Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy
Corresponding Author: Na Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 145
Abstract
Immunotherapy has become a promising research “hotspot” in cancer treatment. “Soldier” immune cells are not uniform throughout the body; they accumulate mostly in the immune organs such as the spleen and lymph nodes (LNs), etc. The unique structure of LNs provides the microenvironment suitable for the survival, activation, and proliferation of multiple types of immune cells. LNs play an important role in both the initiation of adaptive immunity and the generation of durable anti-tumor responses. Antigens taken up by antigen-presenting cells in peripheral tissues need to migrate with lymphatic fluid to LNs to activate the lymphocytes therein. Meanwhile, the accumulation and retaining of many immune functional compounds in LNs enhance their efficacy significantly. Therefore, LNs have become a key target for tumor immunotherapy. Unfortunately, the nonspecific distribution of the immune drugs in vivo greatly limits the activation and proliferation of immune cells, which leads to unsatisfactory anti-tumor effects. The efficient nano-delivery system to LNs is an effective strategy to maximize the efficacy of immune drugs. Nano-delivery systems have shown beneficial in improving biodistribution and enhancing accumulation in lymphoid tissues, exhibiting powerful and promising prospects for achieving effective delivery to LNs. Herein, the physiological structure and the delivery barriers of LNs were summarized and the factors affecting LNs accumulation were discussed thoroughly. Moreover, developments in nano-delivery systems were reviewed and the transformation prospects of LNs targeting nanocarriers were summarized and discussed.
Highlights:
1 The physiological structure and the drug delivery barriers of lymph nodes were described.
2 The factors affecting lymph nodes accumulation in nano-delivery systems were discussed.
3 The recent progress of nano-delivery carriers applied for lymph nodes immunotherapy was further categorized and reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chouaib, F. El Hage, H. Benlalam, F. Mami-Chouaib, Immunotherapy of cancer: promise and reality. MS Méd. Sci. 22(8–9), 755–759 (2006). https://doi.org/10.1051/medsci/20062289755
- Y. Shi, T. Lammers, Combining nanomedicine and immunotherapy. Acc. Chem. Res. 52(6), 1543–1554 (2019). https://doi.org/10.1021/acs.accounts.9b00148
- K.J. Caldwell, S. Gottschalk, A.C. Talleur, Allogeneic car cell therapy—more than a pipe dream. Front. Immunol. 11, 618427 (2021). https://doi.org/10.3389/fimmu.2020.618427
- W.J. Lesterhuis, J.B.A.G. Haanen, C.J.A. Punt, Cancer immunotherapy-revisited. Nat. Rev. Drug Disc. 10(8), 591–600 (2011). https://doi.org/10.1038/nrd3500
- X. Xie, T. Song, Y. Feng, H. Zhang, G. Yang et al., Nanotechnology-based multifunctional vaccines for cancer immunotherapy. Chem. Eng. J. 437, 135505 (2022). https://doi.org/10.1016/j.cej.2022.135505
- S. Burugu, A.R. Dancsok, T.O. Nielsen, Emerging targets in cancer immunotherapy. Semin. Cancer Biol. 52, 39–52 (2018). https://doi.org/10.1016/j.semcancer.2017.10.001
- J. Jørgensen, E. Hanna, P. Kefalas, Outcomes-based reimbursement for gene therapies in practice: the experience of recently launched car-t cell therapies in major european countries. J. Market Access Health Policy 8(1), 1715536 (2020). https://doi.org/10.1080/20016689.2020.1715536
- G. Morad, B.A. Helmink, P. Sharma, J.A. Wargo, Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184(21), 5309–5337 (2021). https://doi.org/10.1016/j.cell.2021.09.020
- P.S. Hegde, D.S. Chen, Top 10 challenges in cancer immunotherapy. Immunity 52(1), 17–35 (2020). https://doi.org/10.1016/j.immuni.2019.12.011
- T. Boehm, C.C. Bleul, The evolutionary history of lymphoid organs. Nat. Immunol. 8(2), 131–135 (2007). https://doi.org/10.1038/ni1435
- S. Sell, How the immune system works. Medical Times 108(12), 60–63, 67–68, 70–61 passim (1980)
- U.H. von Andrian, T.R. Mempel, Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3(11), 867–878 (2003). https://doi.org/10.1038/nri1222
- L. Wang, C. Subasic, R.F. Minchin, L.M. Kaminskas, Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. Nanomedicine 14(12), 1605–1621 (2019). https://doi.org/10.2217/nnm-2018-0478
- F. Albalawi, M.Z. Hussein, S. Fakurazi, M.J. Masarudin, Engineered nanomaterials: the challenges and opportunities for nanomedicines. Int. J. Nanomed. 16, 161–184 (2021). https://doi.org/10.2147/IJN.S288236
- A. Dadwal, A. Baldi, R. Kumar Narang, Nanops as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 46(2), 295–305 (2018). https://doi.org/10.1080/21691401.2018.1457039
- P.A. Flores de los Rios, R.G. Casañas Pimentel, E. San Martín Martínez, Nanodrugs against cancer: biological considerations in its redesign. Int. J. Polym. Mater. (2022). https://doi.org/10.1080/00914037.2022.2097680
- P. Dong, K.P. Rakesh, H.M. Manukumar, Y.H.E. Mohammed, C.S. Karthik et al., Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem. 85, 325–336 (2019). https://doi.org/10.1016/j.bioorg.2019.01.019
- A. Schudel, D.M. Francis, S.N. Thomas, Material design for lymph node drug delivery. Nat. Rev. Mater. 4(6), 415–428 (2019). https://doi.org/10.1038/s41578-019-0110-7
- N. Trac, E.J. Chung, Overcoming physiological barriers by nanops for intravenous drug delivery to the lymph nodes. Exper. Biol. Med. 246(22), 2358–2371 (2021). https://doi.org/10.1177/15353702211010762
- A.J. Najibi, D.J. Mooney, Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv. Drug Deliv. Rev. 161–162, 42–62 (2020). https://doi.org/10.1016/j.addr.2020.07.023
- E.L. Berg, M.K. Robinson, R.A. Warnock, E.C. Butcher, The human peripheral lymph node vascular addressin is a ligand for lecam-1, the peripheral lymph node homing receptor. J. Cell Biol. 114(2), 343–349 (1991). https://doi.org/10.1083/jcb.114.2.343
- N.H. Ruddle, E.M. Akirav, Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response1. J. Immun. 183(4), 2205–2212 (2009). https://doi.org/10.4049/jimmunol.0804324
- Y. Chen, S. De Koker, B.G. De Geest, Engineering strategies for lymph node targeted immune activation. Acc. Chem. Res. 53(10), 2055–2067 (2020). https://doi.org/10.1021/acs.accounts.0c00260
- Y. Ding, Z. Li, A. Jaklenec, Q. Hu, Vaccine delivery systems toward lymph nodes. Adv. Drug Deliv. Rev. 179, 113914 (2021). https://doi.org/10.1016/j.addr.2021.113914
- M. Bajénoff, J.G. Egen, L.Y. Koo, J.P. Laugier, F. Brau et al., Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25(6), 989–1001 (2006). https://doi.org/10.1016/j.immuni.2006.10.011
- M.P. Manspeaker, S.N. Thomas, Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Adv. Drug Deliv. Rev. 160, 19–35 (2020). https://doi.org/10.1016/j.addr.2020.10.004
- J.-P. Girard, C. Moussion, R. Förster, Hevs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12(11), 762–773 (2012). https://doi.org/10.1038/nri3298
- Y.-N. Zhang, W. Poon, E. Sefton, W.C.W. Chan, Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node follicles for robust humoral immunity. ACS Nano 14(8), 9478–9490 (2020). https://doi.org/10.1021/acsnano.0c02240
- M.A. Swartz, The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50(1), 3–20 (2001). https://doi.org/10.1016/S0169-409X(01)00150-8
- H. du Bois, T.A. Heim, A.W. Lund, Tumor-draining lymph nodes: at the crossroads of metastasis and immunity. Sci. Immunol. 6(63), eabg3551 (2021). https://doi.org/10.1126/sciimmunol.abg3551
- S. Das, E. Sarrou, S. Podgrabinska, M. Cassella, S.K. Mungamuri et al., Tumor cell entry into the lymph node is controlled by ccl1 chemokine expressed by lymph node lymphatic sinuses. J. Exp. Med. 210(8), 1509–1528 (2013). https://doi.org/10.1084/jem.20111627
- G. Gasteiger, M. Ataide, W. Kastenmüller, Lymph node-an organ for t-cell activation and pathogen defense. Immunol. Rev. 271(1), 200–220 (2016). https://doi.org/10.1111/imr.12399
- E.R. Pereira, D. Jones, K. Jung, T.P. Padera, The lymph node microenvironment and its role in the progression of metastatic cancer. Sem. Cell Dev. Biol. 38, 98–105 (2015). https://doi.org/10.1016/j.semcdb.2015.01.008
- J. Lian, A.D. Luster, Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses. Curr. Opin. Cell Biol. 36, 1–6 (2015). https://doi.org/10.1016/j.ceb.2015.05.003
- M. Wendland, S. Willenzon, J. Kocks, A.C. Davalos-Misslitz, S.I. Hammerschmidt et al., Lymph node t cell homeostasis relies on steady state homing of dendritic cells. Immunity 35(6), 945–957 (2011). https://doi.org/10.1016/j.immuni.2011.10.017
- T. Katakai, T. Hara, J.-H. Lee, H. Gonda, M. Sugai et al., A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, t cells and b cells. Int. Immunol. 16(8), 1133–1142 (2004). https://doi.org/10.1093/intimm/dxh113
- C.L. Willard-Mack, Normal structure, function, and histology of lymph nodes. Tox. Pathol. 34(5), 409–424 (2006). https://doi.org/10.1080/01926230600867727
- O. Ohtani, Y. Ohtani, Structure and function of rat lymph nodes. Arch. Histol. Cytol. 71(2), 69–76 (2008). https://doi.org/10.1679/aohc.71.69
- N.A. O’Neill, H.B. Eppler, C.M. Jewell, J.S. Bromberg, Harnessing the lymph node microenvironment. Curr. Opin. Organ Transpl. 23(1), 73–82 (2018). https://doi.org/10.1097/MOT.0000000000000488
- M. Radomski, H.J. Zeh, H.D. Edington, J.F. Pingpank, L.H. Butterfield et al., Prolonged intralymphatic delivery of dendritic cells through implantable lymphatic ports in patients with advanced cancer. J. Immunother. Cancer 4(1), 24–24 (2016). https://doi.org/10.1186/s40425-016-0128-y
- H. Fujii, S. Horie, K. Takeda, S. Mori, T. Kodama, Optimal range of injection rates for a lymphatic drug delivery system. J. Biophotonics 11(8), e201700401 (2018). https://doi.org/10.1002/jbio.201700401
- H. Jiang, Q. Wang, X. Sun, Lymph node targeting strategies to improve vaccination efficacy. J. Contr. Release 267, 47–56 (2017). https://doi.org/10.1016/j.jconrel.2017.08.009
- B.R. von Beust, P. Johansen, K.A. Smith, A. Bot, T. Storni et al., Improving the therapeutic index of cpg oligodeoxynucleotides by intralymphatic administration. Eur. J. Immunol. 35(6), 1869–1876 (2005). https://doi.org/10.1002/eji.200526124
- W.J. Lesterhuis, I.J.M. De Vries, G. Schreibelt, A.J.A. Lambeck, E.H.J.G. Aarntzen et al., Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific t cells in advanced melanoma patients. Clin. Cancer Res. 17(17), 5725–5735 (2011). https://doi.org/10.1158/1078-0432.CCR-11-1261
- P. Johansen, A.C. Häffner, F. Koch, K. Zepter, I. Erdmann et al., Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur. J. Immunol. 35(2), 568–574 (2005). https://doi.org/10.1002/eji.200425599
- C.M. Jewell, S.C. Bustamante López, D.J. Irvine, In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer ps. Proc. Natl. Acad. Sci. USA 108(38), 15745–15750 (2011). https://doi.org/10.1073/pnas.1105200108
- C.H. Choi, J.E. Zuckerman, P. Webster, M.E. Davis, Targeting kidney mesangium by nanops of defined size. Proc. Natl. Acad. Sci. USA 108(16), 6656–6661 (2011). https://doi.org/10.1073/pnas.1103573108
- F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanops. Mol. Pharm. 5(4), 505–515 (2008). https://doi.org/10.1021/mp800051m
- S.F. Rodrigues, D.N. Granger, Blood cells and endothelial barrier function. Tissue Barriers 3(1–2), e978720 (2015). https://doi.org/10.4161/21688370.2014.978720
- A.B. Engin, D. Nikitovic, M. Neagu, P. Henrich-Noack, A.O. Docea et al., Mechanistic understanding of nanops’ interactions with extracellular matrix: the cell and immune system. P Fibre Toxicol. 14(1), 22 (2017). https://doi.org/10.1186/s12989-017-0199-z
