsenergylett.1c01990
I.H. Park, Q.N. Zhang, K.C. Kwon, Z.Y. Zhu, W. Yu et al., Ferroelectricity and rashba effect in a two-dimensional Dion–Jacobson hybrid organic-inorganic perovskite. J. Am. Chem. Soc. 141(40), 15972–15976 (2019). https://doi.org/10.1021/jacs.9b07776
H.T. Lai, D. Lu, Z.Y. Xu, N. Zheng, Z.Q. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32(33), 2001470 (2020). https://doi.org/10.1002/adma.202001470
S. Ahmad, P. Fu, S.W. Yu, Q. Yang, X. Liu et al., Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3(3), 794–806 (2019). https://doi.org/10.1016/j.Joule2018.11.026
W.C. Zhang, X.X. Wu, J. Zhou, B. Han, X.F. Liu et al., Pseudohalide-assisted growth of oriented large grains for high-performance and stable 2D perovskite solar cells. ACS Energy Lett. 7(5), 1842–1849 (2022). https://doi.org/10.1021/acsenergylett.2c00485
H.Y. Zheng, W.W. Wu, H.F. Xu, F.C. Zheng, G.Z. Liu et al., Self-additive low-dimensional Ruddlesden-Popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30(15), 2000034 (2020). https://doi.org/10.1002/adfm.202000034
T.W. He, S.S. Li, Y.Z. Jiang, C.C. Qin, M.H. Cui et al., Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11(1), 1672 (2020). https://doi.org/10.1038/s41467-020-15451-1
D. Lu, G.W. Lv, Z.Y. Xu, Y.X. Dong, X.F. Ji et al., Thiophene-based two-dimensional Dion–Jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2020). https://doi.org/10.1021/jacs.0c03363
P.W. Li, X.L. Liu, Y.Q. Zhang, C. Liang, G.S. Chen et al., Low-dimensional Dion–Jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability. Angew. Chem. Int. Ed. 59(17), 6909–6914 (2020). https://doi.org/10.1002/anie.202000460
J. Xiang, X. Li, S. Gong, S. Wang, X. Chen et al., Green-antisolvent-induced homogeneous phase distribution for efficient and stable MA-free 2D perovskite solar cells. Chem. Eng. J. 460, 141758 (2023). https://doi.org/10.1016/j.cej.2023.141758
J.Y. Zhang, S. Langner, J.C. Wu, C. Kupfer, L. Luer et al., Intercalating-organic-cation-induced stability bowing in quasi-2D metal-halide perovskites. ACS Energy Lett. 7(1), 70–77 (2022). https://doi.org/10.1021/acsenergylett.1c02081
H.X. Shi, L. Zhang, H. Huang, Y.L. Ou, X.T. Wang et al., Additive engineering for high-performance two-dimensional Dion–Jacobson Pb-Sn alloyed perovskite solar cells. Energy Technol. 10(12), 2200983 (2022). https://doi.org/10.1002/ente.202200983
X.M. Zhao, T.R. Liu, A.B. Kaplan, C. Yao, Y.L. Loo, Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells. Nano Lett. 20(12), 8880–8889 (2020). https://doi.org/10.1021/acs.nanolett.0c03914
L. Cheng, K. Meng, Z. Qiao, Y.F. Zhai, R.Z. Yu et al., Tailoring interlayer spacers for efficient and stable formamidinium-based low-dimensional perovskite solar cells. Adv. Mater. 34(4), 2106380 (2022). https://doi.org/10.1002/adma.202106380
T.T. Niu, H. Ren, B. Wu, Y.D. Xia, X.J. Xie et al., Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. A 10(10), 2349–2356 (2019). https://doi.org/10.1021/acs.jpclett.9b00750
Y.T. Zheng, T.T. Niu, J. Qiu, L.F. Chao, B.X. Li et al., Oriented and uniform distribution of Dion–Jacobson phase perovskites controlled by quantum well barrier thickness. Sol. RRL 3(9), 1900090 (2019). https://doi.org/10.1002/solr.201900090
