A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy
Corresponding Author: Na Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 142
Abstract
Although notable progress has been made on novel cancer treatments, the overall survival rate and therapeutic effects are still unsatisfactory for cancer patients. Chemoimmunotherapy, combining chemotherapeutics and immunotherapeutic drugs, has emerged as a promising approach for cancer treatment, with the advantages of cooperating two kinds of treatment mechanism, reducing the dosage of the drug and enhancing therapeutic effect. Moreover, nano-based drug delivery system (NDDS) was applied to encapsulate chemotherapeutic agents and exhibited outstanding properties such as targeted delivery, tumor microenvironment response and site-specific release. Several nanocarriers have been approved in clinical cancer chemotherapy and showed significant improvement in therapeutic efficiency compared with traditional formulations, such as liposomes (Doxil®, Lipusu®), nanoparticles (Abraxane®) and micelles (Genexol-PM®). The applications of NDDS to chemoimmunotherapy would be a powerful strategy for future cancer treatment, which could greatly enhance the therapeutic efficacy, reduce the side effects and optimize the clinical outcomes of cancer patients. Herein, the current approaches of cancer immunotherapy and chemoimmunotherapy were discussed, and recent advances of NDDS applied for chemoimmunotherapy were further reviewed.
Highlights:
1 The current approaches of cancer immunotherapy were summarized.
2 The prospects in combination of chemotherapy and immunotherapy were discussed.
3 The recent progress of nano-based drug delivery systems applied for cancer chemoimmunotherapy was further categorized and reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016). https://doi.org/10.3322/caac.21332
- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492
- A.B. Miller, B. Hoogstraten, M. Staquet, A. Winkler, Reporting results of cancer treatment. Cancer 47, 207–214 (1981). https://doi.org/10.1002/1097-0142(19810101)47:1%3c207:AID-CNCR2820470134%3e3.0.CO;2-6
- T.A. Waldmann, Immunotherapy: past, present and future. Nat. Med. 9, 269–277 (2003). https://doi.org/10.1038/nm0303-269
- M. McNutt, Cancer immunotherapy. Science 342, 1417 (2013). https://doi.org/10.1126/science.1249481
- T. Jiang, C. Zhou, The past, present and future of immunotherapy against tumor. Transl. Lung Cancer R 4, 253–264 (2015). https://doi.org/10.3978/j.issn.2218-6751.2015.01.06
- K. Esfahani, L. Roudaia, N. Buhlaiga, S.V. Del Rincon, N. Papneja, W.H. Miller Jr., A review of cancer immunotherapy: from the past, to the present, to the future. Curr. Oncol. 27, S87–S97 (2020). https://doi.org/10.3747/co.27.5223
- I. Mellman, G. Coukos, G. Dranoff, Cancer immunotherapy comes of age. Nature 480, 480–489 (2011). https://doi.org/10.1038/nature10673
- D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). https://doi.org/10.1038/nrc3239
- Y. Li, F. Li, F. Jiang, X. Lv, R. Zhang, A. Lu, G. Zhang, A mini-review for cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int. J. Mol. Sci. 17(7), 1151 (2016). https://doi.org/10.3390/ijms17071151
- A.C. Anderson, N. Joller, V.K. Kuchroo, Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016). https://doi.org/10.1016/j.immuni.2016.05.001
- C.R. Parish, Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol. 81, 106–113 (2003). https://doi.org/10.1046/j.0818-9641.2003.01151.x
- G. Chen, L.A. Emens, Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol. Immun. 62, 203–216 (2013). https://doi.org/10.1007/s00262-012-1388-0
- A.K. Nowak, W.J. Lesterhuis, Chemoimmunotherapy: still waiting for the magic to happen. Lancet Oncol. 15, 780–781 (2014). https://doi.org/10.1016/S1470-2045(14)70267-0
- D.M. Francis, S.N. Thomas, Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv. Drug Deliv. Rev. 114, 33–42 (2017). https://doi.org/10.1016/j.addr.2017.04.011
- A.M. Cook, W.J. Lesterhuis, A.K. Nowak, R.A. Lake, Chemotherapy and immunotherapy: mapping the road ahead. Curr. Opin. Immunol. 39, 23–29 (2016). https://doi.org/10.1016/j.coi.2015.12.003
- L. Galluzzi, L. Senovilla, L. Zitvogel, G. Kroemer, The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012). https://doi.org/10.1038/nrd3626
- Y.L. Chen, M.C. Chang, W.F. Cheng, Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett. 400, 282–292 (2017). https://doi.org/10.1016/j.canlet.2017.01.040
- S. Goel, M.J. DeCristo, A.C. Watt, H. BrinJones, J. Sceneay et al., CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017). https://doi.org/10.1038/nature23465
- N.K. Egilmez, J.L. Harden, R.B. Rowswell-Turner, Chemoimmunotherapy as long-term maintenance therapy for cancer. Oncoimmunology 1(4), 563–565 (2012). https://doi.org/10.4161/onci.19369
- C. He, Z. Tang, H. Tian, X. Chen, Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Deliv. Rev. 98, 64–76 (2016). https://doi.org/10.1016/j.addr.2015.10.021
- C.M. Hu, S. Aryal, L. Zhang, Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1, 323–334 (2010). https://doi.org/10.4155/tde.10.13
- C.G. Da Silva, F. Rueda, C.W. Lowik, F. Ossendorp, L.J. Cruz, Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 83, 308–320 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.006
- T. Shao, X. Li, J. Ge, Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn. Pathol. 6, 64 (2011). https://doi.org/10.1186/1746-1596-6-64
- D.S. Chen, I. Mellman, Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013). https://doi.org/10.1016/j.immuni.2013.07.012
- C.H. Kapadia, J.L. Perry, S. Tian, J.C. Luft, J.M. DeSimone, Nanoparticulate immunotherapy for cancer. J. Control. Release 219, 167–180 (2015). https://doi.org/10.1016/j.jconrel.2015.09.062
- B.D. Cheson, J.P. Leonard, Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. New Engl. J. Med. 359, 613–626 (2008). https://doi.org/10.1056/NEJMra0708875
- A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer. Nature reviews. Cancer 12, 278–287 (2012). https://doi.org/10.1038/nrc3236
- P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348, 56–61 (2015). https://doi.org/10.1126/science.aaa8172
- A.W. Hahn, D.M. Gill, S.K. Pal, N. Agarwal, The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 9, 681–692 (2017). https://doi.org/10.2217/imt-2017-0024
- C. Robert, L. Thomas, I. Bondarenko, S. O’Day, J. Weber et al., Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New Engl. J. Med. 364, 2517–2526 (2011). https://doi.org/10.1056/NEJMoa1104621
- C. Kyi, M.A. Postow, Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 588, 368–376 (2014). https://doi.org/10.1016/j.febslet.2013.10.015
- A. Markham, S. Duggan, Cemiplimab: first global approval. Drugs 78, 1841–1846 (2018). https://doi.org/10.1007/s40265-018-1012-5
- E.S. Kim, Avelumab: first global approval. Drugs 77, 929–937 (2017). https://doi.org/10.1007/s40265-017-0749-6
- Y.Y. Syed, Durvalumab: first global approval. Drugs 77, 1369–1376 (2017). https://doi.org/10.1007/s40265-017-0782-5
- M.A. Postow, J. Chesney, A.C. Pavlick, C. Robert, K. Grossmann et al., Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. New Engl. J. Med. 372, 2006–2017 (2015). https://doi.org/10.1056/NEJMoa1414428