- L.M. Kaminskas, V.M. McLeod, D.B. Ascher, G.M. Ryan, S. Jones et al., Methotrexate-conjugated pegylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol. Pharm. 12(2), 432–443 (2015). https://doi.org/10.1021/mp500531e
- T. Chida, Y. Miura, H. Cabral, T. Nomoto, K. Kataoka et al., Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and ph-triggered drug release. J. Contr. Release 292, 130–140 (2018). https://doi.org/10.1016/j.jconrel.2018.10.035
- C. Xia, Q. Zhou, Q. Zhang, S. Hu, E. Meacci et al., Comparative study on the diagnostic value of intravenous/peritumoral injection of indocyanine green for metastatic lymph node location in patients with head and neck squamous cell carcinoma (hnscc). Ann. Transl. Med. 9(6), 507 (2021). https://doi.org/10.21037/atm-21-392
- N.L. Trevaskis, L.M. Kaminskas, C.J.H. Porter, From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Disc. 14(11), 781–803 (2015). https://doi.org/10.1038/nrd4608
- N.L. Trevaskis, W.N. Charman, C.J.H. Porter, Targeted drug delivery to lymphocytes: a route to site-specific immunomodulation? Mol. Pharm. 7(6), 2297–2309 (2010). https://doi.org/10.1021/mp100259a
- J.E. Vela Ramirez, L.A. Sharpe, N.A. Peppas, Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 114, 116–131 (2017). https://doi.org/10.1016/j.addr.2017.04.008
- A. Azizi, A. Kumar, F. Diaz-Mitoma, J. Mestecky, Enhancing oral vaccine potency by targeting intestinal m cells. PLoS Pathog. 6(11), e1001147 (2010). https://doi.org/10.1371/journal.ppat.1001147
- A.T. Florence, Nanop uptake by the oral route: fulfilling its potential? Drug Disc. Today Technol. 2(1), 75–81 (2005). https://doi.org/10.1016/j.ddtec.2005.05.019
- J.A. Yáñez, S.W. Wang, I.W. Knemeyer, M.A. Wirth, K.B. Alton, Intestinal lymphatic transport for drug delivery. Adv. Drug Deliv. Rev. 63(10–11), 923–942 (2011). https://doi.org/10.1016/j.addr.2011.05.019
- Q. Hu, M. Wu, C. Fang, C. Cheng, M. Zhao et al., Engineering nanop-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15(4), 2732–2739 (2015). https://doi.org/10.1021/acs.nanolett.5b00570
- G.M. Ryan, L.M. Kaminskas, C.J.H. Porter, Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J. Contr. Release 193, 241–256 (2014). https://doi.org/10.1016/j.jconrel.2014.04.051
- L. Feng, L. Zhang, M. Liu, Z. Yan, C. Wang et al., Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system. J. Drug Target. 18(3), 168–178 (2010). https://doi.org/10.3109/10611860903318126
- J.F. Nicolas, B. Guy, Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev. Vaccines 7(8), 1201–1214 (2008). https://doi.org/10.1586/14760584.7.8.1201
- E.N. Hoogenboezem, C.L. Duvall, Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130, 73–89 (2018). https://doi.org/10.1016/j.addr.2018.07.011
- N.A. Rohner, S.N. Thomas, Flexible macromolecule versus rigid p retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS BioMater. Sci. Eng. 3(2), 153–159 (2017). https://doi.org/10.1021/acsbiomaterials.6b00438
- Y. Wang, J. Wang, D. Zhu, Y. Wang, G. Qing et al., Effect of physicoChemical properties on in vivo fate of nanop-based cancer immunotherapies. Acta Pharm. Sin. B 11(4), 886–902 (2021). https://doi.org/10.1016/j.apsb.2021.03.007
- S. Chaturvedi, A. Garg, A. Verma, Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: an insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol. 59, 101899 (2020). https://doi.org/10.1016/j.jddst.2020.101899
- T. Nakamura, M. Kawai, Y. Sato, M. Maeki, M. Tokeshi et al., The effect of size and charge of lipid nanops prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17(3), 944–953 (2020). https://doi.org/10.1021/acs.molpharmaceut.9b01182
- S.T. Reddy, A.J. van der Vlies, E. Simeoni, V. Angeli, G.J. Randolph et al., Exploiting lymphatic transport and complement activation in nanop vaccines. Nat. Biotechnol. 25(10), 1159–1164 (2007). https://doi.org/10.1038/nbt1332
- R. He, J. Zang, Y. Zhao, H. Dong, Y. Li, Nanotechnology-based approaches to promote lymph node targeted delivery of cancer vaccines. ACS Biomater. Sci. Eng. 8(2), 406–423 (2022). https://doi.org/10.1021/acsbiomaterials.1c01274
- X. Yu, Y. Dai, Y. Zhao, S. Qi, L. Liu et al., Melittin-lipid nanops target to lymph nodes and elicit a systemic anti-tumor immune response. Nat. Commun. 11(1), 1110–1114 (2020). https://doi.org/10.1038/s41467-020-14906-9
- M.F. Bachmann, G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787–796 (2010). https://doi.org/10.1038/nri2868
- V. Manolova, A. Flace, M. Bauer, K. Schwarz, P. Saudan et al., Nanops target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38(5), 1404–1413 (2008). https://doi.org/10.1002/eji.200737984
- J. Xu, Q. Ma, Y. Zhang, Z. Fei, Y. Sun et al., Yeast-derived nanops remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 13(1), 110 (2022). https://doi.org/10.1038/s41467-021-27750-2
- A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanop size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14(1), 1–16 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150124
- Q. Zeng, H. Jiang, T. Wang, Z. Zhang, T. Gong et al., Cationic micelle delivery of trp2 peptide for efficient lymphatic draining and enhanced cytotoxic t-lymphocyte responses. J. Contr. Release 200, 1–12 (2015). https://doi.org/10.1016/j.jconrel.2014.12.024
- Y. Zhuang, Y. Ma, C. Wang, L. Hai, C. Yan et al., Pegylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J. Contr. Release 159(1), 135–142 (2012). https://doi.org/10.1016/j.jconrel.2011.12.017
- T. Nakamura, H. Harashima, Dawn of lipid nanops in lymph node targeting: potential in cancer immunotherapy. Adv. Drug Deliv. Rev. 167, 78–88 (2020). https://doi.org/10.1016/j.addr.2020.06.003
- J. McCright, C. Skeen, J. Yarmovsky, K. Maisel, Nanops with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes. Acta Biomater. 145, 146–158 (2022). https://doi.org/10.1016/j.actbio.2022.03.054
- Y. Zou, S. Ito, F. Yoshino, Y. Suzuki, L. Zhao et al., Polyglycerol grafting shields nanops from protein corona formation to avoid macrophage uptake. ACS Nano 14(6), 7216–7226 (2020). https://doi.org/10.1021/acsnano.0c02289
- X. Zhan, K.K. Tran, H. Shen, Effect of the poly(ethylene glycol) (peg) density on the access and uptake of ps by antigen-presenting cells (apcs) after subcutaneous administration. Mol. Pharm. 9(12), 3442–3451 (2012). https://doi.org/10.1021/mp300190g
- D. Alvarez, E.H. Vollmann, U.H. von Andrian, Mechanisms and consequences of dendritic cell migration. Immunity 29(3), 325–342 (2008). https://doi.org/10.1016/j.immuni.2008.08.006
- T. Song, Y. Xia, Y. Du, M.W. Chen, H. Qing et al., Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine delivery. Adv. Mater. 33(26), 2100106 (2021). https://doi.org/10.1002/adma.202100106
- P. Guo, D. Liu, K. Subramanyam, B. Wang, J. Yang et al., Nanop elasticity directs tumor uptake. Nat. Commun. 9(1), 130 (2018). https://doi.org/10.1038/s41467-017-02588-9
- J. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano et al., Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano 9(12), 11628–11641 (2015). https://doi.org/10.1021/acsnano.5b04866
- S.N. Mueller, S. Tian, J.M. DeSimone, Rapid and persistent delivery of antigen by lymph node targeting print nanop vaccine carrier to promote humoral immunity. Mol. Pharm. 12(5), 1356–1365 (2015). https://doi.org/10.1021/mp500589c
- T. Cai, H. Liu, S. Zhang, J. Hu, L. Zhang, Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. J. Nanobiotechn. 19(1), 389 (2021). https://doi.org/10.1186/s12951-021-01146-2
- C. Macri, C. Dumont, A.P. Johnston, J.D. Mintern, Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin. Transl. Immunol. 5(3), e66 (2016). https://doi.org/10.1038/cti.2016.6
- T. Keler, V. Ramakrishna, M.W. Fanger, Mannose receptor-targeted vaccines. Expert Opin. Biol. Ther. 4(12), 1953–1962 (2004). https://doi.org/10.1517/14712598.4.12.1953
- S. Duinkerken, S.K. Horrevorts, H. Kalay, M. Ambrosini, L. Rutte et al., Glyco-dendrimers as intradermal anti-tumor vaccine targeting multiple skin DC subsets. Theranostics 9(20), 5797–5809 (2019). https://doi.org/10.7150/thno.35059
- D. Duluc, H. Joo, L. Ni, W. Yin, K. Upchurch et al., Induction and activation of human th17 by targeting antigens to dendritic cells via dectin-1. J. Immunol. 192(12), 5776–5788 (2014). https://doi.org/10.4049/jimmunol.1301661
- E. Gehrie, W. Van der Touw, J.S. Bromberg, J.C. Ochando, Plasmacytoid dendritic cells in tolerance. Methods Mol. Biol. 677, 127–147 (2011). https://doi.org/10.1007/978-1-60761-869-0_9
- A. Le Moignic, V. Malard, T. Benvegnu, L. Lemiègre, M. Berchel et al., Preclinical evaluation of mrna trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J. Contr. Release 278, 110–121 (2018). https://doi.org/10.1016/j.jconrel.2018.03.035
- X. Li, S. Khorsandi, Y. Wang, J. Santelli, K. Huntoon et al., Cancer immunotherapy based on image-guided sting activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 17(8), 891–899 (2022). https://doi.org/10.1038/s41565-022-01134-z
- N.A. Rohner, J. McClain, S.L. Tuell, A. Warner, B. Smith et al., Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB J. 29(11), 4512 (2015). https://doi.org/10.1096/fj.15-274761
- Y.L. Balachandran, X. Li, X. Jiang, Integrated microfluidic synthesis of aptamer functionalized biozeolitic imidazolate framework (bioZIF-8) targeting lymph node and tumor. Nano Lett. 21(3), 1335–1344 (2021). https://doi.org/10.1021/acs.nanolett.0c04053
- H. Liu, Z. Wen, H. Chen, Z. Yang, Z. Le et al., Nanoadjuvants actively targeting lymph node conduits and blocking tumor invasion in lymphatic vessels. J. Contr. Release 352, 497–506 (2022). https://doi.org/10.1016/j.jconrel.2022.10.053
- L. Jiang, S. Jung, J. Zhao, V. Kasinath, T. Ichimura et al., Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today 36, 101045 (2021). https://doi.org/10.1016/j.nantod.2020.101045
- H. Qin, R. Zhao, Y. Qin, J. Zhu, L. Chen et al., Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv. Mater. 33(20), e2006007 (2021). https://doi.org/10.1002/adma.202006007
- H. Liu, K.D. Moynihan, Y. Zheng, G.L. Szeto, A.V. Li et al., Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507(7493), 519–522 (2014). https://doi.org/10.1038/nature12978
- M.T. Stephan, J.J. Moon, S.H. Um, A. Bershteyn, D.J. Irvine, Therapeutic cell engineering with surface-conjugated synthetic nanops. Nat. Med. 16(9), 1035–1041 (2010). https://doi.org/10.1038/nm.2198
- P. Yang, H. Song, Y. Qin, P. Huang, C. Zhang et al., Engineering dendritic-cell-based vaccines and pd-1 blockade in self-assembled peptide nanofibrous hydrogel to amplify antitumor t-cell immunity. Nano Lett. 18(7), 4377–4385 (2018). https://doi.org/10.1021/acs.nanolett.8b01406
- Z. Meng, Y. Zhang, J. She, X. Zhou, J. Xu et al., Ultrasound-mediated remotely controlled nanovaccine delivery for tumor vaccination and individualized cancer immunotherapy. Nano Lett. 21(3), 1228–1237 (2021). https://doi.org/10.1021/acs.nanolett.0c03646
- C.B. Roces, S. Khadke, D. Christensen, Y. Perrie, Scale-independent microfluidic production of cationic liposomal adjuvants and development of enhanced lymphatic targeting strategies. Mol. Pharm. 16(10), 4372–4386 (2019). https://doi.org/10.1021/acs.molpharmaceut.9b00730
- Y. Du, T. Song, J. Wu, X.-D. Gao, G. Ma et al., Engineering mannosylated pickering emulsions for the targeted delivery of multicomponent vaccines. Biomaterials 280, 121313 (2022). https://doi.org/10.1016/j.biomaterials.2021.121313