L. Jin, N. Ren, P. Wang, R. Li, Q. Xue et al., Secondary anti-solvent treatment for efficient 2D Dion–Jacobson perovskite solar cells. Small 19(3), e2205088 (2023). https://doi.org/10.1002/smll.202205088
H. Wang, C.C.S. Chan, M. Chu, J.S. Xie, S.H. Zhao et al., Interlayer cross-linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling. Sol. RRL 4(4), 1900578 (2020). https://doi.org/10.1002/solr.201900578
C.Q. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), 1800710 (2018). https://doi.org/10.1002/adma.201800710
W.D. Zhao, Q.S. Dong, J.W. Zhang, S. Wang, M. Chen et al., Asymmetric alkyl diamine based Dion–Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%. J. Mater. Chem. A 8(19), 9919–9926 (2020). https://doi.org/10.1039/d0ta02706e
Z. Wang, L. Liu, X.D. Liu, D.D. Song, D. Shi et al., Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 432, 134367 (2022). https://doi.org/10.1016/j.cej.2021.134367
J.F. Wang, D.X. Lin, Y.F. Chen, S.Q. Luo, L.L. Ke et al., Suppressing the excessive solvated phase for Dion–Jacobson perovskites with improved crystallinity and vertical orientation. Sol. RRL 4(11), 2000371 (2020). https://doi.org/10.1002/solr.202000371
D. Wang, S.C. Chen, Q.D. Zheng, Enhancing the efficiency and stability of two-dimensional Dion–Jacobson perovskite solar cells using a fluorinated diammonium spacer. J. Mater. Chem. A 9(19), 11778–11786 (2021). https://doi.org/10.1039/d1ta01447a
E.S. Vasileiadou, X.Y. Jiang, M. Kepenekian, J. Even, M.C. De Siena et al., Thick-layer lead iodide perovskites with bifunctional organic spacers allylammonium and iodopropylammonium exhibiting trap-state emission. J. Am. Chem. Soc. 144(14), 6390–6409 (2022). https://doi.org/10.1021/jacs.2c00571
P.Y. Su, L. Bai, H. Bi, B.B. Liu, S. Chen et al., Interfacial gradient energy band alignment modulation via ion exchange reaction toward efficient and stable methylammonium-free Dion–Jacobson quasi-2D perovskite solar cells. J. Power Sources 506, 230213 (2021). https://doi.org/10.1016/j.jpowsour.2021.230213
J.K. Quan, S.D. Yu, B.Y. Xing, X. He, L.J. Zhang, Two-dimensional Ruddlesden-Popper halide perovskite solar absorbers with short-chain interlayer spacers. Phys. Rev. Mater. 6(6), 065405 (2022). https://doi.org/10.1103/PhysRevMaterials.6.065405
Z.Z. Li, S.W. Yang, C.C. Ye, G. Wang, B. Ma et al., Ordered element distributed C3N quantum dots manipulated crystallization kinetics for 2D CsPbI3 solar cells with ultra-high performance. Small 18(15), 2108090 (2022). https://doi.org/10.1002/smll.202108090
J. Guo, Z.J. Shi, J.M. Xia, K.Y. Wang, Q. Wei et al., Phase tailoring of Ruddlesden-Popper perovskite at fixed large spacer cation ratio. Small 17(43), 2100560 (2021). https://doi.org/10.1002/smll.202100560
C.C. Qin, L.H. Xu, Z.P. Zhou, J. Song, S.H. Ma et al., Carrier dynamics in two-dimensional perovskites: Dion–Jacobson vs. Ruddlesden-Popper thin films. J. Mater. Chem. A 10(6), 3069–3076 (2022). https://doi.org/10.1039/d1ta09549h