- R. Sankaranarayanan, HPV vaccination: the most pragmatic cervical cancer primary prevention strategy. Int. J. Gynecol. Obstet. 131, S33–S35 (2015). https://doi.org/10.1016/j.ijgo.2015.02.014
- I. Melero, G. Gaudemack, W. Gerritsen, C. Huber, G. Parmiani et al., Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014). https://doi.org/10.1038/nrclinonc.2014.111
- J. Schlom, Therapeutic cancer vaccines: current status and moving forward. Jnci-J. Natl. Cancer I 104, 599–613 (2012). https://doi.org/10.1093/jnci/djs033
- O.J. Finn, S.N. Khleif, R.B. Herberman, The FDA guidance on therapeutic cancer vaccines: the need for revision to include preventive cancer vaccines or for a new guidance dedicated to them. Cancer Prev. Res. 8, 1011–1016 (2015). https://doi.org/10.1158/1940-6207.CAPR-15-0234
- D.J. Schwartzentruber, D.H. Lawson, J.M. Richards, R.M. Conry, D.M. Miller et al., Gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. New Engl. J. Med. 364, 2119–2127 (2011). https://doi.org/10.1056/NEJMoa1012863
- J.A. Sosman, C. Carrillo, W.J. Urba, L. Flaherty, M.B. Atkins et al., Three phase II cytokine working group trials of gp100 (210 M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J. Clin. Oncol. 26, 2292–2298 (2008). https://doi.org/10.1200/Jco.2007.13.3165
- J. Karbach, A. Neumann, A. Atmaca, C. Wahle, K. Brand et al., Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naive prostate cancer patients. Clin. Cancer Res. 17, 861–870 (2011). https://doi.org/10.1158/1078-0432.CCR-10-1811
- J. Schlom, Therapeutic cancer vaccines: current status and moving forward. J. Natl. Cancer I 104, 599–613 (2012). https://doi.org/10.1093/jnci/djs033
- M. Saxena, N. Bhardwaj, Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. Curr. Opin. Immunol. 47, 35–43 (2017). https://doi.org/10.1016/j.coi.2017.06.003
- M. Mueller, R. Amann, T. Feger, H.G. Rammensee, The mode of action of Orf virus: a novel viral vector for therapeutic cancer vaccines. Cancer Immunol. Res. 4, 2326–6074 (2016). https://doi.org/10.1158/2326-6074.Cricimteatiaacr15-A170
- Y. Fujiwara, K. Okada, T. Omori, K. Sugimura, H. Miyata et al., Multiple therapeutic peptide vaccines for patients with advanced gastric cancer. Int. J. Oncol. 50, 1655–1662 (2017). https://doi.org/10.3892/ijo.2017.3955
- S. Mohammed, N. Bakshi, N. Chaudri, J. Akhter, M. Akhtar, Cancer vaccines: past, present, and future. Adv. Anat. Pathol. 23, 180–191 (2016). https://doi.org/10.1097/PAP.0000000000000116
- M.E. Dudley, S.A. Rosenberg, Adoptive cell transfer therapy. Semin. Oncol. 34, 524–531 (2007). https://doi.org/10.1053/j.seminoncol.2007.09.002
- M.E. Dudley, S.A. Rosenberg, Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer 3, 666–675 (2003). https://doi.org/10.1038/nrc1167
- Z. Wang, Z. Wu, Y. Liu, W. Han, New development in CAR-T cell therapy. J. Hematol. Oncol. 10, 53 (2017). https://doi.org/10.1186/s13045-017-0423-1
- M.M. D’Aloia, I.G. Zizzari, B. Sacchetti, L. Pierelli, M. Alimandi, CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 9, 282 (2018). https://doi.org/10.1038/s41419-018-0278-6
- C.W. Shields, M.A. Evans, L.L.W. Wang, N. Baugh, S. Iyer et al., Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, 6579 (2020). https://doi.org/10.1126/sciadv.aaz6579
- G. Dranoff, Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11–22 (2004). https://doi.org/10.1038/nrc1252
- A. Showalter, A. Limaye, J.L. Oyer, R. Igarashi, C. Kittipatarin, A.J. Copik, A.R. Khaled, Cytokines in immunogenic cell death: applications for cancer immunotherapy. Cytokine 97, 123–132 (2017). https://doi.org/10.1016/j.cyto.2017.05.024
- P. Berraondo, M.F. Sanmamed, M.C. Ochoa, I. Etxeberria, M.A. Aznar et al., Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019). https://doi.org/10.1038/s41416-018-0328-y
- S. Lee, K. Margolin, Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011). https://doi.org/10.3390/cancers3043856
- W. Liao, J.X. Lin, W.J. Leonard, IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011). https://doi.org/10.1016/j.coi.2011.08.003
- X. Wang, Y. Lin, Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 29, 1275–1288 (2008). https://doi.org/10.1111/j.1745-7254.2008.00889.x
- A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence et al., Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999). https://doi.org/10.1172/JCI6926
- A.E. Foster, K. Forrester, Y.C. Li, D.J. Gottlieb, Ex-vivo uses and applications of cytokines for adoptive immunotherapy in cancer. Curr. Pharm. Des. 10, 1207–1220 (2004). https://doi.org/10.2174/1381612043452631
- Y. Fan, J.J. Moon, Nanoparticle drug Ddelivery systems designed to improve cancer vaccines and immunotherapy. Vaccines 3, 662–685 (2015). https://doi.org/10.3390/vaccines3030662
- S.Y. Qin, Y.J. Cheng, Q. Lei, A.Q. Zhang, X.Z. Zhang, Combinational strategy for high-performance cancer chemotherapy. Biomaterials 171, 178–197 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.027
- M. Zhang, E.G. Liu, Y.N. Cui, Y.Z. Huang, Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol. Med. 14, 212–227 (2017). https://doi.org/10.20892/j.issn.2095-3941.2017.0054
- W. Mu, D. Jiang, S. Mu, S. Liang, Y. Liu, N. Zhang, Promoting early diagnosis and precise therapy of hepatocellular carcinoma by glypican-3-targeted synergistic chemo-photothermal theranostics. ACS Appl. Mater. Interfaces. 11, 23591–23604 (2019). https://doi.org/10.1021/acsami.9b05526
- C.C. Wang, L.C. Liu, H.L. Cao, W. Zhang, Intracellular GSH-activatable galactoside supramolecular photosensitizers for targeted photodynamic therapy and chemotherapy. J. Control. Release 259, E135–E136 (2017). https://doi.org/10.1016/j.jconrel.2017.03.276
- Y. Suzuki, K. Kohno, K. Matsue, A. Sakakibara, E. Ishikawa et al., PD-L1 (SP142) expression in neoplastic cells predicts a poor prognosis for patients with intravascular large B-cell lymphoma treated with rituximab-based multi-agent chemotherapy. Cancer Med. (2020). https://doi.org/10.1002/cam4.3104
- M. Michaud, I. Martins, A.Q. Sukkurwala, S. Adjemian, Y. Ma et al., Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). https://doi.org/10.1126/science.1208347
- C.W. Tseng, C.F. Hung, R.D. Alvarez, C. Trimble, W.K. Huh et al., Pretreatment with cisplatin enhances E7-specific CD8 + T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin. Cancer Res. 14, 3185–3192 (2008). https://doi.org/10.1158/1078-0432.CCR-08-0037
- K.N. Kodumudi, K. Woan, D.L. Gilvary, E. Sahakian, S. Wei, J.Y. Djeu, A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 16, 4583–4594 (2010). https://doi.org/10.1158/1078-0432.CCR-10-0733
- Y. Eralp, X. Wang, J.P. Wang, M.F. Maughan, J.M. Polo, L.B. Lachman, Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER2/neu in a murine mammary carcinoma model. Breast Cancer Res. 6, R275–R283 (2004). https://doi.org/10.1186/bcr787
- T.J. Haggerty, I.S. Dunn, L.B. Rose, E.E. Newton, S. Martin, J.L. Riley, J.T. Kurnick, Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells. Cancer Immunol. Immun. 60, 133–144 (2011). https://doi.org/10.1007/s00262-010-0926-x
- J.W. Hodge, C.T. Garnett, B. Farsaci, C. Palena, K.Y. Tsang, S. Ferrone, S.R. Gameiro, Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer 133, 624–636 (2013). https://doi.org/10.1002/ijc.28070