- L. Mei, J. Rao, Y. Liu, M. Li, Z. Zhang et al., Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable p sizes. J. Contr. Release 292, 67–77 (2018). https://doi.org/10.1016/j.jconrel.2018.04.053
- P. Xiao, J. Wang, Z. Zhao, X. Liu, X. Sun et al., Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett. 21(5), 2094–2103 (2021). https://doi.org/10.1021/acs.nanolett.0c04783
- Q. Wang, Z. Dong, F. Lou, Y. Yin, J. Zhang et al., Phenylboronic ester-modified polymeric nanops for promoting trp2 peptide antigen delivery in cancer immunotherapy. Drug Deliv. 29(1), 2029–2043 (2022). https://doi.org/10.1080/10717544.2022.2086941
- C. Huang, L. Zhang, Q. Guo, Y. Zuo, N. Wang et al., Robust nanovaccine based on polydopamine-coated mesoporous silica nanops for effective photothermal-immunotherapy against melanoma. Adv. Funct. Mater. 31(18), 2010637 (2021). https://doi.org/10.1002/adfm.202010637
- X. Zhong, Y. Zhang, L. Tan, T. Zheng, Y. Hou, X. Hong, G. Du, X. Chen, Y. Zhang, X. Sun, An aluminum adjuvant-integrated nano-mof as antigen delivery system to induce strong humoral and cellular immune responses. J. Contr. Release 300, 81–92 (2019). https://doi.org/10.1016/j.jconrel.2019.02.035
- I.-C. Sun, S. Jo, D. Dumani, W.S. Yun, H.Y. Yoon et al., Theragnostic glycol chitosan-conjugated gold nanops for photoacoustic imaging of regional lymph nodes and delivering tumor antigen to lymph nodes. Nanomaterials 11(7), 1700 (2021). https://doi.org/10.3390/nano11071700
- E.S. Choi, J. Song, Y.Y. Kang, H. Mok, Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol. Biosci. 19(7), 1900042 (2019). https://doi.org/10.1002/mabi.201900042
- B. Zuo, Y. Zhang, K. Zhao, L. Wu, H. Qi et al., Universal immunotherapeutic strategy for hepatocellular carcinoma with exosome vaccines that engage adaptive and innate immune responses. J. Hematol. Oncol. 15(1), 46 (2022). https://doi.org/10.1186/s13045-022-01266-8
- S. Wang, F. Li, T. Ye, J. Wang, C. Lyu et al., Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13(615), eabb6981 (2021). https://doi.org/10.1126/scitranslmed.abb6981
- H. Chang, S.W.T. Chew, M. Zheng, D.C.S. Lio, C. Wiraja et al., Cryomicroneedles for transdermal cell delivery. Nat. Biomed. Eng. 5(9), 1008–1018 (2021). https://doi.org/10.1038/s41551-021-00720-1
- C. Caudill, J.L. Perry, K. Iliadis, A.T. Tessema, B.J. Lee et al., Transdermal vaccination via 3d-printed microneedles induces potent humoral and cellular immunity. Proc. Natl. Acad. Sci. 118(39), e2102595118 (2021). https://doi.org/10.1073/pnas.2102595118
- M. Neek, T.I. Kim, S.-W. Wang, Protein-based nanops in cancer vaccine development. Nanomed. Nanotechnol. Biol. Med. 15(1), 164–174 (2019). https://doi.org/10.1016/j.nano.2018.09.004
- Y. Mao, J. Liu, T. Shi, G. Chen, S. Wang, A novel self-assembly nanocrystal as lymph node-targeting delivery system: higher activity of lymph node targeting and longer efficacy against lymphatic metastasis. AAPS Pharm. Sci. Tech. 20(7), 292 (2019). https://doi.org/10.1208/s12249-019-1447-3
- Y. Wu, Q. Jin, Y. Chen, H. Li, C. Deng et al., Bioinspired ß-glucan microcapsules deliver FK506 to lymph nodes for treatment of cardiac allograft acute rejection. BioMater. Sci. 8(19), 5282–5292 (2020). https://doi.org/10.1039/d0bm01028f
- N. Kashyap, N. Kumar, M.N.V.R. Kumar, Hydrogels for pharmaceutical and biomedical applications. Cri. Rev. Ther. Drug Carrier Syst. 22(2), 107–149 (2005). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10
- Y. Chao, Q. Chen, Z. Liu, Smart injectable hydrogels for cancer immunotherapy. Adv. Funct. Mater. 30(2), 1902785 (2020). https://doi.org/10.1002/adfm.201902785
- G. Cirillo, U.G. Spizzirri, M. Curcio, F.P. Nicoletta, F. Iemma, Injectable hydrogels for cancer therapy over the last decade. Pharmaceutics 11(9), 486 (2019). https://doi.org/10.3390/pharmaceutics11090486
- J. Wang, S. Wang, T. Ye, F. Li, X. Gao et al., Choice of nanovaccine delivery mode has profound impacts on the intralymph node spatiotemporal distribution and immunotherapy efficacy. Adv. Sci. 7(19), 2001108 (2020). https://doi.org/10.1002/advs.202001108
- H. Song, P. Huang, J. Niu, G. Shi, C. Zhang et al., Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic t-lymphocyte response against melanoma. Biomaterials 159, 119–129 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.004
- M. Ding, Y. Fan, Y. Lv, J. Liu, N. Yu et al., A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Acta Biomater. 149, 334–346 (2022). https://doi.org/10.1016/j.actbio.2022.06.041
- H. Wang, A.J. Najibi, M.C. Sobral, B.R. Seo, J.Y. Lee et al., Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat. Commun. 11(1), 5696–5696 (2020). https://doi.org/10.1038/s41467-020-19540-z
- E. Pérez del Río, F. Santos, X. Rodriguez Rodriguez, M. Martínez-Miguel, R. Roca-Pinilla et al., CCL21-loaded 3D hydrogels for t cell expansion and differentiation. Biomaterials 259, 120313 (2020). https://doi.org/10.1016/j.biomaterials.2020.120313
- Y. Shao, Z.-Y. Sun, Y. Wang, B.-D. Zhang, D. Liu et al., Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl. Mater. Interfaces 10(11), 9310–9314 (2018). https://doi.org/10.1021/acsami.8b00312
- L. Sun, F. Shen, L. Tian, H. Tao, Z. Xiong et al., Atp-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity. Adv. Mater. 33(18), e2007910 (2021). https://doi.org/10.1002/adma.202007910
- T.L. Nguyen, B.G. Cha, Y. Choi, J. Im, J. Kim, Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanops to dendritic cells recruited in local macroporous scaffold. Biomaterials 239, 119859 (2020). https://doi.org/10.1016/j.biomaterials.2020.119859
- Q. Su, H. Song, P. Huang, C. Zhang, J. Yang et al., Supramolecular co-assembly of self-adjuvanting nanofibrious peptide hydrogel enhances cancer vaccination by activating myd88-dependent nf-κb signaling pathway without inflammation. Bioactive Mater. 6(11), 3924–3934 (2021). https://doi.org/10.1016/j.bioactmat.2021.03.041
- M. Kamalov, H. Kählig, C. Rentenberger, A.R.M. Müllner, H. Peterlik et al., Ovalbumin epitope siinfekl self-assembles into a supramolecular hydrogel. Sci. Rep. 9(1), 2696–2696 (2019). https://doi.org/10.1038/s41598-019-39148-8
- H. Song, P. Yang, P. Huang, C. Zhang, D. Kong et al., Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 9(8), 2299–2314 (2019). https://doi.org/10.7150/thno.30577
- Y. Wu, Q. Li, G. Shim, Y.-K. Oh, Melanin-loaded cpg DNA hydrogel for modulation of tumor immune microenvironment. J. Contr. Release 330, 540–553 (2021). https://doi.org/10.1016/j.jconrel.2020.12.040
- Y. Umeki, K. Mohri, Y. Kawasaki, H. Watanabe, R. Takahashi et al., Induction of potent antitumor immunity by sustained release of cationic antigen from a DNA-based hydrogel with adjuvant activity. Adv. Funct. Mater. 25(36), 5758–5767 (2015). https://doi.org/10.1002/adfm.201502139
- J. Kim, D.M. Francis, L.F. Sestito, P.A. Archer, M.P. Manspeaker et al., Thermosensitive hydrogel releasing nitric oxide donor and anti-ctla-4 micelles for anti-tumor immunotherapy. Nat. Commun. 13(1), 1479–1479 (2022). https://doi.org/10.1038/s41467-022-29121-x
- H.T.T. Duong, T. Thambi, Y. Yin, S.H. Kim, T.L. Nguyen et al., Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials 230, 119599 (2020). https://doi.org/10.1016/j.biomaterials.2019.119599
- Y.P. Jia, K. Shi, F. Yang, J.F. Liao, R.X. Han et al., Multifunctional nanop loaded injectable thermoresponsive hydrogel as nir controlled release platform for local photothermal immunotherapy to prevent breast cancer postoperative recurrence and metastases. Adv. Funct. Mater. 30(25), 2001059 (2020). https://doi.org/10.1002/adfm.202001059
- A. Sinha, Y. Choi, M.H. Nguyen, T.L. Nguyen, S.W. Choi et al., A 3d macroporous alginate graphene scaffold with an extremely slow release of a loaded cargo for in situ long-term activation of dendritic cells. Adv. Healthcare Mater. 8(5), e1800571 (2019). https://doi.org/10.1002/adhm.201800571
- Y. Yin, X. Li, H. Ma, J. Zhang, D. Yu et al., In situ transforming rna nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21(5), 2224–2231 (2021). https://doi.org/10.1021/acs.nanolett.0c05039
- T.T.H. Thi, E.J.A. Suys, J.S. Lee, D.H. Nguyen, K.D. Park et al., Lipid-based nanops in the clinic and clinical trials: from cancer nanomedicine to covid-19 vaccines. Vaccines 9(4), 359 (2021). https://doi.org/10.3390/vaccines9040359
- S. Khadke, C.B. Roces, A. Cameron, A. Devitt, Y. Perrie, Formulation and manufacturing of lymphatic targeting liposomes using microfluidics. J. Contr. Release 307, 211–220 (2019). https://doi.org/10.1016/j.jconrel.2019.06.002
- C. Oussoren, M. Velinova, G. Scherphof, J.J. van der Want, N. van Rooijen et al., Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: Iv. Fate of liposomes in regional lymph nodes. Biochim. et Biophys. Acta (BBA) Biomembr. 1370(2), 259–272 (1998). https://doi.org/10.1016/S0005-2736(97)00275-7
- J. Chen, Z. Ye, C. Huang, M. Qiu, D. Song et al., Lipid nanop-mediated lymph node-targeting delivery of mrna cancer vaccine elicits robust cd8(+) t cell response. Proc. Natl. Acad. Sci. 119(34), e2207841119 (2022). https://doi.org/10.1073/pnas.2207841119
- C. Oussoren, J. Zuidema, D.J.A. Crommelin, G. Storm, Lymphatic uptake and biodistribution of liposomes after subcutaneous injection.: Ii. Influence of liposomal size, lipid composition and lipid dose. Biochim. et Biophys. Acta (BBA) Biomembr. 1328(2), 261–272 (1997). https://doi.org/10.1016/S0005-2736(97)00122-3
- S. Luozhong, Z. Yuan, T. Sarmiento, Y. Chen, W. Gu et al., Phosphatidylserine lipid nanops promote systemic rna delivery to secondary lymphoid organs. Nano Lett. 22(20), 8304–8311 (2022). https://doi.org/10.1021/acs.nanolett.2c03234
- X. Li, Y. Wu, S. Wang, J. Liu, T. Zhang et al., Menthol nanoliposomes enhanced anti-tumor immunotherapy by increasing lymph node homing of dendritic cell vaccines. Clinical Immunol. 244, 109119 (2022). https://doi.org/10.1016/j.clim.2022.109119
- M. Stoffel, C. Wolfrum, S. Shi, K.N. Jayaprakash, M. Jayaraman et al., Mechanisms and optimization of in vivo delivery of lipophilic sirnas. Nat. Biotechnol. 25(10), 1149–1157 (2007). https://doi.org/10.1038/nbt1339
- J.B. Dixon, Lymphatic lipid transport: sewer or subway? Trends Endocrinol. Metab. 21(8), 480–487 (2010). https://doi.org/10.1016/j.tem.2010.04.003
- H.Y. Lim, C.H. Thiam, K.P. Yeo, R. Bisoendial, C.S. Hii et al., Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by sr-bi-mediated transport of hdl. Cell Metab. 17(5), 671–684 (2013). https://doi.org/10.1016/j.cmet.2013.04.002
- D. Wan, H. Que, L. Chen, T. Lan, W. Hong et al., Lymph-node-targeted cholesterolized TLR7 agonist liposomes provoke a safe and durable antitumor response. Nano Lett. 21(19), 7960–7969 (2021). https://doi.org/10.1021/acs.nanolett.1c01968
- D. Papahadjopoulos, Liposome formation and properties: an evolutionary profile. Biochem. Soci. Trans. 16(6), 910–912 (1988). https://doi.org/10.1042/bst0160910
- N. Düzgüneş, S. Nir, Mechanisms and kinetics of liposome–cell interactions. Adv. Drug Deliv. Rev. 40(1), 3–18 (1999). https://doi.org/10.1016/S0169-409X(99)00037-X
- Y. Zhai, X. He, Y. Li, R. Han, Y. Ma et al., A splenic-targeted versatile antigen courier: Ipsc wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. Sci. Adv. 7(35), eabi6326 (2021). https://doi.org/10.1126/sciadv.abi6326
- N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanops: mechanisms of controlling drug release. Chem. Rev. 116(4), 2602–2663 (2016). https://doi.org/10.1021/acs.chemrev.5b00346
- A. Gothwal, I. Khan, U. Gupta, Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm. Res. 33(1), 18–39 (2016). https://doi.org/10.1007/s11095-015-1784-1