W.D. Zhu, J.X. Ma, W.M. Chai, T.J. Han, D.D. Chen et al., Intermediate phase-assisted sequential deposition toward 15.24%-efficiency carbon-electrode CsPbI(2)Br perovskite solar cells. Sol. RRL 6(6), 2200020 (2022). https://doi.org/10.1002/solr.202200020
C.L. Zhou, W.B. Ma, Z.L. Zhang, Y.L. Mao, Effect of anti-solvents on the performance of solar cells based on two-dimensional Ruddlesden-Popper-phase perovskite films. J. Phys. D 55(35), 354004 (2022). https://doi.org/10.1088/1361-6463/ac7267
F.Z. Li, J. Zhang, S. Jo, M.C. Qin, Z. Li et al., Vertical orientated Dion–Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability. Small Methods 4(5), 1900831 (2020). https://doi.org/10.1002/smtd.201900831
F. Zheng, D. Angmo, C.R. Hall, S. Rubanov, F.F. Yuan et al., Brownian tree-shaped dendrites in quasi-2D perovskite films and their impact on photovoltaic performance. Adv. Mater. Interfaces 9(13), 2102231 (2022). https://doi.org/10.1002/admi.202102231
Z.L. Li, Z.T. Deng, A. Johnston, J.W. Luo, H.J. Chen et al., Precursor tailoring enables alkylammonium tin halide perovskite phosphors for solid-state lighting. Adv. Funct. Mater. 32(18), 2111346 (2022). https://doi.org/10.1002/adfm.202111346
H.T. Wu, X.M. Lian, S.X. Tian, Y.Z. Zhang, M.C. Qin et al., Additive-assisted hot-casting free fabrication of Dion–Jacobson 2D perovskite solar cell with efficiency beyond 16%. Sol. RRL 4(7), 2000087 (2020). https://doi.org/10.1002/solr.202000087
H.T. Wu, X.M. Lian, J. Li, Y.Z. Zhang, G.Q. Zhou et al., Merged interface construction toward ultra-low Voc loss in inverted two-dimensional Dion–Jacobson perovskite solar cells with efficiency over 18%. J. Mater. Chem. A 9(21), 12566–12573 (2021). https://doi.org/10.1039/d1ta02015c
S.M. Gowdru, J.C. Lin, S.T. Wang, Y.C. Chen, K.C. Wu et al., Accelerated formation of 2D Ruddlesden-Popper perovskite thin films by lewis bases for high efficiency solar cell applications. Nanomaterials 12(11), 1816 (2022). https://doi.org/10.3390/nano12111816
R.D. Yukta, P. Chavan, S. Yadav, Satapathi, Ammonium thiocyanate-passivated quasi-two-dimensional Dion–Jacobson perovskite solar cells for improved efficiency and stability. ACS Appl. Energy Mater. 5(11), 13723–13734 (2022). https://doi.org/10.1021/acsaem.2c02398
H. Wang, Z.T. Qin, J.S. Xie, S.H. Zhao, K. Liu et al., Efficient slantwise aligned Dion–Jacobson phase perovskite solar cells based on trans-1,4-cyclohexanediamine. Small 16(42), 2003098 (2020). https://doi.org/10.1002/smll.202003098
A. Caiazzo, K. Datta, J.K. Jiang, M.C. Gelvez-Rueda, J.Y. Li et al., Effect of co-solvents on the crystallization and phase distribution of mixed-dimensional perovskites. Adv. Energy Mater. 11(42), 2102144 (2021). https://doi.org/10.1002/aenm.202102144
Y.P. Lv, H.R. Ma, Y.F. Yin, Q.S. Dong, W.D. Zhao et al., NH3(CH2)(6)NH3 PbI4 as Dion–Jacobson phase bifunctional capping layer for 2D/3D perovskite solar cells with high efficiency and excellent UV stability. J. Mater. Chem. A 8(20), 10283–10290 (2020). https://doi.org/10.1039/d0ta02437f
W.J. Ke, L.L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9(10), 1803384 (2019). https://doi.org/10.1002/aenm.201803384
Y. Zheng, C.H. Zhao, Y.F. Li, W.Q. Zhang, T. Wu et al., Directly visualizing and exploring local heterointerface with high electro-catalytic activity. Nano Energy 78, 105236 (2020). https://doi.org/10.1016/j.nanoen.2020.105236