- H. Ghebeh, C. Lehe, E. Barhoush, K. Al-Romaih, A. Tulbah et al., Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res. 12, R48 (2010). https://doi.org/10.1186/bcr2605
- W.J. Lesterhuis, C.J. Punt, S.V. Hato, D. Eleveld-Trancikova, B.J. Jansen et al., Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Invest. 121, 3100–3108 (2011). https://doi.org/10.1172/JCI43656
- T.J. Lynch, I. Bondarenko, A. Luft, P. Serwatowski, F. Barlesi et al., Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 30, 2046–2054 (2012). https://doi.org/10.1200/JCO.2011.38.4032
- R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H.I. Cho, S. Antonia, S. Altiok, E. Celis, D.I. Gabrilovich, Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010). https://doi.org/10.1172/JCI40269
- K. Oleinika, R.J. Nibbs, G.J. Graham, A.R. Fraser, Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin. Exp. Immunol. 171, 36–45 (2013). https://doi.org/10.1111/j.1365-2249.2012.04657.x
- A. Tanaka, S. Sakaguchi, Regulatory T cells in cancer immunotherapy. Cell Res. 27, 109–118 (2017). https://doi.org/10.1038/cr.2016.151
- K. Shitara, H. Nishikawa, Regulatory T cells: a potential target in cancer immunotherapy. Ann. N. Y. Acad. Sci. 1417, 104–115 (2018). https://doi.org/10.1111/nyas.13625
- V. Cerullo, I. Diaconu, L. Kangasniemi, M. Rajecki, S. Escutenaire et al., Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol. Ther. 19, 1737–1746 (2011). https://doi.org/10.1038/mt.2011.113
- E. Ellebaek, L. Engell-Noerregaard, T.Z. Iversen, T.M. Froesig, S. Munir, S.R. Hadrup, M.H. Andersen, I.M. Svane, Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunol. Immun. 61, 1791–1804 (2012). https://doi.org/10.1007/s00262-012-1242-4
- A.K. Nowak, A.M. Cook, A.M. McDonnell, M.J. Millward, J. Creaney et al., A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann. Oncol. 26, 2483–2490 (2015). https://doi.org/10.1093/annonc/mdv387
- L.E. Kandalaft, D.J. Powell Jr., C.L. Chiang, J. Tanyi et al., Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2, e22664 (2013). https://doi.org/10.4161/onci.22664
- M. Maio, A.M. Di Giacomo, C. Robert, A.M. Eggermont, Update on the role of ipilimumab in melanoma and first data on new combination therapies. Curr. Opin. Oncol. 25, 166–172 (2013). https://doi.org/10.1097/CCO.0b013e32835dae4f
- M.J. Smyth, S.F. Ngiow, A. Ribas, M.W. Teng, Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol 13, 143–158 (2016). https://doi.org/10.1038/nrclinonc.2015.209
- G. Middleton, P. Silcocks, T. Cox, J. Valle, J. Wadsley et al., Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 15, 829–840 (2014). https://doi.org/10.1016/S1470-2045(14)70236-0
- X. Zang, X. Zhao, H. Hu, M. Qiao, Y. Deng, D. Chen, Nanoparticles for tumor immunotherapy. Eur. J. Pharm. Biopharm. 115, 243–256 (2017). https://doi.org/10.1016/j.ejpb.2017.03.013
- Q. Hu, W. Sun, C. Wang, Z. Gu, Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 98, 19–34 (2016). https://doi.org/10.1016/j.addr.2015.10.022
- D.B. Pacardo, F.S. Ligler, Z. Gu, Programmable nanomedicine: synergistic and sequential drug delivery systems. Nanoscale 7, 3381–3391 (2015). https://doi.org/10.1039/c4nr07677j
- R. Langer, N.A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49, 2990–3006 (2003). https://doi.org/10.1002/aic.690491202
- Z. Xie, Y. Su, G.B. Kim, E. Selvi, C. Ma, V. Aragon-Sanabria, J.T. Hsieh, C. Dong, J. Yang, Immune cell-mediated biodegradable theranostic nanoparticles for melanoma targeting and drug delivery. Small (2017). https://doi.org/10.1002/smll.201603121
- J.A. Kemp, M.S. Shim, C.Y. Heo, Y.J. Kwon, “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 98, 3–18 (2016). https://doi.org/10.1016/j.addr.2015.10.019
- R.X. Zhang, H.L. Wong, H.Y. Xue, J.Y. Eoh, X.Y. Wu, Nanomedicine of synergistic drug combinations for cancer therapy: strategies and perspectives. J. Control. Release 240, 489–503 (2016). https://doi.org/10.1016/j.jconrel.2016.06.012
- R. Kuai, W.M. Yuan, S. Son, J. Nam, J. Xu, Y.C. Fan, A. Schwendeman, J.J. Moon, Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 4, eaao1736 (2018). https://doi.org/10.1126/sciadv.aao1736
- M.B. Heo, S.Y. Kim, W.S. Yun, Y.T. Lim, Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int. J. Nanomed. 10, 5981–5993 (2015). https://doi.org/10.2147/Ijn.S90104
- Y. Shao, B. Liu, Z. Di, G. Zhang, L.D. Sun, L. Li, C.H. Yan, Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 142(8), 3939–3946 (2020). https://doi.org/10.1021/jacs.9b12788
- F. Zhou, B. Feng, H. Yu, D. Wang, T. Wang, Y. Ma, S. Wang, Y. Li, Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 31, e1805888 (2019). https://doi.org/10.1002/adma.201805888
- T. Wang, J. Zhang, T. Hou, X. Yin, N. Zhang, Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale 11, 13934–13946 (2019). https://doi.org/10.1039/c9nr03374b
- T.L. ten Hagen, A.L. Seynhaeve, S.T. van Tiel, D.J. Ruiter, A.M. Eggermont, Pegylated liposomal tumor necrosis factor-alpha results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil) in soft tissue sarcoma-bearing rats. Int. J. Cancer 97, 115–120 (2002). https://doi.org/10.1002/ijc.1578
- C.L. Guo, Y.A. Chen, W.J. Gao, A.T. Chang, Y.J. Ye et al., Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics 7, 775–788 (2017). https://doi.org/10.7150/thno.17237
- J.J. Wei, Y. Long, R. Guo, X.L. Liu, X. Tang et al., Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer. Acta Pharm. Sin. B 9, 819–831 (2019). https://doi.org/10.1016/j.apsb.2019.01.018
- B. Zhang, T. Wang, S. Yang, Y. Xiao, Y. Song, N. Zhang, S. Garg, Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J. Control. Release 238, 10–21 (2016). https://doi.org/10.1016/j.jconrel.2016.07.022
- Z. Gu, Q. Wang, Y. Shi, Y. Huang, J. Zhang, X. Zhang, G. Lin, Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J. Control. Release 286, 369–380 (2018). https://doi.org/10.1016/j.jconrel.2018.08.011
- Y. Liu, X.G. Chen, P.P. Yang, Z.Y. Qiao, H. Wang, Tumor microenvironmental pH and enzyme dual responsive polymer-liposomes for synergistic treatment of cancer immuno-chemotherapy. Biomacromol 20, 882–892 (2019). https://doi.org/10.1021/acs.biomac.8b01510
- J.Q. Lu, X.S. Liu, Y.P. Liao, X. Wang, A. Ahmed, W. Jiang, Y. Ji, H. Meng, A.E. Nel, Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 12, 11041–11061 (2018). https://doi.org/10.1021/acsnano.8b05189
- Z.W. Su, Z.C. Xiao, Y. Wang, J.S. Huang, Y.C. An, X. Wang, X.T. Shuai, Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-sensitive micelles for enhanced tumor chemoimmunotherapy. Small 16, 1906832 (2020). https://doi.org/10.1002/Smll.201906832
- J. Hernandez-Gil, M. Cobaleda-Siles, A. Zabaleta, L. Salassa, J. Calvo, J.C. Mareque-Rivas, An iron oxide nanocarrier loaded with a Pt(IV) prodrug and immunostimulatory dsRNA for combining complementary cancer killing effects. Adv. Healthc. Mater. 4, 1034–1042 (2015). https://doi.org/10.1002/adhm.201500080
- I.H. Lee, S. An, M.K. Yu, H.K. Kwon, S.H. Im, S. Jon, Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J. Control. Release 155, 435–441 (2011). https://doi.org/10.1016/j.jconrel.2011.05.025
- C. Xia, S. Yin, S. Xu, G. Ran, M. Deng et al., Low molecular weight heparin-coated and dendrimer-based core-shell nanoplatform with enhanced immune activation and multiple anti-metastatic effects for melanoma treatment. Theranostics 9, 337–354 (2019). https://doi.org/10.7150/thno.29026