- Y. Nishimoto, S. Nagashima, K. Nakajima, T. Ohira, T. Sato et al., Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int. J. Pharm. 576, 119021 (2020). https://doi.org/10.1016/j.ijpharm.2020.119021
- Y. Xu, S. Ma, J. Zhao, H. Chen, X. Si et al., Mannan-decorated pathogen-like polymeric nanops as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials 284, 121489 (2022). https://doi.org/10.1016/j.biomaterials.2022.121489
- L. Wang, Y. He, T. He, G. Liu, C. Lin et al., Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 255, 120208 (2020). https://doi.org/10.1016/j.biomaterials.2020.120208
- D. Jiang, T. Gao, S. Liang, W. Mu, S. Fu et al., Lymph node delivery strategy enables the activation of cytotoxic t lymphocytes and natural killer cells to augment cancer immunotherapy. ACS Appl. Mater. Interfaces 13(19), 22213–22224 (2021). https://doi.org/10.1021/acsami.1c03709
- N.B. Karabin, S. Allen, H.K. Kwon, S. Bobbala, E. Firlar et al., Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat. Commun. 9(1), 624 (2018). https://doi.org/10.1038/s41467-018-03001-9
- M. Elsabahy, K.L. Wooley, Design of polymeric nanops for biomedical delivery applications. Chem. Soci. Rev. 41(7), 2545–2561 (2012). https://doi.org/10.1039/c2cs15327k
- Z. Liu, C. Zhou, Y. Qin, Z. Wang, L. Wang et al., Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle-based nanovaccine. Cell Discov. 3, 17007 (2017). https://doi.org/10.1038/celldisc.2017.7
- L. Wang, Z. Wang, Y. Qin, W. Liang, Delivered antigen peptides to resident cd8α+ dcs in lymph node by micelle-based vaccine augment antigen-specific cd8+ effector t cell response. Eur. J. Pharm. Biopharm. 147, 76–86 (2020). https://doi.org/10.1016/j.ejpb.2019.12.013
- A. Schudel, A.P. Chapman, M.-K. Yau, C.J. Higginson, D.M. Francis et al., Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15(6), 491–499 (2020). https://doi.org/10.1038/s41565-020-0679-4
- H. Kim, L. Niu, P. Larson, T.A. Kucaba, K.A. Murphy et al., Polymeric nanops encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 164, 38–53 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.034
- B. He, H.-Y. Hu, T. Tan, H. Wang, K.-X. Sun et al., Ir-780-loaded polymeric micelles enhance the efficacy of photothermal therapy in treating breast cancer lymphatic metastasis in mice. Acta Pharm. Sin. 39(1), 132–139 (2018). https://doi.org/10.1038/aps.2017.109
- X. Yang, T. Yu, Y. Zeng, K. Lian, X. Zhou et al., Ph-responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromol 21(7), 2818–2828 (2020). https://doi.org/10.1021/acs.biomac.0c00518
- K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
- L. Gu, Tailored silica nanoMater for immunotherapy. ACS Cent. Sci. 4(5), 527–529 (2018). https://doi.org/10.1021/acscentsci.8b00181
- H. Hu, C. Yang, F. Zhang, M. Li, Z. Tu et al., A versatile and robust platform for the scalable manufacture of biomimetic nanovaccines. Adv. Sci. 8(15), 2002020 (2021). https://doi.org/10.1002/advs.202002020
- S.O. Stead, S.J.P. McInnes, S. Kireta, P.D. Rose, S. Jesudason et al., Manipulating human dendritic cell phenotype and function with targeted porous silicon nanops. Biomaterials 155, 92–102 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.017
- W.R. Algar, D.E. Prasuhn, M.H. Stewart, T.L. Jennings, J.B. Blanco-Canosa et al., The controlled display of biomolecules on nanops: a challenge suited to bioorthogonal chemistry. Bioconj. Chem. 22(5), 825–858 (2011). https://doi.org/10.1021/bc200065z
- S.S. Pakhomy, A.B. Bucharskaya, G.N. Maslyakova, O.V. Zlobina, I.O. Bugaeva et al., The influence of long-term peroral administration of gold nanops with various sizes on the liver, spleen, and lymph nodes of laboratory rats and their progeny. Opt. Spectr. 126(6), 681–686 (2019). https://doi.org/10.1134/S0030400X19060195
- H. Liu, H. Dong, N. Zhou, S. Dong, L. Chen et al., Spio enhance the cross-presentation and migration of dcs and anionic spio influence the nanoadjuvant effects related to interleukin-1β. Nanoscale Res. Lett. 13(1), 409 (2018). https://doi.org/10.1186/s11671-018-2802-0
- B.G. Cha, J.H. Jeong, J. Kim, Extra-large pore mesoporous silica nanops enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent. Sci. 4(4), 484–492 (2018). https://doi.org/10.1021/acscentsci.8b00035
- J. Wagner, D. Gößl, N. Ustyanovska, M. Xiong, D. Hauser et al., Mesoporous silica nanops as ph-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 15(3), 4450–4466 (2021). https://doi.org/10.1021/acsnano.0c08384
- S.K. Gulla, B.R. Rao, G. Moku, S. Jinka, N.V. Nimmu et al., In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanops. Biomater. Sci. 7(3), 773–788 (2019). https://doi.org/10.1039/C8BM01272E
- K. Ni, T. Luo, G. Lan, A. Culbert, Y. Song et al., A nanoscale metal–organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy. Angew. Chem. Int. Ed. 59(3), 1108–1112 (2020). https://doi.org/10.1002/anie.201911429
- M.H. Rashed, E. Bayraktar, G.K. Helal, M.F. Abd-Ellah, P. Amero et al., Exosomes: from garbage bins to promising therapeutic targets. Int. J. Mol. Sci. 18(3), 18030538 (2017). https://doi.org/10.3390/ijms18030538
- L. Zhang, D. Yu, Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta 1871(2), 455–468 (2019). https://doi.org/10.1016/j.bbcan.2019.04.004
- J.L. Hood, The association of exosomes with lymph nodes. Semin. Cell Dev. Biol. 67, 29–38 (2017). https://doi.org/10.1016/j.semcdb.2016.12.002
- P. Ji, Z. Yang, H. Li, M. Wei, G. Yang et al., Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer. Mol. Ther. Nucleic Acids 26, 987–996 (2021). https://doi.org/10.1016/j.omtn.2021.10.009
- C.D. Phung, T.T. Pham, H.T. Nguyen, T.T. Nguyen, W. Ou et al., Anti-ctla-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor t-cell responses. Acta Biomater. 115, 371–382 (2020). https://doi.org/10.1016/j.actbio.2020.08.008
- G. Yu, H. Jung, Y.Y. Kang, H. Mok, Comparative evaluation of cell- and serum-derived exosomes to deliver immune stimulators to lymph nodes. Biomaterials 162, 71–81 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.003
- L. Hong, L. Xu, L. Jin, K. Xu, W. Tang et al., Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J. Clin. Lab. Anal. 36(6), e24447 (2022). https://doi.org/10.1002/jcla.24447
- W. Chen, G. Li, Z. Li, J. Zhu, T. Wei et al., Evaluation of plasma exosomal mirnas as potential diagnostic biomarkers of lymph node metastasis in papillary thyroid carcinoma. Endocrine 75(3), 846–855 (2022). https://doi.org/10.1007/s12020-021-02949-x
- Z. Zhu, Z. Chen, M. Wang, M. Zhang, Y. Chen et al., Detection of plasma exosomal mirna-205 as a biomarker for early diagnosis and an adjuvant indicator of ovarian cancer staging. J. Ovarian Res. 15(1), 27 (2022). https://doi.org/10.1186/s13048-022-00961-x
- S. Srinivasan, F.O. Vannberg, J.B. Dixon, Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 6, 24436 (2016). https://doi.org/10.1038/srep24436
- B. Sun, Y. Zhou, Y. Fang, Z. Li, X. Gu et al., Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. Int. J. Cancer 145(6), 1648–1659 (2019). https://doi.org/10.1002/ijc.32196
- M.A.S. Broggi, L. Maillat, C.C. Clement, N. Bordry, P. Corthésy et al., Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J. Exp. Med. 216(5), 1091–1107 (2019). https://doi.org/10.1084/jem.20181618
- A. Hoshino, B. Costa-Silva, T.-L. Shen, G. Rodrigues, A. Hashimoto et al., Tumour exosome integrins determine organotropic metastasis. Nature 527(7578), 329–335 (2015). https://doi.org/10.1038/nature15756
- N. Leary, S. Walser, Y. He, N. Cousin, P. Pereira et al., Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J. Extracell. Vesicles 11(2), e12197 (2022). https://doi.org/10.1002/jev2.12197
- G. Ma, C. Wu, Microneedle, bio-microneedle and bio-inspired microneedle: a review. J. Contr. Release 251, 11–23 (2017). https://doi.org/10.1016/j.jconrel.2017.02.011
- Y.-C. Kim, J.-H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64(14), 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
- H.L. Quinn, M.-C. Kearney, A.J. Courtenay, M.T.C. McCrudden, R.F. Donnelly, The role of microneedles for drug and vaccine delivery. Expert Opinion Drug Deliv. 11(11), 1769–1780 (2014). https://doi.org/10.1517/17425247.2014.938635
- X. Wu, Y. Li, X. Chen, Z. Zhou, J. Pang et al., A surface charge dependent enhanced th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. J. Mater. Chem. B 7(31), 4854–4866 (2019). https://doi.org/10.1039/C9TB00448C
- N.W. Kim, S.-Y. Kim, J.E. Lee, Y. Yin, J.H. Lee et al., Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano 12(10), 9702–9713 (2018). https://doi.org/10.1021/acsnano.8b04146
- S. Kwon, F.C. Velasquez, J.C. Rasmussen, M.R. Greives, K.D. Turner et al., Nanotopography-based lymphatic delivery for improved anti-tumor responses to checkpoint blockade immunotherapy. Theranostics 9(26), 8332–8343 (2019). https://doi.org/10.7150/thno.35280
- I. Menon, P. Bagwe, K.B. Gomes, L. Bajaj, R. Gala et al., Microneedles: a new generation vaccine delivery system. Micromachines 12(4), 12040435 (2021). https://doi.org/10.3390/mi12040435
- L. Niu, L.Y. Chu, S.A. Burton, K.J. Hansen, J. Panyam, Intradermal delivery of vaccine nanops using hollow microneedle array generates enhanced and balanced immune response. J. Contr. Release 294, 268–278 (2019). https://doi.org/10.1016/j.jconrel.2018.12.026
- Z. Li, Y. He, L. Deng, Z.-R. Zhang, Y. Lin, A fast-dissolving microneedle array loaded with chitosan nanops to evoke systemic immune responses in mice. J. Mater. Chem. B 8(2), 216–225 (2020). https://doi.org/10.1039/C9TB02061F
- G. Chen, Z. Chen, D. Wen, Z. Wang, H. Li et al., Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. 117(7), 3687–3692 (2020). https://doi.org/10.1073/pnas.1917891117
- Q. Zeng, J.M. Gammon, L.H. Tostanoski, Y.-C. Chiu, C.M. Jewell, In vivo expansion of melanoma-specific t cells using microneedle arrays coated with immune-polyelectrolyte multilayers. ACS Biomater. Sci. Eng. 3(2), 195–205 (2017). https://doi.org/10.1021/acsbiomaterials.6b00414
- H.T.T. Duong, Y. Yin, T. Thambi, T.L. Nguyen, V.H. Giang Phan et al., Smart vaccine delivery based on microneedle arrays decorated with ultra-ph-responsive copolymers for cancer immunotherapy. Biomaterials 185, 13–24 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.008
- J. Jung, S.Y. Lim, D. Kim, S. Lyu, O. Whang et al., Microneedle-directed drug delivery to tumor-draining lymph node for synergistic combination chemoimmunotherapy for metastatic cancer. Adv. Ther. (2022). https://doi.org/10.1002/adtp.202100217
- P. Yang, C. Lu, W. Qin, M. Chen, G. Quan et al., Construction of a core-shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Acta Biomater. 104, 147–157 (2020). https://doi.org/10.1016/j.actbio.2019.12.037
- H. Kim, K.-Y. Seong, J.H. Lee, W. Park, S.Y. Yang et al., Biodegradable microneedle patch delivering antigenic peptide–hyaluronate conjugate for cancer immunotherapy. ACS Biomater. Sci. Eng. 5(10), 5150–5158 (2019). https://doi.org/10.1021/acsbiomaterials.9b00961
- H.T.T. Duong, Y. Yin, T. Thambi, B.S. Kim, J.H. Jeong et al., Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. J. Mater. Chem. B 8(6), 1171–1181 (2020). https://doi.org/10.1039/c9tb02175b
- Y. He, C. Hong, S.J. Fletcher, A.G. Berger, X. Sun et al., Peptide-based cancer vaccine delivery via the stingδtm-cgamp complex. Adv. Healthcare Mater. 11(15), 2200905 (2022). https://doi.org/10.1002/adhm.202200905