X.T. Li, W.J. Ke, B. Traore, P.J. Guo, I. Hadar et al., Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141(32), 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
M. Safdari, D. Phuyal, B. Philippe, P.H. Svensson, S.M. Butorin et al., Impact of synthetic routes on the structural and physical properties of butyl-1,4-diammonium lead iodide semiconductors. J. Mater. Chem. A 5(23), 11730–11738 (2017). https://doi.org/10.1039/c6ta10123b
M. Safdari, P.H. Svensson, M.T. Hoang, I. Oh, L. Kloo et al., Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. J. Mater. Chem. A 4(40), 15638–15646 (2016). https://doi.org/10.1039/c6ta05055g
H. Ren, S.D. Yu, L.F. Chao, Y.D. Xia, Y.H. Sun et al., Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14(3), 154 (2020). https://doi.org/10.1038/s41566-019-0572-6
S. Yu, Y.J. Yan, M. Abdellah, T. Pullerits, K.B. Zheng et al., Nonconfinement structure revealed in Dion–Jacobson type quasi-2D perovskite expedites interlayer charge transport. Small 15(49), 1905081 (2019). https://doi.org/10.1002/smll.201905081
E. Mahal, S.C. Mandal, B. Pathak, Band edge engineering of 2D perovskite structures through spacer cation engineering for solar cell applications. J. Phys. Chem. C 126(23), 9937–9947 (2022). https://doi.org/10.1021/acs.jpcc.2c01840
B.D. Lee, J.W. Lee, M. Kim, W.B. Park, K.S. Sohn, Discovery of Pb-free hybrid organic-inorganic 2D perovskites using a stepwise optimization strategy. NPJ Comput. Mater. 8(1), 83 (2022). https://doi.org/10.1038/s41524-022-00781-z
Y. Wei, B.Q. Chen, F. Zhang, Y.Y. Tian, X.C. Yang et al., Compositionally designed 2D Ruddlesden-Popper perovskites for efficient and stable solar cells. Sol. RRL 5(4), 2000661 (2021). https://doi.org/10.1002/solr.202000661
Z.H. Liu, L. Wang, X.Y. Xie, C.Y. Xu, J.F. Tang et al., High-performance Ruddlesden-Popper two-dimensional perovskite solar cells via solution processed inorganic charge transport layers. Phys. Chem. Chem. Phys. 24(26), 15912–15919 (2022). https://doi.org/10.1039/d2cp02033e
M. Rahil, R.M. Ansari, C. Prakash, S.S. Islam, A. Dixit et al., Ruddlesden-Popper 2D perovskites of type (C6H9C2H4NH3)(2) (CH3NH3)(n-1)PbnI3n+1(n=1-4) for optoelectronic applications. Sci. Rep. 12(1), 2176 (2022). https://doi.org/10.1038/s41598-022-06108-8
W.J. Ke, C.C. Stoumpos, I. Spanopoulos, M. Chen, M.R. Wasielewski et al., Diammonium cations in the FASnI(3) perovskite structure lead to lower dark currents and more efficient solar cells. ACS Energy Lett. 3(7), 1470–1476 (2018). https://doi.org/10.1021/acsenergylett.8b00687
B. Ma, J.W. Chen, M.H. Wang, X. Xu, J. Qian et al., Passivating charged defects with 1,6-hexamethylenediamine to realize efficient and stable tin-based perovskite solar cells. J. Phys. Chem. C 124(30), 16289–16299 (2020). https://doi.org/10.1021/acs.jpcc.0c03401
H.Y. Fu, Dion–Jacobson halide perovskites for photovoltaic and photodetection applications. J. Mater. Chem. C 9(20), 6378–6394 (2021). https://doi.org/10.1039/d1tc01061a