- S. Shen, H.J. Li, K.G. Chen, Y.C. Wang, X.Z. Yang, Z.X. Lian, J.Z. Du, J. Wang, Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 17, 3822–3829 (2017). https://doi.org/10.1021/acs.nanolett.7b01193
- W. Ou, J.H. Byeon, R.K. Thapa, S.K. Ku, C.S. Yong, J.O. Kim, Plug-and-play nanorization of coarse black phosphorus for targeted chemo-photoimmunotherapy of colorectal cancer. ACS Nano 12, 10061–10074 (2018). https://doi.org/10.1021/acsnano.8b04658
- L. Chen, L.L. Zhou, C.H. Wang, Y. Han, Y.L. Lu et al., Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers. Adv. Mater. 31, 1904997 (2019). https://doi.org/10.1002/Adma.201904997
- X. Wu, Y. Wu, H. Ye, S. Yu, C. He, X. Chen, Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J. Control. Release 255, 81–93 (2017). https://doi.org/10.1016/j.jconrel.2017.04.011
- X. Dong, A. Yang, Y. Bai, D. Kong, F. Lv, Dual fluorescence imaging-guided programmed delivery of doxorubicin and CpG nanoparticles to modulate tumor microenvironment for effective chemo-immunotherapy. Biomaterials 230, 119659 (2020). https://doi.org/10.1016/j.biomaterials.2019.119659
- P. Kadiyala, D. Li, F.M. Nunez, D. Altshuler, R. Doherty et al., High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019). https://doi.org/10.1021/acsnano.8b06842
- M. Wu, X. Liu, H. Bai, L. Lai, Q. Chen, G. Huang, B. Liu, G. Tang, Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Appl. Mater. Interfaces. 11, 9850–9859 (2019). https://doi.org/10.1021/acsami.9b00294
- Q. Song, Y. Yin, L. Shang, T. Wu, D. Zhang et al., Tumor microenvironment responsive nanogel for the combinatorial antitumor effect of chemotherapy and immunotherapy. Nano Lett. 17, 6366–6375 (2017). https://doi.org/10.1021/acs.nanolett.7b03186
- B.S. Pattni, V.V. Chupin, V.P. Torchilin, New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015). https://doi.org/10.1021/acs.chemrev.5b00046
- R.K. O’Reilly, C.J. Hawker, K.L. Wooley, Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35, 1068–1083 (2006). https://doi.org/10.1039/b514858h
- K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001). https://doi.org/10.1016/s0169-409x(00)00124-1
- H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011). https://doi.org/10.3390/polym3031377
- R. Gref, Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994). https://doi.org/10.1126/science.8128245
- Y.K. Luu, K. Kim, B.S. Hsiao, B. Chu, M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release 89, 341–353 (2003). https://doi.org/10.1016/s0168-3659(03)00097-x
- J. Zimmermann, N. Jurgensen, A.J. Morfa, B.H. Wang, S. Tekoglu, G. Hernandez-Sosa, Poly(lactic-co-glycolic acid) (PLGA) as ion-conducting polymer for biodegradable light-emitting electrochemical cells. ACS Sustain. Chem. Eng. 4, 7050–7055 (2016). https://doi.org/10.1021/acssuschemeng.6b01953
- N. Rapoport, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 32, 962–990 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.009
- T.Y. Kim, D.W. Kim, J.Y. Chung, S.G. Shin, S.C. Kim et al., Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004). https://doi.org/10.1158/1078-0432.Ccr-03-0655
- X.J. Chen, X.Q. Zhang, M.X. Tang, Q. Liu, G. Zhou, Anti-PD-L1-modified and ATRA-loaded nanoparticles for immuno-treatment of oral dysplasia and oral squamous cell carcinoma. Nanomedicine 15, 951–968 (2020). https://doi.org/10.2217/nnm-2019-0397
- L.L. Dai, X. Li, M.J. Yao, P.Y. Niu, X.C. Yuan et al., Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy. Biomaterials 241, 119901 (2020). https://doi.org/10.1016/j.biomaterials.2020.119901
- E. Perez-Herrero, A. Fernandez-Medarde, Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93, 52–79 (2015). https://doi.org/10.1016/j.ejpb.2015.03.018
- H.J. Hsu, J. Bugno, S.R. Lee, S. Hong, Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wires Nanomed. Nanobi. 9, e1409 (2017). https://doi.org/10.1002/Wnan.1409
- H.J. Li, J.Z. Du, X.J. Du, C.F. Xu, C.Y. Sun et al., Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A. 113, 4164–4169 (2016). https://doi.org/10.1073/pnas.1522080113
- J.P. Yang, Q. Zhang, H. Chang, Y.Y. Cheng, Surface-engineered dendrimers in gene delivery. Chem. Rev. 115, 5274–5300 (2015). https://doi.org/10.1021/cr500542t
- T.A. Gilewski, G. Ragupathi, M. Dickler, S. Powell, S. Bhuta et al., Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin. Cancer Res. 13, 2977–2985 (2007). https://doi.org/10.1158/1078-0432.CCR-06-2189
- S.F. Slovin, G. Ragupathi, C. Musselli, K. Olkiewicz, D. Verbel et al., Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with alpha-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J. Clin. Oncol. 21, 4292–4298 (2003). https://doi.org/10.1200/Jco.2003.04.112
- L.M. Krug, G. Ragupathi, C. Hood, M.G. Kris, V.A. Miller et al., Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin. Cancer Res. 10, 6094–6100 (2004). https://doi.org/10.1158/1078-0432.Ccr-04-0482
- T. Lang, Y. Liu, Z. Zheng, W. Ran, Y. Zhai, Q. Yin, P. Zhang, Y. Li, Cocktail strategy based on spatio-temporally controlled nano device improves therapy of breast cancer. Adv. Mater. 31, e1903844 (2019). https://doi.org/10.1002/adma.201903844
- H.J. Li, J.Z. Du, J. Liu, X.J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10, 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
- T. Jiang, W. Sun, Q. Zhu, N.A. Burns, S.A. Khan, R. Mo, Z. Gu, Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 27, 1021–1028 (2015). https://doi.org/10.1002/adma.201404498
- X.X. Hu, Y. Wang, B. Peng, Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem. Asian J. 9, 319–327 (2014). https://doi.org/10.1002/asia.201301105
- I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu, V.S.Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008). https://doi.org/10.1016/j.addr.2008.03.012
- Q.S. Zheng, T.R. Lin, H.Y. Wu, L.Q. Guo, P.R. Ye et al., Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int. J. Pharmaceut. 463, 22–26 (2014). https://doi.org/10.1016/j.ijpharm.2013.12.045
- D.W. Zheng, J.L. Chen, J.Y. Zhu, L. Rong, B. Li et al., Highly integrated nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 16, 4341–4347 (2016). https://doi.org/10.1021/acs.nanolett.6b01432
- D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016). https://doi.org/10.1007/s11095-016-1958-5
- X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao et al., Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 296, 150–161 (2019). https://doi.org/10.1016/j.jconrel.2019.01.027
- J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967
- W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29, 1603864 (2017). https://doi.org/10.1002/adma.201603864
- M. Nishikawa, Y. Mizuno, K. Mohri, N. Matsuoka, S. Rattanakiat, Y. Takahashi, H. Funabashi, D. Luo, Y. Takakura, Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials 32, 488–494 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.013
- Y.K. Li, M. Fang, J. Zhang, J. Wang, Y. Song et al., Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 5, 1074374 (2016). https://doi.org/10.1080/2162402X.2015.1074374
- H. Qiao, X. Chen, E. Chen, J. Zhang, D. Huang et al., Folated pH-degradable nanogels for the simultaneous delivery of docetaxel and an IDO1-inhibitor in enhancing cancer chemo-immunotherapy. Biomater. Sci. 7, 2749–2758 (2019). https://doi.org/10.1039/c9bm00324j