- M.O. Mohsen, G. Augusto, M.F. Bachmann, The 3ds in virus-like p based-vaccines: design, delivery and dynamics. Immunol. Rev. 296(1), 155–168 (2020). https://doi.org/10.1111/imr.12863
- M.O. Mohsen, D.E. Speiser, A. Knuth, M.F. Bachmann, Virus-like ps for vaccination against cancer. WIREs Nanomed. Nanobiotechnol. 12(1), e1579 (2020). https://doi.org/10.1002/wnan.1579
- R. Cubas, S. Zhang, S. Kwon, E.M. Sevick-Muraca, M. Li et al., Virus-like p (vlp) lymphatic trafficking and immune response generation after immunization by different routes. J. Immunother. 32(2), 118–128 (2009). https://doi.org/10.1097/CJI.0b013e31818f13c4
- L. Ma, T. Dichwalkar, J.Y.H. Chang, B. Cossette, D. Garafola et al., Enhanced car–t cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365(6449), 162–168 (2019). https://doi.org/10.1126/science.aav8692
- P. Wang, P. Zhao, S. Dong, T. Xu, X. He et al., An albumin-binding polypeptide both targets cytotoxic t lymphocyte vaccines to lymph nodes and boosts vaccine presentation by dendritic cells. Theranostics 8(1), 223–236 (2018). https://doi.org/10.7150/thno.21691
- X. Liang, Z. Niu, V. Galli, N. Howe, Y. Zhao et al., Extracellular vesicles engineered to bind albumin demonstrate extended circulation time and lymph node accumulation in mouse models. J. Extracell. Vesicles 11(7), e12248 (2022). https://doi.org/10.1002/jev2.12248
References
S. Chouaib, F. El Hage, H. Benlalam, F. Mami-Chouaib, Immunotherapy of cancer: promise and reality. MS Méd. Sci. 22(8–9), 755–759 (2006). https://doi.org/10.1051/medsci/20062289755
Y. Shi, T. Lammers, Combining nanomedicine and immunotherapy. Acc. Chem. Res. 52(6), 1543–1554 (2019). https://doi.org/10.1021/acs.accounts.9b00148
K.J. Caldwell, S. Gottschalk, A.C. Talleur, Allogeneic car cell therapy—more than a pipe dream. Front. Immunol. 11, 618427 (2021). https://doi.org/10.3389/fimmu.2020.618427
W.J. Lesterhuis, J.B.A.G. Haanen, C.J.A. Punt, Cancer immunotherapy-revisited. Nat. Rev. Drug Disc. 10(8), 591–600 (2011). https://doi.org/10.1038/nrd3500
X. Xie, T. Song, Y. Feng, H. Zhang, G. Yang et al., Nanotechnology-based multifunctional vaccines for cancer immunotherapy. Chem. Eng. J. 437, 135505 (2022). https://doi.org/10.1016/j.cej.2022.135505
S. Burugu, A.R. Dancsok, T.O. Nielsen, Emerging targets in cancer immunotherapy. Semin. Cancer Biol. 52, 39–52 (2018). https://doi.org/10.1016/j.semcancer.2017.10.001
J. Jørgensen, E. Hanna, P. Kefalas, Outcomes-based reimbursement for gene therapies in practice: the experience of recently launched car-t cell therapies in major european countries. J. Market Access Health Policy 8(1), 1715536 (2020). https://doi.org/10.1080/20016689.2020.1715536
G. Morad, B.A. Helmink, P. Sharma, J.A. Wargo, Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184(21), 5309–5337 (2021). https://doi.org/10.1016/j.cell.2021.09.020
P.S. Hegde, D.S. Chen, Top 10 challenges in cancer immunotherapy. Immunity 52(1), 17–35 (2020). https://doi.org/10.1016/j.immuni.2019.12.011
T. Boehm, C.C. Bleul, The evolutionary history of lymphoid organs. Nat. Immunol. 8(2), 131–135 (2007). https://doi.org/10.1038/ni1435
S. Sell, How the immune system works. Medical Times 108(12), 60–63, 67–68, 70–61 passim (1980)
U.H. von Andrian, T.R. Mempel, Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3(11), 867–878 (2003). https://doi.org/10.1038/nri1222
L. Wang, C. Subasic, R.F. Minchin, L.M. Kaminskas, Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. Nanomedicine 14(12), 1605–1621 (2019). https://doi.org/10.2217/nnm-2018-0478
F. Albalawi, M.Z. Hussein, S. Fakurazi, M.J. Masarudin, Engineered nanomaterials: the challenges and opportunities for nanomedicines. Int. J. Nanomed. 16, 161–184 (2021). https://doi.org/10.2147/IJN.S288236
A. Dadwal, A. Baldi, R. Kumar Narang, Nanops as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 46(2), 295–305 (2018). https://doi.org/10.1080/21691401.2018.1457039
P.A. Flores de los Rios, R.G. Casañas Pimentel, E. San Martín Martínez, Nanodrugs against cancer: biological considerations in its redesign. Int. J. Polym. Mater. (2022). https://doi.org/10.1080/00914037.2022.2097680
P. Dong, K.P. Rakesh, H.M. Manukumar, Y.H.E. Mohammed, C.S. Karthik et al., Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem. 85, 325–336 (2019). https://doi.org/10.1016/j.bioorg.2019.01.019
A. Schudel, D.M. Francis, S.N. Thomas, Material design for lymph node drug delivery. Nat. Rev. Mater. 4(6), 415–428 (2019). https://doi.org/10.1038/s41578-019-0110-7
N. Trac, E.J. Chung, Overcoming physiological barriers by nanops for intravenous drug delivery to the lymph nodes. Exper. Biol. Med. 246(22), 2358–2371 (2021). https://doi.org/10.1177/15353702211010762
A.J. Najibi, D.J. Mooney, Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv. Drug Deliv. Rev. 161–162, 42–62 (2020). https://doi.org/10.1016/j.addr.2020.07.023
E.L. Berg, M.K. Robinson, R.A. Warnock, E.C. Butcher, The human peripheral lymph node vascular addressin is a ligand for lecam-1, the peripheral lymph node homing receptor. J. Cell Biol. 114(2), 343–349 (1991). https://doi.org/10.1083/jcb.114.2.343
N.H. Ruddle, E.M. Akirav, Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response1. J. Immun. 183(4), 2205–2212 (2009). https://doi.org/10.4049/jimmunol.0804324
Y. Chen, S. De Koker, B.G. De Geest, Engineering strategies for lymph node targeted immune activation. Acc. Chem. Res. 53(10), 2055–2067 (2020). https://doi.org/10.1021/acs.accounts.0c00260
Y. Ding, Z. Li, A. Jaklenec, Q. Hu, Vaccine delivery systems toward lymph nodes. Adv. Drug Deliv. Rev. 179, 113914 (2021). https://doi.org/10.1016/j.addr.2021.113914
M. Bajénoff, J.G. Egen, L.Y. Koo, J.P. Laugier, F. Brau et al., Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25(6), 989–1001 (2006). https://doi.org/10.1016/j.immuni.2006.10.011
M.P. Manspeaker, S.N. Thomas, Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Adv. Drug Deliv. Rev. 160, 19–35 (2020). https://doi.org/10.1016/j.addr.2020.10.004
J.-P. Girard, C. Moussion, R. Förster, Hevs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12(11), 762–773 (2012). https://doi.org/10.1038/nri3298
Y.-N. Zhang, W. Poon, E. Sefton, W.C.W. Chan, Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node follicles for robust humoral immunity. ACS Nano 14(8), 9478–9490 (2020). https://doi.org/10.1021/acsnano.0c02240
M.A. Swartz, The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50(1), 3–20 (2001). https://doi.org/10.1016/S0169-409X(01)00150-8
H. du Bois, T.A. Heim, A.W. Lund, Tumor-draining lymph nodes: at the crossroads of metastasis and immunity. Sci. Immunol. 6(63), eabg3551 (2021). https://doi.org/10.1126/sciimmunol.abg3551
S. Das, E. Sarrou, S. Podgrabinska, M. Cassella, S.K. Mungamuri et al., Tumor cell entry into the lymph node is controlled by ccl1 chemokine expressed by lymph node lymphatic sinuses. J. Exp. Med. 210(8), 1509–1528 (2013). https://doi.org/10.1084/jem.20111627
G. Gasteiger, M. Ataide, W. Kastenmüller, Lymph node-an organ for t-cell activation and pathogen defense. Immunol. Rev. 271(1), 200–220 (2016). https://doi.org/10.1111/imr.12399
E.R. Pereira, D. Jones, K. Jung, T.P. Padera, The lymph node microenvironment and its role in the progression of metastatic cancer. Sem. Cell Dev. Biol. 38, 98–105 (2015). https://doi.org/10.1016/j.semcdb.2015.01.008
J. Lian, A.D. Luster, Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses. Curr. Opin. Cell Biol. 36, 1–6 (2015). https://doi.org/10.1016/j.ceb.2015.05.003
M. Wendland, S. Willenzon, J. Kocks, A.C. Davalos-Misslitz, S.I. Hammerschmidt et al., Lymph node t cell homeostasis relies on steady state homing of dendritic cells. Immunity 35(6), 945–957 (2011). https://doi.org/10.1016/j.immuni.2011.10.017
T. Katakai, T. Hara, J.-H. Lee, H. Gonda, M. Sugai et al., A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, t cells and b cells. Int. Immunol. 16(8), 1133–1142 (2004). https://doi.org/10.1093/intimm/dxh113
C.L. Willard-Mack, Normal structure, function, and histology of lymph nodes. Tox. Pathol. 34(5), 409–424 (2006). https://doi.org/10.1080/01926230600867727
O. Ohtani, Y. Ohtani, Structure and function of rat lymph nodes. Arch. Histol. Cytol. 71(2), 69–76 (2008). https://doi.org/10.1679/aohc.71.69
N.A. O’Neill, H.B. Eppler, C.M. Jewell, J.S. Bromberg, Harnessing the lymph node microenvironment. Curr. Opin. Organ Transpl. 23(1), 73–82 (2018). https://doi.org/10.1097/MOT.0000000000000488
M. Radomski, H.J. Zeh, H.D. Edington, J.F. Pingpank, L.H. Butterfield et al., Prolonged intralymphatic delivery of dendritic cells through implantable lymphatic ports in patients with advanced cancer. J. Immunother. Cancer 4(1), 24–24 (2016). https://doi.org/10.1186/s40425-016-0128-y
H. Fujii, S. Horie, K. Takeda, S. Mori, T. Kodama, Optimal range of injection rates for a lymphatic drug delivery system. J. Biophotonics 11(8), e201700401 (2018). https://doi.org/10.1002/jbio.201700401
H. Jiang, Q. Wang, X. Sun, Lymph node targeting strategies to improve vaccination efficacy. J. Contr. Release 267, 47–56 (2017). https://doi.org/10.1016/j.jconrel.2017.08.009
B.R. von Beust, P. Johansen, K.A. Smith, A. Bot, T. Storni et al., Improving the therapeutic index of cpg oligodeoxynucleotides by intralymphatic administration. Eur. J. Immunol. 35(6), 1869–1876 (2005). https://doi.org/10.1002/eji.200526124
W.J. Lesterhuis, I.J.M. De Vries, G. Schreibelt, A.J.A. Lambeck, E.H.J.G. Aarntzen et al., Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific t cells in advanced melanoma patients. Clin. Cancer Res. 17(17), 5725–5735 (2011). https://doi.org/10.1158/1078-0432.CCR-11-1261
P. Johansen, A.C. Häffner, F. Koch, K. Zepter, I. Erdmann et al., Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur. J. Immunol. 35(2), 568–574 (2005). https://doi.org/10.1002/eji.200425599
C.M. Jewell, S.C. Bustamante López, D.J. Irvine, In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer ps. Proc. Natl. Acad. Sci. USA 108(38), 15745–15750 (2011). https://doi.org/10.1073/pnas.1105200108
C.H. Choi, J.E. Zuckerman, P. Webster, M.E. Davis, Targeting kidney mesangium by nanops of defined size. Proc. Natl. Acad. Sci. USA 108(16), 6656–6661 (2011). https://doi.org/10.1073/pnas.1103573108
F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanops. Mol. Pharm. 5(4), 505–515 (2008). https://doi.org/10.1021/mp800051m
S.F. Rodrigues, D.N. Granger, Blood cells and endothelial barrier function. Tissue Barriers 3(1–2), e978720 (2015). https://doi.org/10.4161/21688370.2014.978720
A.B. Engin, D. Nikitovic, M. Neagu, P. Henrich-Noack, A.O. Docea et al., Mechanistic understanding of nanops’ interactions with extracellular matrix: the cell and immune system. P Fibre Toxicol. 14(1), 22 (2017). https://doi.org/10.1186/s12989-017-0199-z
L.M. Kaminskas, V.M. McLeod, D.B. Ascher, G.M. Ryan, S. Jones et al., Methotrexate-conjugated pegylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol. Pharm. 12(2), 432–443 (2015). https://doi.org/10.1021/mp500531e
T. Chida, Y. Miura, H. Cabral, T. Nomoto, K. Kataoka et al., Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and ph-triggered drug release. J. Contr. Release 292, 130–140 (2018). https://doi.org/10.1016/j.jconrel.2018.10.035
C. Xia, Q. Zhou, Q. Zhang, S. Hu, E. Meacci et al., Comparative study on the diagnostic value of intravenous/peritumoral injection of indocyanine green for metastatic lymph node location in patients with head and neck squamous cell carcinoma (hnscc). Ann. Transl. Med. 9(6), 507 (2021). https://doi.org/10.21037/atm-21-392
N.L. Trevaskis, L.M. Kaminskas, C.J.H. Porter, From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Disc. 14(11), 781–803 (2015). https://doi.org/10.1038/nrd4608