L. Zhang, Q. Kang, Y.P. Song, D. Chi, S.H. Huang et al., Grain boundary passivation with Dion–Jacobson phase perovskites for high-performance Pb-Sn mixed narrow-bandgap perovskite solar cells. Sol. RRL 5(4), 2000681 (2021). https://doi.org/10.1002/solr.202000681
C. Hanmandlu, A. Singh, K.M. Boopathi, C.S. Lai, C.W. Chu, Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells. Rep. Prog. Phys. 83(8), 086502 (2020). https://doi.org/10.1088/1361-6633/ab9f88
T.Q. Niu, Q.F. Xue, H.L. Yip, Advances in Dion–Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics 10(8), 2069–2102 (2021). https://doi.org/10.1515/nanoph-2021-0052
W.J. Ke, C. Chen, I. Spanopoulos, L.L. Mao, I. Hadar et al., Narrow-bandgap mixed lead/tin-based 2D Dion–Jacobson perovskites boost the performance of solar cells. J. Am. Chem. Soc. 142(35), 15049–15057 (2020). https://doi.org/10.1021/jacs.0c06288
Y.L. Zhang, N.G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
J.M. Yang, S.B. Xiong, J.N. Song, H.B. Wu, Y.H. Zeng et al., Energetics and energy loss in 2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. 10(23), 2000687 (2020). https://doi.org/10.1002/aenm.202000687
P.W. Li, C. Liang, X.L. Liu, F.Y. Li, Y.Q. Zhang et al., Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv. Mater. 31(35), 1901966 (2019). https://doi.org/10.1002/adma.201901966
T. Duong, H. Pham, T.C. Kho, P. Phang, K.C. Fong et al., High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10(9), 1903553 (2020). https://doi.org/10.1002/aenm.201903553
N.E. Wright, X.X. Qin, J.W. Xu, L.L. Kelly, S.P. Harvey et al., D. Stiff-Roberts. Influence of annealing and composition on the crystal structure of mixed-halide, Ruddlesden-Popper perovskites. Chem. Mater. 34(7), 3109–3122 (2022). https://doi.org/10.1021/acs.chemmater.1c04213
Z. Wang, X.D. Liu, H. Ren, L. Liu, X.Y. Tang et al., Insight into the enhanced charge transport in quasi-2D perovskite via fluorination of ammonium cations for photovoltaic applications. ACS Appl. Mater. Interfaces 14(6), 7917–7925 (2022). https://doi.org/10.1021/acsami.1c21715
C.Q. Ma, M.F. Lo, C.S. Lee, A simple method for phase control in two-dimensional perovskite solar cells. J. Mater. Chem. A 6(39), 18871–18876 (2018). https://doi.org/10.1039/c8ta06976j
S. Ahmad, W. Yu, R.X. Lu, Y. Liu, T.G. Jiu et al., Formamidinium-incorporated Dion–Jacobson phase 2D perovskites for highly efficient and stable photovoltaics. J. Energy Chem. 57, 632–638 (2021). https://doi.org/10.1016/j.jechem.2020.08.055
P.Y. Su, L. Bai, H. Bi, B.B. Liu, D.M. He et al., Crystal orientation modulation and defect passivation for efficient and stable methylammonium-free Dion–Jacobson quasi-2D perovskite solar cells. ACS Appl. Mater. Interfaces 13(25), 29567–29575 (2021). https://doi.org/10.1021/acsami.1c05498
Y.J. Chen, J.L. Hu, Z.H. Xu, Z.Y. Jiang, S. Chen et al., Managing phase orientation and crystallinity of printed Dion–Jacobson 2D perovskite layers via controlling crystallization kinetics. Adv. Funct. Mater. 32(19), 2112146 (2022). https://doi.org/10.1002/adfm.202112146
S. Aharon, D.R. Ceratti, N.P. Jasti, L. Cremonesi, Y. Feldman et al., 2D Pb-halide perovskites can self-heal photodamage better than 3D ones. Adv. Funct. Mater. 32(24), 2113354 (2022). https://doi.org/10.1002/adfm.202113354