- Q. Lv, C.L. He, F.L. Quan, S.J. Yu, X.S. Chen, DOX/IL-2/IFN-gamma co-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. Bioact. Mater. 3, 118–128 (2018). https://doi.org/10.1016/j.bioactmat.2017.08.003
- H. Jin, C. Wan, Z. Zou, G. Zhao, L. Zhang et al., Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano 12, 3295–3310 (2018). https://doi.org/10.1021/acsnano.7b08148
- P.F. Zhao, Y.H. Wang, X.J. Kang, A.H. Wu, W.M. Yin et al., Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophagemediated immunotherapy. Chem. Sci. 9, 2674–2689 (2018). https://doi.org/10.1039/c7sc04853j
- H. Wang, Y. Tang, Y. Fang, M. Zhang, H. Wang, Z. He, B. Wang, Q. Xu, Y. Huang, Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 19, 2935–2944 (2019). https://doi.org/10.1021/acs.nanolett.9b00021
- V. Vijayan, S. Uthaman, I.K. Park, Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics. Polymers 10, 1009098 (2018). https://doi.org/10.3390/polym10090983
- H. Wang, Y. Liu, R. He, D. Xu, J. Zang, N. Weeranoppanant, H. Dong, Y. Li, Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater. Sci. 8, 552–568 (2020). https://doi.org/10.1039/c9bm01392j
- D. Dehaini, R.H. Fang, L. Zhang, Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med. 1, 30–46 (2016). https://doi.org/10.1002/btm2.10004
- R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018). https://doi.org/10.1002/adma.201706759
- Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett. 11, 100 (2019). https://doi.org/10.1007/s40820-019-0330-9
- W. Du, C. Chen, P. Sun, S. Zhang, J. Zhang et al., Eliciting an immune hot tumor niche with biomimetic drug-based multi-functional nanohybrids augments immune checkpoint blockade-based breast cancer therapy. Nanoscale 12, 3317–3329 (2020). https://doi.org/10.1039/c9nr09835f
- E. Lasalvia-Prisco, P. Goldschmidt, F. Galmarini, S. Cucchi, J. Vazquez et al., Addition of an induction regimen of antiangiogenesis and antitumor immunity to standard chemotherapy improves survival in advanced malignancies. Med. Oncol. 29, 3626–3633 (2012). https://doi.org/10.1007/s12032-012-0301-1
- I. Liikanen, L. Ahtiainen, M.L. Hirvinen, S. Bramante, V. Cerullo et al., Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol. Ther. 21, 1212–1223 (2013). https://doi.org/10.1038/mt.2013.51
- B. Ding, X. Wu, W. Fan, Z. Wu, J. Gao et al., Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int. J. Nanomed. 6, 1991–2005 (2011). https://doi.org/10.2147/IJN.S24094
- B.Y. Ding, W. Zhang, X. Wu, J. Wang, C. Xie et al., DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo. Oncotarget 7, 57160–57170 (2016). https://doi.org/10.18632/oncotarget.11014
References
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016). https://doi.org/10.3322/caac.21332
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492
A.B. Miller, B. Hoogstraten, M. Staquet, A. Winkler, Reporting results of cancer treatment. Cancer 47, 207–214 (1981). https://doi.org/10.1002/1097-0142(19810101)47:1%3c207:AID-CNCR2820470134%3e3.0.CO;2-6
T.A. Waldmann, Immunotherapy: past, present and future. Nat. Med. 9, 269–277 (2003). https://doi.org/10.1038/nm0303-269
M. McNutt, Cancer immunotherapy. Science 342, 1417 (2013). https://doi.org/10.1126/science.1249481
T. Jiang, C. Zhou, The past, present and future of immunotherapy against tumor. Transl. Lung Cancer R 4, 253–264 (2015). https://doi.org/10.3978/j.issn.2218-6751.2015.01.06
K. Esfahani, L. Roudaia, N. Buhlaiga, S.V. Del Rincon, N. Papneja, W.H. Miller Jr., A review of cancer immunotherapy: from the past, to the present, to the future. Curr. Oncol. 27, S87–S97 (2020). https://doi.org/10.3747/co.27.5223
I. Mellman, G. Coukos, G. Dranoff, Cancer immunotherapy comes of age. Nature 480, 480–489 (2011). https://doi.org/10.1038/nature10673
D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). https://doi.org/10.1038/nrc3239
Y. Li, F. Li, F. Jiang, X. Lv, R. Zhang, A. Lu, G. Zhang, A mini-review for cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int. J. Mol. Sci. 17(7), 1151 (2016). https://doi.org/10.3390/ijms17071151
A.C. Anderson, N. Joller, V.K. Kuchroo, Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016). https://doi.org/10.1016/j.immuni.2016.05.001
C.R. Parish, Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol. 81, 106–113 (2003). https://doi.org/10.1046/j.0818-9641.2003.01151.x
G. Chen, L.A. Emens, Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol. Immun. 62, 203–216 (2013). https://doi.org/10.1007/s00262-012-1388-0
A.K. Nowak, W.J. Lesterhuis, Chemoimmunotherapy: still waiting for the magic to happen. Lancet Oncol. 15, 780–781 (2014). https://doi.org/10.1016/S1470-2045(14)70267-0
D.M. Francis, S.N. Thomas, Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv. Drug Deliv. Rev. 114, 33–42 (2017). https://doi.org/10.1016/j.addr.2017.04.011
A.M. Cook, W.J. Lesterhuis, A.K. Nowak, R.A. Lake, Chemotherapy and immunotherapy: mapping the road ahead. Curr. Opin. Immunol. 39, 23–29 (2016). https://doi.org/10.1016/j.coi.2015.12.003
L. Galluzzi, L. Senovilla, L. Zitvogel, G. Kroemer, The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012). https://doi.org/10.1038/nrd3626
Y.L. Chen, M.C. Chang, W.F. Cheng, Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett. 400, 282–292 (2017). https://doi.org/10.1016/j.canlet.2017.01.040
S. Goel, M.J. DeCristo, A.C. Watt, H. BrinJones, J. Sceneay et al., CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017). https://doi.org/10.1038/nature23465
N.K. Egilmez, J.L. Harden, R.B. Rowswell-Turner, Chemoimmunotherapy as long-term maintenance therapy for cancer. Oncoimmunology 1(4), 563–565 (2012). https://doi.org/10.4161/onci.19369
C. He, Z. Tang, H. Tian, X. Chen, Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Deliv. Rev. 98, 64–76 (2016). https://doi.org/10.1016/j.addr.2015.10.021
C.M. Hu, S. Aryal, L. Zhang, Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1, 323–334 (2010). https://doi.org/10.4155/tde.10.13
C.G. Da Silva, F. Rueda, C.W. Lowik, F. Ossendorp, L.J. Cruz, Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 83, 308–320 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.006
T. Shao, X. Li, J. Ge, Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn. Pathol. 6, 64 (2011). https://doi.org/10.1186/1746-1596-6-64
D.S. Chen, I. Mellman, Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013). https://doi.org/10.1016/j.immuni.2013.07.012
C.H. Kapadia, J.L. Perry, S. Tian, J.C. Luft, J.M. DeSimone, Nanoparticulate immunotherapy for cancer. J. Control. Release 219, 167–180 (2015). https://doi.org/10.1016/j.jconrel.2015.09.062
B.D. Cheson, J.P. Leonard, Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. New Engl. J. Med. 359, 613–626 (2008). https://doi.org/10.1056/NEJMra0708875
A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer. Nature reviews. Cancer 12, 278–287 (2012). https://doi.org/10.1038/nrc3236
P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348, 56–61 (2015). https://doi.org/10.1126/science.aaa8172
A.W. Hahn, D.M. Gill, S.K. Pal, N. Agarwal, The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 9, 681–692 (2017). https://doi.org/10.2217/imt-2017-0024