N.L. Trevaskis, W.N. Charman, C.J.H. Porter, Targeted drug delivery to lymphocytes: a route to site-specific immunomodulation? Mol. Pharm. 7(6), 2297–2309 (2010). https://doi.org/10.1021/mp100259a
J.E. Vela Ramirez, L.A. Sharpe, N.A. Peppas, Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 114, 116–131 (2017). https://doi.org/10.1016/j.addr.2017.04.008
A. Azizi, A. Kumar, F. Diaz-Mitoma, J. Mestecky, Enhancing oral vaccine potency by targeting intestinal m cells. PLoS Pathog. 6(11), e1001147 (2010). https://doi.org/10.1371/journal.ppat.1001147
A.T. Florence, Nanop uptake by the oral route: fulfilling its potential? Drug Disc. Today Technol. 2(1), 75–81 (2005). https://doi.org/10.1016/j.ddtec.2005.05.019
J.A. Yáñez, S.W. Wang, I.W. Knemeyer, M.A. Wirth, K.B. Alton, Intestinal lymphatic transport for drug delivery. Adv. Drug Deliv. Rev. 63(10–11), 923–942 (2011). https://doi.org/10.1016/j.addr.2011.05.019
Q. Hu, M. Wu, C. Fang, C. Cheng, M. Zhao et al., Engineering nanop-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15(4), 2732–2739 (2015). https://doi.org/10.1021/acs.nanolett.5b00570
G.M. Ryan, L.M. Kaminskas, C.J.H. Porter, Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J. Contr. Release 193, 241–256 (2014). https://doi.org/10.1016/j.jconrel.2014.04.051
L. Feng, L. Zhang, M. Liu, Z. Yan, C. Wang et al., Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system. J. Drug Target. 18(3), 168–178 (2010). https://doi.org/10.3109/10611860903318126
J.F. Nicolas, B. Guy, Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev. Vaccines 7(8), 1201–1214 (2008). https://doi.org/10.1586/14760584.7.8.1201
E.N. Hoogenboezem, C.L. Duvall, Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130, 73–89 (2018). https://doi.org/10.1016/j.addr.2018.07.011
N.A. Rohner, S.N. Thomas, Flexible macromolecule versus rigid p retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS BioMater. Sci. Eng. 3(2), 153–159 (2017). https://doi.org/10.1021/acsbiomaterials.6b00438
Y. Wang, J. Wang, D. Zhu, Y. Wang, G. Qing et al., Effect of physicoChemical properties on in vivo fate of nanop-based cancer immunotherapies. Acta Pharm. Sin. B 11(4), 886–902 (2021). https://doi.org/10.1016/j.apsb.2021.03.007
S. Chaturvedi, A. Garg, A. Verma, Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: an insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol. 59, 101899 (2020). https://doi.org/10.1016/j.jddst.2020.101899
T. Nakamura, M. Kawai, Y. Sato, M. Maeki, M. Tokeshi et al., The effect of size and charge of lipid nanops prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17(3), 944–953 (2020). https://doi.org/10.1021/acs.molpharmaceut.9b01182
S.T. Reddy, A.J. van der Vlies, E. Simeoni, V. Angeli, G.J. Randolph et al., Exploiting lymphatic transport and complement activation in nanop vaccines. Nat. Biotechnol. 25(10), 1159–1164 (2007). https://doi.org/10.1038/nbt1332
R. He, J. Zang, Y. Zhao, H. Dong, Y. Li, Nanotechnology-based approaches to promote lymph node targeted delivery of cancer vaccines. ACS Biomater. Sci. Eng. 8(2), 406–423 (2022). https://doi.org/10.1021/acsbiomaterials.1c01274
X. Yu, Y. Dai, Y. Zhao, S. Qi, L. Liu et al., Melittin-lipid nanops target to lymph nodes and elicit a systemic anti-tumor immune response. Nat. Commun. 11(1), 1110–1114 (2020). https://doi.org/10.1038/s41467-020-14906-9
M.F. Bachmann, G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787–796 (2010). https://doi.org/10.1038/nri2868
V. Manolova, A. Flace, M. Bauer, K. Schwarz, P. Saudan et al., Nanops target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38(5), 1404–1413 (2008). https://doi.org/10.1002/eji.200737984
J. Xu, Q. Ma, Y. Zhang, Z. Fei, Y. Sun et al., Yeast-derived nanops remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 13(1), 110 (2022). https://doi.org/10.1038/s41467-021-27750-2
A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanop size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14(1), 1–16 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150124
Q. Zeng, H. Jiang, T. Wang, Z. Zhang, T. Gong et al., Cationic micelle delivery of trp2 peptide for efficient lymphatic draining and enhanced cytotoxic t-lymphocyte responses. J. Contr. Release 200, 1–12 (2015). https://doi.org/10.1016/j.jconrel.2014.12.024
Y. Zhuang, Y. Ma, C. Wang, L. Hai, C. Yan et al., Pegylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J. Contr. Release 159(1), 135–142 (2012). https://doi.org/10.1016/j.jconrel.2011.12.017
T. Nakamura, H. Harashima, Dawn of lipid nanops in lymph node targeting: potential in cancer immunotherapy. Adv. Drug Deliv. Rev. 167, 78–88 (2020). https://doi.org/10.1016/j.addr.2020.06.003
J. McCright, C. Skeen, J. Yarmovsky, K. Maisel, Nanops with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes. Acta Biomater. 145, 146–158 (2022). https://doi.org/10.1016/j.actbio.2022.03.054
Y. Zou, S. Ito, F. Yoshino, Y. Suzuki, L. Zhao et al., Polyglycerol grafting shields nanops from protein corona formation to avoid macrophage uptake. ACS Nano 14(6), 7216–7226 (2020). https://doi.org/10.1021/acsnano.0c02289
X. Zhan, K.K. Tran, H. Shen, Effect of the poly(ethylene glycol) (peg) density on the access and uptake of ps by antigen-presenting cells (apcs) after subcutaneous administration. Mol. Pharm. 9(12), 3442–3451 (2012). https://doi.org/10.1021/mp300190g
D. Alvarez, E.H. Vollmann, U.H. von Andrian, Mechanisms and consequences of dendritic cell migration. Immunity 29(3), 325–342 (2008). https://doi.org/10.1016/j.immuni.2008.08.006
T. Song, Y. Xia, Y. Du, M.W. Chen, H. Qing et al., Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine delivery. Adv. Mater. 33(26), 2100106 (2021). https://doi.org/10.1002/adma.202100106
P. Guo, D. Liu, K. Subramanyam, B. Wang, J. Yang et al., Nanop elasticity directs tumor uptake. Nat. Commun. 9(1), 130 (2018). https://doi.org/10.1038/s41467-017-02588-9
J. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano et al., Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano 9(12), 11628–11641 (2015). https://doi.org/10.1021/acsnano.5b04866
S.N. Mueller, S. Tian, J.M. DeSimone, Rapid and persistent delivery of antigen by lymph node targeting print nanop vaccine carrier to promote humoral immunity. Mol. Pharm. 12(5), 1356–1365 (2015). https://doi.org/10.1021/mp500589c
T. Cai, H. Liu, S. Zhang, J. Hu, L. Zhang, Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. J. Nanobiotechn. 19(1), 389 (2021). https://doi.org/10.1186/s12951-021-01146-2
C. Macri, C. Dumont, A.P. Johnston, J.D. Mintern, Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin. Transl. Immunol. 5(3), e66 (2016). https://doi.org/10.1038/cti.2016.6
T. Keler, V. Ramakrishna, M.W. Fanger, Mannose receptor-targeted vaccines. Expert Opin. Biol. Ther. 4(12), 1953–1962 (2004). https://doi.org/10.1517/14712598.4.12.1953
S. Duinkerken, S.K. Horrevorts, H. Kalay, M. Ambrosini, L. Rutte et al., Glyco-dendrimers as intradermal anti-tumor vaccine targeting multiple skin DC subsets. Theranostics 9(20), 5797–5809 (2019). https://doi.org/10.7150/thno.35059
D. Duluc, H. Joo, L. Ni, W. Yin, K. Upchurch et al., Induction and activation of human th17 by targeting antigens to dendritic cells via dectin-1. J. Immunol. 192(12), 5776–5788 (2014). https://doi.org/10.4049/jimmunol.1301661
E. Gehrie, W. Van der Touw, J.S. Bromberg, J.C. Ochando, Plasmacytoid dendritic cells in tolerance. Methods Mol. Biol. 677, 127–147 (2011). https://doi.org/10.1007/978-1-60761-869-0_9
A. Le Moignic, V. Malard, T. Benvegnu, L. Lemiègre, M. Berchel et al., Preclinical evaluation of mrna trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J. Contr. Release 278, 110–121 (2018). https://doi.org/10.1016/j.jconrel.2018.03.035
X. Li, S. Khorsandi, Y. Wang, J. Santelli, K. Huntoon et al., Cancer immunotherapy based on image-guided sting activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 17(8), 891–899 (2022). https://doi.org/10.1038/s41565-022-01134-z
N.A. Rohner, J. McClain, S.L. Tuell, A. Warner, B. Smith et al., Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB J. 29(11), 4512 (2015). https://doi.org/10.1096/fj.15-274761
Y.L. Balachandran, X. Li, X. Jiang, Integrated microfluidic synthesis of aptamer functionalized biozeolitic imidazolate framework (bioZIF-8) targeting lymph node and tumor. Nano Lett. 21(3), 1335–1344 (2021). https://doi.org/10.1021/acs.nanolett.0c04053
H. Liu, Z. Wen, H. Chen, Z. Yang, Z. Le et al., Nanoadjuvants actively targeting lymph node conduits and blocking tumor invasion in lymphatic vessels. J. Contr. Release 352, 497–506 (2022). https://doi.org/10.1016/j.jconrel.2022.10.053
L. Jiang, S. Jung, J. Zhao, V. Kasinath, T. Ichimura et al., Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today 36, 101045 (2021). https://doi.org/10.1016/j.nantod.2020.101045
H. Qin, R. Zhao, Y. Qin, J. Zhu, L. Chen et al., Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv. Mater. 33(20), e2006007 (2021). https://doi.org/10.1002/adma.202006007
H. Liu, K.D. Moynihan, Y. Zheng, G.L. Szeto, A.V. Li et al., Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507(7493), 519–522 (2014). https://doi.org/10.1038/nature12978
M.T. Stephan, J.J. Moon, S.H. Um, A. Bershteyn, D.J. Irvine, Therapeutic cell engineering with surface-conjugated synthetic nanops. Nat. Med. 16(9), 1035–1041 (2010). https://doi.org/10.1038/nm.2198
P. Yang, H. Song, Y. Qin, P. Huang, C. Zhang et al., Engineering dendritic-cell-based vaccines and pd-1 blockade in self-assembled peptide nanofibrous hydrogel to amplify antitumor t-cell immunity. Nano Lett. 18(7), 4377–4385 (2018). https://doi.org/10.1021/acs.nanolett.8b01406
Z. Meng, Y. Zhang, J. She, X. Zhou, J. Xu et al., Ultrasound-mediated remotely controlled nanovaccine delivery for tumor vaccination and individualized cancer immunotherapy. Nano Lett. 21(3), 1228–1237 (2021). https://doi.org/10.1021/acs.nanolett.0c03646
C.B. Roces, S. Khadke, D. Christensen, Y. Perrie, Scale-independent microfluidic production of cationic liposomal adjuvants and development of enhanced lymphatic targeting strategies. Mol. Pharm. 16(10), 4372–4386 (2019). https://doi.org/10.1021/acs.molpharmaceut.9b00730
Y. Du, T. Song, J. Wu, X.-D. Gao, G. Ma et al., Engineering mannosylated pickering emulsions for the targeted delivery of multicomponent vaccines. Biomaterials 280, 121313 (2022). https://doi.org/10.1016/j.biomaterials.2021.121313
L. Mei, J. Rao, Y. Liu, M. Li, Z. Zhang et al., Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable p sizes. J. Contr. Release 292, 67–77 (2018). https://doi.org/10.1016/j.jconrel.2018.04.053
P. Xiao, J. Wang, Z. Zhao, X. Liu, X. Sun et al., Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett. 21(5), 2094–2103 (2021). https://doi.org/10.1021/acs.nanolett.0c04783
Q. Wang, Z. Dong, F. Lou, Y. Yin, J. Zhang et al., Phenylboronic ester-modified polymeric nanops for promoting trp2 peptide antigen delivery in cancer immunotherapy. Drug Deliv. 29(1), 2029–2043 (2022). https://doi.org/10.1080/10717544.2022.2086941
C. Huang, L. Zhang, Q. Guo, Y. Zuo, N. Wang et al., Robust nanovaccine based on polydopamine-coated mesoporous silica nanops for effective photothermal-immunotherapy against melanoma. Adv. Funct. Mater. 31(18), 2010637 (2021). https://doi.org/10.1002/adfm.202010637
X. Zhong, Y. Zhang, L. Tan, T. Zheng, Y. Hou, X. Hong, G. Du, X. Chen, Y. Zhang, X. Sun, An aluminum adjuvant-integrated nano-mof as antigen delivery system to induce strong humoral and cellular immune responses. J. Contr. Release 300, 81–92 (2019). https://doi.org/10.1016/j.jconrel.2019.02.035