S.M. Yang, W.D. Liu, Y. Han, Z.K. Liu, W.J. Zhao et al., 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 10(46), 2002882 (2020). https://doi.org/10.1002/aenm.202002882
Y. Guo, M.Y. Sun, W.J. Yang, S.Y. Yuan, H. Xiong et al., Enhanced charge transport by regulating the electronic structure in 2D tin-based perovskite solar cells. J. Phys. Chem. C 126(22), 9425–9436 (2022). https://doi.org/10.1021/acs.jpcc.2c02830
C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traore, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)(3))(CH3NH3)(n)PbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139(45), 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
Y.L. Zhang, P.J. Wang, M.C. Tang, D. Barrit, W.J. Ke et al., Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J. Am. Chem. Soc. 141(6), 2684–2694 (2019). https://doi.org/10.1021/jacs.8b13104
G.J. Yan, G.M. Sui, W.T. Chen, K. Su, Y.Q. Feng et al., Selectively fluorinated benzylammonium-based spacer cation enables graded quasi-2D perovskites for efficient and stable solar cells. Chem. Mater. 34(7), 3346–3356 (2022). https://doi.org/10.1021/acs.chemmater.2c00146
S. Chen, N. Shen, L.H. Zhang, L.Z. Zhang, S.H. Cheung et al., Understanding the interplay of binary organic spacer in Ruddlesden-Popper perovskites toward efficient and stable solar cells. Adv. Funct. Mater. 30(10), 1907759 (2020). https://doi.org/10.1002/adfm.201907759
H. Gu, C. Liang, Y.D. Xia, Q. Wei, T.H. Liu et al., Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy 65, 104050 (2019). https://doi.org/10.1016/j.nanoen.2019.104050
T.Y. Xu, S. Lu, Y.J. Wang, X.Y. Gan, L.L. Guo et al., Optimization of multilayered Ruddlesden-Popper perovskite with 4-bromophenylethylamine by ionic liquid for solar cell applications. J. Mater. Sci. 57(16), 7896–7908 (2022). https://doi.org/10.1007/s10853-022-07154-3
W.B. Ma, Z.L. Zhang, M. Kang, Y.F. Liu, H.F. Zhang et al., Enhanced efficiency and stability of Dion–Jacobson quasi-two-dimensional perovskite solar cells by additive. J. Phys. D 55(41), 414002 (2022). https://doi.org/10.1088/1361-6463/ac84e8
S. Ahmad, R. Lu, Y. Liu, X. Liu, Q. Yang et al., Cesium-doped Dion–Jacobson 2D perovskites for highly stable photovoltaics with an 18.3% efficiency. Nano Energy 103, 107822 (2022). https://doi.org/10.1016/j.nanoen.2022.107822
G. Huang, J. Chen, B. Wang, Q. Cheng, Y. Li et al., Solvent effect on film formation and trap states of two-dimensional Dion–Jacobson perovskite. Nano Lett. 22(18), 7545–7553 (2022). https://doi.org/10.1021/acs.nanolett.2c02533
G.X. Ren, C. Yan, L.A. Xiao, X. Wu, S.C. Peng et al., Additive-induced film morphology evolution for inverted Dion–Jacobson quasi-two-dimensional perovskite solar cells with enhanced performance. ACS Appl. Energy Mater. 5(8), 9837–9845 (2022). https://doi.org/10.1021/acsaem.2c01559
M.C. Gelvez-Rueda, P. Ahlawat, L. Merten, F. Jahanbakhshi, M. Mladenovic et al., Formamidinium-based Dion–Jacobson layered hybrid perovskites: structural complexity and optoelectronic properties. Adv. Funct. Mater. 30(38), 2003428 (2020). https://doi.org/10.1002/adfm.202003428