C. Robert, L. Thomas, I. Bondarenko, S. O’Day, J. Weber et al., Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New Engl. J. Med. 364, 2517–2526 (2011). https://doi.org/10.1056/NEJMoa1104621
C. Kyi, M.A. Postow, Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 588, 368–376 (2014). https://doi.org/10.1016/j.febslet.2013.10.015
A. Markham, S. Duggan, Cemiplimab: first global approval. Drugs 78, 1841–1846 (2018). https://doi.org/10.1007/s40265-018-1012-5
E.S. Kim, Avelumab: first global approval. Drugs 77, 929–937 (2017). https://doi.org/10.1007/s40265-017-0749-6
Y.Y. Syed, Durvalumab: first global approval. Drugs 77, 1369–1376 (2017). https://doi.org/10.1007/s40265-017-0782-5
M.A. Postow, J. Chesney, A.C. Pavlick, C. Robert, K. Grossmann et al., Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. New Engl. J. Med. 372, 2006–2017 (2015). https://doi.org/10.1056/NEJMoa1414428
R. Sankaranarayanan, HPV vaccination: the most pragmatic cervical cancer primary prevention strategy. Int. J. Gynecol. Obstet. 131, S33–S35 (2015). https://doi.org/10.1016/j.ijgo.2015.02.014
I. Melero, G. Gaudemack, W. Gerritsen, C. Huber, G. Parmiani et al., Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014). https://doi.org/10.1038/nrclinonc.2014.111
J. Schlom, Therapeutic cancer vaccines: current status and moving forward. Jnci-J. Natl. Cancer I 104, 599–613 (2012). https://doi.org/10.1093/jnci/djs033
O.J. Finn, S.N. Khleif, R.B. Herberman, The FDA guidance on therapeutic cancer vaccines: the need for revision to include preventive cancer vaccines or for a new guidance dedicated to them. Cancer Prev. Res. 8, 1011–1016 (2015). https://doi.org/10.1158/1940-6207.CAPR-15-0234
D.J. Schwartzentruber, D.H. Lawson, J.M. Richards, R.M. Conry, D.M. Miller et al., Gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. New Engl. J. Med. 364, 2119–2127 (2011). https://doi.org/10.1056/NEJMoa1012863
J.A. Sosman, C. Carrillo, W.J. Urba, L. Flaherty, M.B. Atkins et al., Three phase II cytokine working group trials of gp100 (210 M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J. Clin. Oncol. 26, 2292–2298 (2008). https://doi.org/10.1200/Jco.2007.13.3165
J. Karbach, A. Neumann, A. Atmaca, C. Wahle, K. Brand et al., Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naive prostate cancer patients. Clin. Cancer Res. 17, 861–870 (2011). https://doi.org/10.1158/1078-0432.CCR-10-1811
J. Schlom, Therapeutic cancer vaccines: current status and moving forward. J. Natl. Cancer I 104, 599–613 (2012). https://doi.org/10.1093/jnci/djs033
M. Saxena, N. Bhardwaj, Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. Curr. Opin. Immunol. 47, 35–43 (2017). https://doi.org/10.1016/j.coi.2017.06.003
M. Mueller, R. Amann, T. Feger, H.G. Rammensee, The mode of action of Orf virus: a novel viral vector for therapeutic cancer vaccines. Cancer Immunol. Res. 4, 2326–6074 (2016). https://doi.org/10.1158/2326-6074.Cricimteatiaacr15-A170
Y. Fujiwara, K. Okada, T. Omori, K. Sugimura, H. Miyata et al., Multiple therapeutic peptide vaccines for patients with advanced gastric cancer. Int. J. Oncol. 50, 1655–1662 (2017). https://doi.org/10.3892/ijo.2017.3955
S. Mohammed, N. Bakshi, N. Chaudri, J. Akhter, M. Akhtar, Cancer vaccines: past, present, and future. Adv. Anat. Pathol. 23, 180–191 (2016). https://doi.org/10.1097/PAP.0000000000000116
M.E. Dudley, S.A. Rosenberg, Adoptive cell transfer therapy. Semin. Oncol. 34, 524–531 (2007). https://doi.org/10.1053/j.seminoncol.2007.09.002
M.E. Dudley, S.A. Rosenberg, Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer 3, 666–675 (2003). https://doi.org/10.1038/nrc1167
Z. Wang, Z. Wu, Y. Liu, W. Han, New development in CAR-T cell therapy. J. Hematol. Oncol. 10, 53 (2017). https://doi.org/10.1186/s13045-017-0423-1
M.M. D’Aloia, I.G. Zizzari, B. Sacchetti, L. Pierelli, M. Alimandi, CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 9, 282 (2018). https://doi.org/10.1038/s41419-018-0278-6
C.W. Shields, M.A. Evans, L.L.W. Wang, N. Baugh, S. Iyer et al., Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, 6579 (2020). https://doi.org/10.1126/sciadv.aaz6579
G. Dranoff, Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11–22 (2004). https://doi.org/10.1038/nrc1252
A. Showalter, A. Limaye, J.L. Oyer, R. Igarashi, C. Kittipatarin, A.J. Copik, A.R. Khaled, Cytokines in immunogenic cell death: applications for cancer immunotherapy. Cytokine 97, 123–132 (2017). https://doi.org/10.1016/j.cyto.2017.05.024
P. Berraondo, M.F. Sanmamed, M.C. Ochoa, I. Etxeberria, M.A. Aznar et al., Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019). https://doi.org/10.1038/s41416-018-0328-y
S. Lee, K. Margolin, Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011). https://doi.org/10.3390/cancers3043856
W. Liao, J.X. Lin, W.J. Leonard, IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011). https://doi.org/10.1016/j.coi.2011.08.003
X. Wang, Y. Lin, Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 29, 1275–1288 (2008). https://doi.org/10.1111/j.1745-7254.2008.00889.x
A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence et al., Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999). https://doi.org/10.1172/JCI6926
A.E. Foster, K. Forrester, Y.C. Li, D.J. Gottlieb, Ex-vivo uses and applications of cytokines for adoptive immunotherapy in cancer. Curr. Pharm. Des. 10, 1207–1220 (2004). https://doi.org/10.2174/1381612043452631
Y. Fan, J.J. Moon, Nanoparticle drug Ddelivery systems designed to improve cancer vaccines and immunotherapy. Vaccines 3, 662–685 (2015). https://doi.org/10.3390/vaccines3030662
S.Y. Qin, Y.J. Cheng, Q. Lei, A.Q. Zhang, X.Z. Zhang, Combinational strategy for high-performance cancer chemotherapy. Biomaterials 171, 178–197 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.027
M. Zhang, E.G. Liu, Y.N. Cui, Y.Z. Huang, Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol. Med. 14, 212–227 (2017). https://doi.org/10.20892/j.issn.2095-3941.2017.0054
W. Mu, D. Jiang, S. Mu, S. Liang, Y. Liu, N. Zhang, Promoting early diagnosis and precise therapy of hepatocellular carcinoma by glypican-3-targeted synergistic chemo-photothermal theranostics. ACS Appl. Mater. Interfaces. 11, 23591–23604 (2019). https://doi.org/10.1021/acsami.9b05526
C.C. Wang, L.C. Liu, H.L. Cao, W. Zhang, Intracellular GSH-activatable galactoside supramolecular photosensitizers for targeted photodynamic therapy and chemotherapy. J. Control. Release 259, E135–E136 (2017). https://doi.org/10.1016/j.jconrel.2017.03.276
Y. Suzuki, K. Kohno, K. Matsue, A. Sakakibara, E. Ishikawa et al., PD-L1 (SP142) expression in neoplastic cells predicts a poor prognosis for patients with intravascular large B-cell lymphoma treated with rituximab-based multi-agent chemotherapy. Cancer Med. (2020). https://doi.org/10.1002/cam4.3104
M. Michaud, I. Martins, A.Q. Sukkurwala, S. Adjemian, Y. Ma et al., Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). https://doi.org/10.1126/science.1208347
C.W. Tseng, C.F. Hung, R.D. Alvarez, C. Trimble, W.K. Huh et al., Pretreatment with cisplatin enhances E7-specific CD8 + T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin. Cancer Res. 14, 3185–3192 (2008). https://doi.org/10.1158/1078-0432.CCR-08-0037
K.N. Kodumudi, K. Woan, D.L. Gilvary, E. Sahakian, S. Wei, J.Y. Djeu, A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 16, 4583–4594 (2010). https://doi.org/10.1158/1078-0432.CCR-10-0733