I.-C. Sun, S. Jo, D. Dumani, W.S. Yun, H.Y. Yoon et al., Theragnostic glycol chitosan-conjugated gold nanops for photoacoustic imaging of regional lymph nodes and delivering tumor antigen to lymph nodes. Nanomaterials 11(7), 1700 (2021). https://doi.org/10.3390/nano11071700
E.S. Choi, J. Song, Y.Y. Kang, H. Mok, Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol. Biosci. 19(7), 1900042 (2019). https://doi.org/10.1002/mabi.201900042
B. Zuo, Y. Zhang, K. Zhao, L. Wu, H. Qi et al., Universal immunotherapeutic strategy for hepatocellular carcinoma with exosome vaccines that engage adaptive and innate immune responses. J. Hematol. Oncol. 15(1), 46 (2022). https://doi.org/10.1186/s13045-022-01266-8
S. Wang, F. Li, T. Ye, J. Wang, C. Lyu et al., Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13(615), eabb6981 (2021). https://doi.org/10.1126/scitranslmed.abb6981
H. Chang, S.W.T. Chew, M. Zheng, D.C.S. Lio, C. Wiraja et al., Cryomicroneedles for transdermal cell delivery. Nat. Biomed. Eng. 5(9), 1008–1018 (2021). https://doi.org/10.1038/s41551-021-00720-1
C. Caudill, J.L. Perry, K. Iliadis, A.T. Tessema, B.J. Lee et al., Transdermal vaccination via 3d-printed microneedles induces potent humoral and cellular immunity. Proc. Natl. Acad. Sci. 118(39), e2102595118 (2021). https://doi.org/10.1073/pnas.2102595118
M. Neek, T.I. Kim, S.-W. Wang, Protein-based nanops in cancer vaccine development. Nanomed. Nanotechnol. Biol. Med. 15(1), 164–174 (2019). https://doi.org/10.1016/j.nano.2018.09.004
Y. Mao, J. Liu, T. Shi, G. Chen, S. Wang, A novel self-assembly nanocrystal as lymph node-targeting delivery system: higher activity of lymph node targeting and longer efficacy against lymphatic metastasis. AAPS Pharm. Sci. Tech. 20(7), 292 (2019). https://doi.org/10.1208/s12249-019-1447-3
Y. Wu, Q. Jin, Y. Chen, H. Li, C. Deng et al., Bioinspired ß-glucan microcapsules deliver FK506 to lymph nodes for treatment of cardiac allograft acute rejection. BioMater. Sci. 8(19), 5282–5292 (2020). https://doi.org/10.1039/d0bm01028f
N. Kashyap, N. Kumar, M.N.V.R. Kumar, Hydrogels for pharmaceutical and biomedical applications. Cri. Rev. Ther. Drug Carrier Syst. 22(2), 107–149 (2005). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10
Y. Chao, Q. Chen, Z. Liu, Smart injectable hydrogels for cancer immunotherapy. Adv. Funct. Mater. 30(2), 1902785 (2020). https://doi.org/10.1002/adfm.201902785
G. Cirillo, U.G. Spizzirri, M. Curcio, F.P. Nicoletta, F. Iemma, Injectable hydrogels for cancer therapy over the last decade. Pharmaceutics 11(9), 486 (2019). https://doi.org/10.3390/pharmaceutics11090486
J. Wang, S. Wang, T. Ye, F. Li, X. Gao et al., Choice of nanovaccine delivery mode has profound impacts on the intralymph node spatiotemporal distribution and immunotherapy efficacy. Adv. Sci. 7(19), 2001108 (2020). https://doi.org/10.1002/advs.202001108
H. Song, P. Huang, J. Niu, G. Shi, C. Zhang et al., Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic t-lymphocyte response against melanoma. Biomaterials 159, 119–129 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.004
M. Ding, Y. Fan, Y. Lv, J. Liu, N. Yu et al., A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Acta Biomater. 149, 334–346 (2022). https://doi.org/10.1016/j.actbio.2022.06.041
H. Wang, A.J. Najibi, M.C. Sobral, B.R. Seo, J.Y. Lee et al., Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat. Commun. 11(1), 5696–5696 (2020). https://doi.org/10.1038/s41467-020-19540-z
E. Pérez del Río, F. Santos, X. Rodriguez Rodriguez, M. Martínez-Miguel, R. Roca-Pinilla et al., CCL21-loaded 3D hydrogels for t cell expansion and differentiation. Biomaterials 259, 120313 (2020). https://doi.org/10.1016/j.biomaterials.2020.120313
Y. Shao, Z.-Y. Sun, Y. Wang, B.-D. Zhang, D. Liu et al., Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl. Mater. Interfaces 10(11), 9310–9314 (2018). https://doi.org/10.1021/acsami.8b00312
L. Sun, F. Shen, L. Tian, H. Tao, Z. Xiong et al., Atp-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity. Adv. Mater. 33(18), e2007910 (2021). https://doi.org/10.1002/adma.202007910
T.L. Nguyen, B.G. Cha, Y. Choi, J. Im, J. Kim, Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanops to dendritic cells recruited in local macroporous scaffold. Biomaterials 239, 119859 (2020). https://doi.org/10.1016/j.biomaterials.2020.119859
Q. Su, H. Song, P. Huang, C. Zhang, J. Yang et al., Supramolecular co-assembly of self-adjuvanting nanofibrious peptide hydrogel enhances cancer vaccination by activating myd88-dependent nf-κb signaling pathway without inflammation. Bioactive Mater. 6(11), 3924–3934 (2021). https://doi.org/10.1016/j.bioactmat.2021.03.041
M. Kamalov, H. Kählig, C. Rentenberger, A.R.M. Müllner, H. Peterlik et al., Ovalbumin epitope siinfekl self-assembles into a supramolecular hydrogel. Sci. Rep. 9(1), 2696–2696 (2019). https://doi.org/10.1038/s41598-019-39148-8
H. Song, P. Yang, P. Huang, C. Zhang, D. Kong et al., Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 9(8), 2299–2314 (2019). https://doi.org/10.7150/thno.30577
Y. Wu, Q. Li, G. Shim, Y.-K. Oh, Melanin-loaded cpg DNA hydrogel for modulation of tumor immune microenvironment. J. Contr. Release 330, 540–553 (2021). https://doi.org/10.1016/j.jconrel.2020.12.040
Y. Umeki, K. Mohri, Y. Kawasaki, H. Watanabe, R. Takahashi et al., Induction of potent antitumor immunity by sustained release of cationic antigen from a DNA-based hydrogel with adjuvant activity. Adv. Funct. Mater. 25(36), 5758–5767 (2015). https://doi.org/10.1002/adfm.201502139
J. Kim, D.M. Francis, L.F. Sestito, P.A. Archer, M.P. Manspeaker et al., Thermosensitive hydrogel releasing nitric oxide donor and anti-ctla-4 micelles for anti-tumor immunotherapy. Nat. Commun. 13(1), 1479–1479 (2022). https://doi.org/10.1038/s41467-022-29121-x
H.T.T. Duong, T. Thambi, Y. Yin, S.H. Kim, T.L. Nguyen et al., Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials 230, 119599 (2020). https://doi.org/10.1016/j.biomaterials.2019.119599
Y.P. Jia, K. Shi, F. Yang, J.F. Liao, R.X. Han et al., Multifunctional nanop loaded injectable thermoresponsive hydrogel as nir controlled release platform for local photothermal immunotherapy to prevent breast cancer postoperative recurrence and metastases. Adv. Funct. Mater. 30(25), 2001059 (2020). https://doi.org/10.1002/adfm.202001059
A. Sinha, Y. Choi, M.H. Nguyen, T.L. Nguyen, S.W. Choi et al., A 3d macroporous alginate graphene scaffold with an extremely slow release of a loaded cargo for in situ long-term activation of dendritic cells. Adv. Healthcare Mater. 8(5), e1800571 (2019). https://doi.org/10.1002/adhm.201800571
Y. Yin, X. Li, H. Ma, J. Zhang, D. Yu et al., In situ transforming rna nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21(5), 2224–2231 (2021). https://doi.org/10.1021/acs.nanolett.0c05039
T.T.H. Thi, E.J.A. Suys, J.S. Lee, D.H. Nguyen, K.D. Park et al., Lipid-based nanops in the clinic and clinical trials: from cancer nanomedicine to covid-19 vaccines. Vaccines 9(4), 359 (2021). https://doi.org/10.3390/vaccines9040359
S. Khadke, C.B. Roces, A. Cameron, A. Devitt, Y. Perrie, Formulation and manufacturing of lymphatic targeting liposomes using microfluidics. J. Contr. Release 307, 211–220 (2019). https://doi.org/10.1016/j.jconrel.2019.06.002
C. Oussoren, M. Velinova, G. Scherphof, J.J. van der Want, N. van Rooijen et al., Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: Iv. Fate of liposomes in regional lymph nodes. Biochim. et Biophys. Acta (BBA) Biomembr. 1370(2), 259–272 (1998). https://doi.org/10.1016/S0005-2736(97)00275-7
J. Chen, Z. Ye, C. Huang, M. Qiu, D. Song et al., Lipid nanop-mediated lymph node-targeting delivery of mrna cancer vaccine elicits robust cd8(+) t cell response. Proc. Natl. Acad. Sci. 119(34), e2207841119 (2022). https://doi.org/10.1073/pnas.2207841119
C. Oussoren, J. Zuidema, D.J.A. Crommelin, G. Storm, Lymphatic uptake and biodistribution of liposomes after subcutaneous injection.: Ii. Influence of liposomal size, lipid composition and lipid dose. Biochim. et Biophys. Acta (BBA) Biomembr. 1328(2), 261–272 (1997). https://doi.org/10.1016/S0005-2736(97)00122-3
S. Luozhong, Z. Yuan, T. Sarmiento, Y. Chen, W. Gu et al., Phosphatidylserine lipid nanops promote systemic rna delivery to secondary lymphoid organs. Nano Lett. 22(20), 8304–8311 (2022). https://doi.org/10.1021/acs.nanolett.2c03234
X. Li, Y. Wu, S. Wang, J. Liu, T. Zhang et al., Menthol nanoliposomes enhanced anti-tumor immunotherapy by increasing lymph node homing of dendritic cell vaccines. Clinical Immunol. 244, 109119 (2022). https://doi.org/10.1016/j.clim.2022.109119
M. Stoffel, C. Wolfrum, S. Shi, K.N. Jayaprakash, M. Jayaraman et al., Mechanisms and optimization of in vivo delivery of lipophilic sirnas. Nat. Biotechnol. 25(10), 1149–1157 (2007). https://doi.org/10.1038/nbt1339
J.B. Dixon, Lymphatic lipid transport: sewer or subway? Trends Endocrinol. Metab. 21(8), 480–487 (2010). https://doi.org/10.1016/j.tem.2010.04.003
H.Y. Lim, C.H. Thiam, K.P. Yeo, R. Bisoendial, C.S. Hii et al., Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by sr-bi-mediated transport of hdl. Cell Metab. 17(5), 671–684 (2013). https://doi.org/10.1016/j.cmet.2013.04.002
D. Wan, H. Que, L. Chen, T. Lan, W. Hong et al., Lymph-node-targeted cholesterolized TLR7 agonist liposomes provoke a safe and durable antitumor response. Nano Lett. 21(19), 7960–7969 (2021). https://doi.org/10.1021/acs.nanolett.1c01968
D. Papahadjopoulos, Liposome formation and properties: an evolutionary profile. Biochem. Soci. Trans. 16(6), 910–912 (1988). https://doi.org/10.1042/bst0160910
N. Düzgüneş, S. Nir, Mechanisms and kinetics of liposome–cell interactions. Adv. Drug Deliv. Rev. 40(1), 3–18 (1999). https://doi.org/10.1016/S0169-409X(99)00037-X
Y. Zhai, X. He, Y. Li, R. Han, Y. Ma et al., A splenic-targeted versatile antigen courier: Ipsc wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. Sci. Adv. 7(35), eabi6326 (2021). https://doi.org/10.1126/sciadv.abi6326
N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanops: mechanisms of controlling drug release. Chem. Rev. 116(4), 2602–2663 (2016). https://doi.org/10.1021/acs.chemrev.5b00346
A. Gothwal, I. Khan, U. Gupta, Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm. Res. 33(1), 18–39 (2016). https://doi.org/10.1007/s11095-015-1784-1
Y. Nishimoto, S. Nagashima, K. Nakajima, T. Ohira, T. Sato et al., Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int. J. Pharm. 576, 119021 (2020). https://doi.org/10.1016/j.ijpharm.2020.119021
Y. Xu, S. Ma, J. Zhao, H. Chen, X. Si et al., Mannan-decorated pathogen-like polymeric nanops as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials 284, 121489 (2022). https://doi.org/10.1016/j.biomaterials.2022.121489
L. Wang, Y. He, T. He, G. Liu, C. Lin et al., Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 255, 120208 (2020). https://doi.org/10.1016/j.biomaterials.2020.120208
D. Jiang, T. Gao, S. Liang, W. Mu, S. Fu et al., Lymph node delivery strategy enables the activation of cytotoxic t lymphocytes and natural killer cells to augment cancer immunotherapy. ACS Appl. Mater. Interfaces 13(19), 22213–22224 (2021). https://doi.org/10.1021/acsami.1c03709
N.B. Karabin, S. Allen, H.K. Kwon, S. Bobbala, E. Firlar et al., Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat. Commun. 9(1), 624 (2018). https://doi.org/10.1038/s41467-018-03001-9