Y. Eralp, X. Wang, J.P. Wang, M.F. Maughan, J.M. Polo, L.B. Lachman, Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER2/neu in a murine mammary carcinoma model. Breast Cancer Res. 6, R275–R283 (2004). https://doi.org/10.1186/bcr787
T.J. Haggerty, I.S. Dunn, L.B. Rose, E.E. Newton, S. Martin, J.L. Riley, J.T. Kurnick, Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells. Cancer Immunol. Immun. 60, 133–144 (2011). https://doi.org/10.1007/s00262-010-0926-x
J.W. Hodge, C.T. Garnett, B. Farsaci, C. Palena, K.Y. Tsang, S. Ferrone, S.R. Gameiro, Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer 133, 624–636 (2013). https://doi.org/10.1002/ijc.28070
H. Ghebeh, C. Lehe, E. Barhoush, K. Al-Romaih, A. Tulbah et al., Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res. 12, R48 (2010). https://doi.org/10.1186/bcr2605
W.J. Lesterhuis, C.J. Punt, S.V. Hato, D. Eleveld-Trancikova, B.J. Jansen et al., Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Invest. 121, 3100–3108 (2011). https://doi.org/10.1172/JCI43656
T.J. Lynch, I. Bondarenko, A. Luft, P. Serwatowski, F. Barlesi et al., Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 30, 2046–2054 (2012). https://doi.org/10.1200/JCO.2011.38.4032
R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H.I. Cho, S. Antonia, S. Altiok, E. Celis, D.I. Gabrilovich, Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010). https://doi.org/10.1172/JCI40269
K. Oleinika, R.J. Nibbs, G.J. Graham, A.R. Fraser, Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin. Exp. Immunol. 171, 36–45 (2013). https://doi.org/10.1111/j.1365-2249.2012.04657.x
A. Tanaka, S. Sakaguchi, Regulatory T cells in cancer immunotherapy. Cell Res. 27, 109–118 (2017). https://doi.org/10.1038/cr.2016.151
K. Shitara, H. Nishikawa, Regulatory T cells: a potential target in cancer immunotherapy. Ann. N. Y. Acad. Sci. 1417, 104–115 (2018). https://doi.org/10.1111/nyas.13625
V. Cerullo, I. Diaconu, L. Kangasniemi, M. Rajecki, S. Escutenaire et al., Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol. Ther. 19, 1737–1746 (2011). https://doi.org/10.1038/mt.2011.113
E. Ellebaek, L. Engell-Noerregaard, T.Z. Iversen, T.M. Froesig, S. Munir, S.R. Hadrup, M.H. Andersen, I.M. Svane, Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunol. Immun. 61, 1791–1804 (2012). https://doi.org/10.1007/s00262-012-1242-4
A.K. Nowak, A.M. Cook, A.M. McDonnell, M.J. Millward, J. Creaney et al., A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann. Oncol. 26, 2483–2490 (2015). https://doi.org/10.1093/annonc/mdv387
L.E. Kandalaft, D.J. Powell Jr., C.L. Chiang, J. Tanyi et al., Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2, e22664 (2013). https://doi.org/10.4161/onci.22664
M. Maio, A.M. Di Giacomo, C. Robert, A.M. Eggermont, Update on the role of ipilimumab in melanoma and first data on new combination therapies. Curr. Opin. Oncol. 25, 166–172 (2013). https://doi.org/10.1097/CCO.0b013e32835dae4f
M.J. Smyth, S.F. Ngiow, A. Ribas, M.W. Teng, Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol 13, 143–158 (2016). https://doi.org/10.1038/nrclinonc.2015.209
G. Middleton, P. Silcocks, T. Cox, J. Valle, J. Wadsley et al., Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 15, 829–840 (2014). https://doi.org/10.1016/S1470-2045(14)70236-0
X. Zang, X. Zhao, H. Hu, M. Qiao, Y. Deng, D. Chen, Nanoparticles for tumor immunotherapy. Eur. J. Pharm. Biopharm. 115, 243–256 (2017). https://doi.org/10.1016/j.ejpb.2017.03.013
Q. Hu, W. Sun, C. Wang, Z. Gu, Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 98, 19–34 (2016). https://doi.org/10.1016/j.addr.2015.10.022
D.B. Pacardo, F.S. Ligler, Z. Gu, Programmable nanomedicine: synergistic and sequential drug delivery systems. Nanoscale 7, 3381–3391 (2015). https://doi.org/10.1039/c4nr07677j
R. Langer, N.A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49, 2990–3006 (2003). https://doi.org/10.1002/aic.690491202
Z. Xie, Y. Su, G.B. Kim, E. Selvi, C. Ma, V. Aragon-Sanabria, J.T. Hsieh, C. Dong, J. Yang, Immune cell-mediated biodegradable theranostic nanoparticles for melanoma targeting and drug delivery. Small (2017). https://doi.org/10.1002/smll.201603121
J.A. Kemp, M.S. Shim, C.Y. Heo, Y.J. Kwon, “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 98, 3–18 (2016). https://doi.org/10.1016/j.addr.2015.10.019
R.X. Zhang, H.L. Wong, H.Y. Xue, J.Y. Eoh, X.Y. Wu, Nanomedicine of synergistic drug combinations for cancer therapy: strategies and perspectives. J. Control. Release 240, 489–503 (2016). https://doi.org/10.1016/j.jconrel.2016.06.012
R. Kuai, W.M. Yuan, S. Son, J. Nam, J. Xu, Y.C. Fan, A. Schwendeman, J.J. Moon, Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 4, eaao1736 (2018). https://doi.org/10.1126/sciadv.aao1736
M.B. Heo, S.Y. Kim, W.S. Yun, Y.T. Lim, Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int. J. Nanomed. 10, 5981–5993 (2015). https://doi.org/10.2147/Ijn.S90104
Y. Shao, B. Liu, Z. Di, G. Zhang, L.D. Sun, L. Li, C.H. Yan, Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 142(8), 3939–3946 (2020). https://doi.org/10.1021/jacs.9b12788
F. Zhou, B. Feng, H. Yu, D. Wang, T. Wang, Y. Ma, S. Wang, Y. Li, Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 31, e1805888 (2019). https://doi.org/10.1002/adma.201805888
T. Wang, J. Zhang, T. Hou, X. Yin, N. Zhang, Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale 11, 13934–13946 (2019). https://doi.org/10.1039/c9nr03374b
T.L. ten Hagen, A.L. Seynhaeve, S.T. van Tiel, D.J. Ruiter, A.M. Eggermont, Pegylated liposomal tumor necrosis factor-alpha results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil) in soft tissue sarcoma-bearing rats. Int. J. Cancer 97, 115–120 (2002). https://doi.org/10.1002/ijc.1578
C.L. Guo, Y.A. Chen, W.J. Gao, A.T. Chang, Y.J. Ye et al., Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics 7, 775–788 (2017). https://doi.org/10.7150/thno.17237
J.J. Wei, Y. Long, R. Guo, X.L. Liu, X. Tang et al., Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer. Acta Pharm. Sin. B 9, 819–831 (2019). https://doi.org/10.1016/j.apsb.2019.01.018
B. Zhang, T. Wang, S. Yang, Y. Xiao, Y. Song, N. Zhang, S. Garg, Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J. Control. Release 238, 10–21 (2016). https://doi.org/10.1016/j.jconrel.2016.07.022
Z. Gu, Q. Wang, Y. Shi, Y. Huang, J. Zhang, X. Zhang, G. Lin, Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J. Control. Release 286, 369–380 (2018). https://doi.org/10.1016/j.jconrel.2018.08.011
Y. Liu, X.G. Chen, P.P. Yang, Z.Y. Qiao, H. Wang, Tumor microenvironmental pH and enzyme dual responsive polymer-liposomes for synergistic treatment of cancer immuno-chemotherapy. Biomacromol 20, 882–892 (2019). https://doi.org/10.1021/acs.biomac.8b01510
J.Q. Lu, X.S. Liu, Y.P. Liao, X. Wang, A. Ahmed, W. Jiang, Y. Ji, H. Meng, A.E. Nel, Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 12, 11041–11061 (2018). https://doi.org/10.1021/acsnano.8b05189
Z.W. Su, Z.C. Xiao, Y. Wang, J.S. Huang, Y.C. An, X. Wang, X.T. Shuai, Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-sensitive micelles for enhanced tumor chemoimmunotherapy. Small 16, 1906832 (2020). https://doi.org/10.1002/Smll.201906832