M. Elsabahy, K.L. Wooley, Design of polymeric nanops for biomedical delivery applications. Chem. Soci. Rev. 41(7), 2545–2561 (2012). https://doi.org/10.1039/c2cs15327k
Z. Liu, C. Zhou, Y. Qin, Z. Wang, L. Wang et al., Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle-based nanovaccine. Cell Discov. 3, 17007 (2017). https://doi.org/10.1038/celldisc.2017.7
L. Wang, Z. Wang, Y. Qin, W. Liang, Delivered antigen peptides to resident cd8α+ dcs in lymph node by micelle-based vaccine augment antigen-specific cd8+ effector t cell response. Eur. J. Pharm. Biopharm. 147, 76–86 (2020). https://doi.org/10.1016/j.ejpb.2019.12.013
A. Schudel, A.P. Chapman, M.-K. Yau, C.J. Higginson, D.M. Francis et al., Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15(6), 491–499 (2020). https://doi.org/10.1038/s41565-020-0679-4
H. Kim, L. Niu, P. Larson, T.A. Kucaba, K.A. Murphy et al., Polymeric nanops encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 164, 38–53 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.034
B. He, H.-Y. Hu, T. Tan, H. Wang, K.-X. Sun et al., Ir-780-loaded polymeric micelles enhance the efficacy of photothermal therapy in treating breast cancer lymphatic metastasis in mice. Acta Pharm. Sin. 39(1), 132–139 (2018). https://doi.org/10.1038/aps.2017.109
X. Yang, T. Yu, Y. Zeng, K. Lian, X. Zhou et al., Ph-responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromol 21(7), 2818–2828 (2020). https://doi.org/10.1021/acs.biomac.0c00518
K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
L. Gu, Tailored silica nanoMater for immunotherapy. ACS Cent. Sci. 4(5), 527–529 (2018). https://doi.org/10.1021/acscentsci.8b00181
H. Hu, C. Yang, F. Zhang, M. Li, Z. Tu et al., A versatile and robust platform for the scalable manufacture of biomimetic nanovaccines. Adv. Sci. 8(15), 2002020 (2021). https://doi.org/10.1002/advs.202002020
S.O. Stead, S.J.P. McInnes, S. Kireta, P.D. Rose, S. Jesudason et al., Manipulating human dendritic cell phenotype and function with targeted porous silicon nanops. Biomaterials 155, 92–102 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.017
W.R. Algar, D.E. Prasuhn, M.H. Stewart, T.L. Jennings, J.B. Blanco-Canosa et al., The controlled display of biomolecules on nanops: a challenge suited to bioorthogonal chemistry. Bioconj. Chem. 22(5), 825–858 (2011). https://doi.org/10.1021/bc200065z
S.S. Pakhomy, A.B. Bucharskaya, G.N. Maslyakova, O.V. Zlobina, I.O. Bugaeva et al., The influence of long-term peroral administration of gold nanops with various sizes on the liver, spleen, and lymph nodes of laboratory rats and their progeny. Opt. Spectr. 126(6), 681–686 (2019). https://doi.org/10.1134/S0030400X19060195
H. Liu, H. Dong, N. Zhou, S. Dong, L. Chen et al., Spio enhance the cross-presentation and migration of dcs and anionic spio influence the nanoadjuvant effects related to interleukin-1β. Nanoscale Res. Lett. 13(1), 409 (2018). https://doi.org/10.1186/s11671-018-2802-0
B.G. Cha, J.H. Jeong, J. Kim, Extra-large pore mesoporous silica nanops enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent. Sci. 4(4), 484–492 (2018). https://doi.org/10.1021/acscentsci.8b00035
J. Wagner, D. Gößl, N. Ustyanovska, M. Xiong, D. Hauser et al., Mesoporous silica nanops as ph-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 15(3), 4450–4466 (2021). https://doi.org/10.1021/acsnano.0c08384
S.K. Gulla, B.R. Rao, G. Moku, S. Jinka, N.V. Nimmu et al., In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanops. Biomater. Sci. 7(3), 773–788 (2019). https://doi.org/10.1039/C8BM01272E
K. Ni, T. Luo, G. Lan, A. Culbert, Y. Song et al., A nanoscale metal–organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy. Angew. Chem. Int. Ed. 59(3), 1108–1112 (2020). https://doi.org/10.1002/anie.201911429
M.H. Rashed, E. Bayraktar, G.K. Helal, M.F. Abd-Ellah, P. Amero et al., Exosomes: from garbage bins to promising therapeutic targets. Int. J. Mol. Sci. 18(3), 18030538 (2017). https://doi.org/10.3390/ijms18030538
L. Zhang, D. Yu, Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta 1871(2), 455–468 (2019). https://doi.org/10.1016/j.bbcan.2019.04.004
J.L. Hood, The association of exosomes with lymph nodes. Semin. Cell Dev. Biol. 67, 29–38 (2017). https://doi.org/10.1016/j.semcdb.2016.12.002
P. Ji, Z. Yang, H. Li, M. Wei, G. Yang et al., Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer. Mol. Ther. Nucleic Acids 26, 987–996 (2021). https://doi.org/10.1016/j.omtn.2021.10.009
C.D. Phung, T.T. Pham, H.T. Nguyen, T.T. Nguyen, W. Ou et al., Anti-ctla-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor t-cell responses. Acta Biomater. 115, 371–382 (2020). https://doi.org/10.1016/j.actbio.2020.08.008
G. Yu, H. Jung, Y.Y. Kang, H. Mok, Comparative evaluation of cell- and serum-derived exosomes to deliver immune stimulators to lymph nodes. Biomaterials 162, 71–81 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.003
L. Hong, L. Xu, L. Jin, K. Xu, W. Tang et al., Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J. Clin. Lab. Anal. 36(6), e24447 (2022). https://doi.org/10.1002/jcla.24447
W. Chen, G. Li, Z. Li, J. Zhu, T. Wei et al., Evaluation of plasma exosomal mirnas as potential diagnostic biomarkers of lymph node metastasis in papillary thyroid carcinoma. Endocrine 75(3), 846–855 (2022). https://doi.org/10.1007/s12020-021-02949-x
Z. Zhu, Z. Chen, M. Wang, M. Zhang, Y. Chen et al., Detection of plasma exosomal mirna-205 as a biomarker for early diagnosis and an adjuvant indicator of ovarian cancer staging. J. Ovarian Res. 15(1), 27 (2022). https://doi.org/10.1186/s13048-022-00961-x
S. Srinivasan, F.O. Vannberg, J.B. Dixon, Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 6, 24436 (2016). https://doi.org/10.1038/srep24436
B. Sun, Y. Zhou, Y. Fang, Z. Li, X. Gu et al., Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. Int. J. Cancer 145(6), 1648–1659 (2019). https://doi.org/10.1002/ijc.32196
M.A.S. Broggi, L. Maillat, C.C. Clement, N. Bordry, P. Corthésy et al., Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J. Exp. Med. 216(5), 1091–1107 (2019). https://doi.org/10.1084/jem.20181618
A. Hoshino, B. Costa-Silva, T.-L. Shen, G. Rodrigues, A. Hashimoto et al., Tumour exosome integrins determine organotropic metastasis. Nature 527(7578), 329–335 (2015). https://doi.org/10.1038/nature15756
N. Leary, S. Walser, Y. He, N. Cousin, P. Pereira et al., Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J. Extracell. Vesicles 11(2), e12197 (2022). https://doi.org/10.1002/jev2.12197
G. Ma, C. Wu, Microneedle, bio-microneedle and bio-inspired microneedle: a review. J. Contr. Release 251, 11–23 (2017). https://doi.org/10.1016/j.jconrel.2017.02.011
Y.-C. Kim, J.-H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64(14), 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
H.L. Quinn, M.-C. Kearney, A.J. Courtenay, M.T.C. McCrudden, R.F. Donnelly, The role of microneedles for drug and vaccine delivery. Expert Opinion Drug Deliv. 11(11), 1769–1780 (2014). https://doi.org/10.1517/17425247.2014.938635
X. Wu, Y. Li, X. Chen, Z. Zhou, J. Pang et al., A surface charge dependent enhanced th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. J. Mater. Chem. B 7(31), 4854–4866 (2019). https://doi.org/10.1039/C9TB00448C
N.W. Kim, S.-Y. Kim, J.E. Lee, Y. Yin, J.H. Lee et al., Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano 12(10), 9702–9713 (2018). https://doi.org/10.1021/acsnano.8b04146
S. Kwon, F.C. Velasquez, J.C. Rasmussen, M.R. Greives, K.D. Turner et al., Nanotopography-based lymphatic delivery for improved anti-tumor responses to checkpoint blockade immunotherapy. Theranostics 9(26), 8332–8343 (2019). https://doi.org/10.7150/thno.35280
I. Menon, P. Bagwe, K.B. Gomes, L. Bajaj, R. Gala et al., Microneedles: a new generation vaccine delivery system. Micromachines 12(4), 12040435 (2021). https://doi.org/10.3390/mi12040435
L. Niu, L.Y. Chu, S.A. Burton, K.J. Hansen, J. Panyam, Intradermal delivery of vaccine nanops using hollow microneedle array generates enhanced and balanced immune response. J. Contr. Release 294, 268–278 (2019). https://doi.org/10.1016/j.jconrel.2018.12.026
Z. Li, Y. He, L. Deng, Z.-R. Zhang, Y. Lin, A fast-dissolving microneedle array loaded with chitosan nanops to evoke systemic immune responses in mice. J. Mater. Chem. B 8(2), 216–225 (2020). https://doi.org/10.1039/C9TB02061F
G. Chen, Z. Chen, D. Wen, Z. Wang, H. Li et al., Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. 117(7), 3687–3692 (2020). https://doi.org/10.1073/pnas.1917891117
Q. Zeng, J.M. Gammon, L.H. Tostanoski, Y.-C. Chiu, C.M. Jewell, In vivo expansion of melanoma-specific t cells using microneedle arrays coated with immune-polyelectrolyte multilayers. ACS Biomater. Sci. Eng. 3(2), 195–205 (2017). https://doi.org/10.1021/acsbiomaterials.6b00414
H.T.T. Duong, Y. Yin, T. Thambi, T.L. Nguyen, V.H. Giang Phan et al., Smart vaccine delivery based on microneedle arrays decorated with ultra-ph-responsive copolymers for cancer immunotherapy. Biomaterials 185, 13–24 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.008
J. Jung, S.Y. Lim, D. Kim, S. Lyu, O. Whang et al., Microneedle-directed drug delivery to tumor-draining lymph node for synergistic combination chemoimmunotherapy for metastatic cancer. Adv. Ther. (2022). https://doi.org/10.1002/adtp.202100217
P. Yang, C. Lu, W. Qin, M. Chen, G. Quan et al., Construction of a core-shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Acta Biomater. 104, 147–157 (2020). https://doi.org/10.1016/j.actbio.2019.12.037
H. Kim, K.-Y. Seong, J.H. Lee, W. Park, S.Y. Yang et al., Biodegradable microneedle patch delivering antigenic peptide–hyaluronate conjugate for cancer immunotherapy. ACS Biomater. Sci. Eng. 5(10), 5150–5158 (2019). https://doi.org/10.1021/acsbiomaterials.9b00961
H.T.T. Duong, Y. Yin, T. Thambi, B.S. Kim, J.H. Jeong et al., Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. J. Mater. Chem. B 8(6), 1171–1181 (2020). https://doi.org/10.1039/c9tb02175b
Y. He, C. Hong, S.J. Fletcher, A.G. Berger, X. Sun et al., Peptide-based cancer vaccine delivery via the stingδtm-cgamp complex. Adv. Healthcare Mater. 11(15), 2200905 (2022). https://doi.org/10.1002/adhm.202200905
M.O. Mohsen, G. Augusto, M.F. Bachmann, The 3ds in virus-like p based-vaccines: design, delivery and dynamics. Immunol. Rev. 296(1), 155–168 (2020). https://doi.org/10.1111/imr.12863
M.O. Mohsen, D.E. Speiser, A. Knuth, M.F. Bachmann, Virus-like ps for vaccination against cancer. WIREs Nanomed. Nanobiotechnol. 12(1), e1579 (2020). https://doi.org/10.1002/wnan.1579
R. Cubas, S. Zhang, S. Kwon, E.M. Sevick-Muraca, M. Li et al., Virus-like p (vlp) lymphatic trafficking and immune response generation after immunization by different routes. J. Immunother. 32(2), 118–128 (2009). https://doi.org/10.1097/CJI.0b013e31818f13c4
L. Ma, T. Dichwalkar, J.Y.H. Chang, B. Cossette, D. Garafola et al., Enhanced car–t cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365(6449), 162–168 (2019). https://doi.org/10.1126/science.aav8692
P. Wang, P. Zhao, S. Dong, T. Xu, X. He et al., An albumin-binding polypeptide both targets cytotoxic t lymphocyte vaccines to lymph nodes and boosts vaccine presentation by dendritic cells. Theranostics 8(1), 223–236 (2018). https://doi.org/10.7150/thno.21691
X. Liang, Z. Niu, V. Galli, N. Howe, Y. Zhao et al., Extracellular vesicles engineered to bind albumin demonstrate extended circulation time and lymph node accumulation in mouse models. J. Extracell. Vesicles 11(7), e12248 (2022). https://doi.org/10.1002/jev2.12248