J. Hernandez-Gil, M. Cobaleda-Siles, A. Zabaleta, L. Salassa, J. Calvo, J.C. Mareque-Rivas, An iron oxide nanocarrier loaded with a Pt(IV) prodrug and immunostimulatory dsRNA for combining complementary cancer killing effects. Adv. Healthc. Mater. 4, 1034–1042 (2015). https://doi.org/10.1002/adhm.201500080
I.H. Lee, S. An, M.K. Yu, H.K. Kwon, S.H. Im, S. Jon, Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J. Control. Release 155, 435–441 (2011). https://doi.org/10.1016/j.jconrel.2011.05.025
C. Xia, S. Yin, S. Xu, G. Ran, M. Deng et al., Low molecular weight heparin-coated and dendrimer-based core-shell nanoplatform with enhanced immune activation and multiple anti-metastatic effects for melanoma treatment. Theranostics 9, 337–354 (2019). https://doi.org/10.7150/thno.29026
S. Shen, H.J. Li, K.G. Chen, Y.C. Wang, X.Z. Yang, Z.X. Lian, J.Z. Du, J. Wang, Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 17, 3822–3829 (2017). https://doi.org/10.1021/acs.nanolett.7b01193
W. Ou, J.H. Byeon, R.K. Thapa, S.K. Ku, C.S. Yong, J.O. Kim, Plug-and-play nanorization of coarse black phosphorus for targeted chemo-photoimmunotherapy of colorectal cancer. ACS Nano 12, 10061–10074 (2018). https://doi.org/10.1021/acsnano.8b04658
L. Chen, L.L. Zhou, C.H. Wang, Y. Han, Y.L. Lu et al., Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers. Adv. Mater. 31, 1904997 (2019). https://doi.org/10.1002/Adma.201904997
X. Wu, Y. Wu, H. Ye, S. Yu, C. He, X. Chen, Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J. Control. Release 255, 81–93 (2017). https://doi.org/10.1016/j.jconrel.2017.04.011
X. Dong, A. Yang, Y. Bai, D. Kong, F. Lv, Dual fluorescence imaging-guided programmed delivery of doxorubicin and CpG nanoparticles to modulate tumor microenvironment for effective chemo-immunotherapy. Biomaterials 230, 119659 (2020). https://doi.org/10.1016/j.biomaterials.2019.119659
P. Kadiyala, D. Li, F.M. Nunez, D. Altshuler, R. Doherty et al., High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019). https://doi.org/10.1021/acsnano.8b06842
M. Wu, X. Liu, H. Bai, L. Lai, Q. Chen, G. Huang, B. Liu, G. Tang, Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Appl. Mater. Interfaces. 11, 9850–9859 (2019). https://doi.org/10.1021/acsami.9b00294
Q. Song, Y. Yin, L. Shang, T. Wu, D. Zhang et al., Tumor microenvironment responsive nanogel for the combinatorial antitumor effect of chemotherapy and immunotherapy. Nano Lett. 17, 6366–6375 (2017). https://doi.org/10.1021/acs.nanolett.7b03186
B.S. Pattni, V.V. Chupin, V.P. Torchilin, New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015). https://doi.org/10.1021/acs.chemrev.5b00046
R.K. O’Reilly, C.J. Hawker, K.L. Wooley, Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35, 1068–1083 (2006). https://doi.org/10.1039/b514858h
K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001). https://doi.org/10.1016/s0169-409x(00)00124-1
H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011). https://doi.org/10.3390/polym3031377
R. Gref, Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994). https://doi.org/10.1126/science.8128245
Y.K. Luu, K. Kim, B.S. Hsiao, B. Chu, M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release 89, 341–353 (2003). https://doi.org/10.1016/s0168-3659(03)00097-x
J. Zimmermann, N. Jurgensen, A.J. Morfa, B.H. Wang, S. Tekoglu, G. Hernandez-Sosa, Poly(lactic-co-glycolic acid) (PLGA) as ion-conducting polymer for biodegradable light-emitting electrochemical cells. ACS Sustain. Chem. Eng. 4, 7050–7055 (2016). https://doi.org/10.1021/acssuschemeng.6b01953
N. Rapoport, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 32, 962–990 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.009
T.Y. Kim, D.W. Kim, J.Y. Chung, S.G. Shin, S.C. Kim et al., Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004). https://doi.org/10.1158/1078-0432.Ccr-03-0655
X.J. Chen, X.Q. Zhang, M.X. Tang, Q. Liu, G. Zhou, Anti-PD-L1-modified and ATRA-loaded nanoparticles for immuno-treatment of oral dysplasia and oral squamous cell carcinoma. Nanomedicine 15, 951–968 (2020). https://doi.org/10.2217/nnm-2019-0397
L.L. Dai, X. Li, M.J. Yao, P.Y. Niu, X.C. Yuan et al., Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy. Biomaterials 241, 119901 (2020). https://doi.org/10.1016/j.biomaterials.2020.119901
E. Perez-Herrero, A. Fernandez-Medarde, Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93, 52–79 (2015). https://doi.org/10.1016/j.ejpb.2015.03.018
H.J. Hsu, J. Bugno, S.R. Lee, S. Hong, Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wires Nanomed. Nanobi. 9, e1409 (2017). https://doi.org/10.1002/Wnan.1409
H.J. Li, J.Z. Du, X.J. Du, C.F. Xu, C.Y. Sun et al., Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A. 113, 4164–4169 (2016). https://doi.org/10.1073/pnas.1522080113
J.P. Yang, Q. Zhang, H. Chang, Y.Y. Cheng, Surface-engineered dendrimers in gene delivery. Chem. Rev. 115, 5274–5300 (2015). https://doi.org/10.1021/cr500542t
T.A. Gilewski, G. Ragupathi, M. Dickler, S. Powell, S. Bhuta et al., Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin. Cancer Res. 13, 2977–2985 (2007). https://doi.org/10.1158/1078-0432.CCR-06-2189
S.F. Slovin, G. Ragupathi, C. Musselli, K. Olkiewicz, D. Verbel et al., Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with alpha-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J. Clin. Oncol. 21, 4292–4298 (2003). https://doi.org/10.1200/Jco.2003.04.112
L.M. Krug, G. Ragupathi, C. Hood, M.G. Kris, V.A. Miller et al., Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin. Cancer Res. 10, 6094–6100 (2004). https://doi.org/10.1158/1078-0432.Ccr-04-0482
T. Lang, Y. Liu, Z. Zheng, W. Ran, Y. Zhai, Q. Yin, P. Zhang, Y. Li, Cocktail strategy based on spatio-temporally controlled nano device improves therapy of breast cancer. Adv. Mater. 31, e1903844 (2019). https://doi.org/10.1002/adma.201903844
H.J. Li, J.Z. Du, J. Liu, X.J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10, 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
T. Jiang, W. Sun, Q. Zhu, N.A. Burns, S.A. Khan, R. Mo, Z. Gu, Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 27, 1021–1028 (2015). https://doi.org/10.1002/adma.201404498
X.X. Hu, Y. Wang, B. Peng, Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem. Asian J. 9, 319–327 (2014). https://doi.org/10.1002/asia.201301105
I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu, V.S.Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008). https://doi.org/10.1016/j.addr.2008.03.012
Q.S. Zheng, T.R. Lin, H.Y. Wu, L.Q. Guo, P.R. Ye et al., Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int. J. Pharmaceut. 463, 22–26 (2014). https://doi.org/10.1016/j.ijpharm.2013.12.045
D.W. Zheng, J.L. Chen, J.Y. Zhu, L. Rong, B. Li et al., Highly integrated nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 16, 4341–4347 (2016). https://doi.org/10.1021/acs.nanolett.6b01432
D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016). https://doi.org/10.1007/s11095-016-1958-5
X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao et al., Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 296, 150–161 (2019). https://doi.org/10.1016/j.jconrel.2019.01.027
J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967
W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29, 1603864 (2017). https://doi.org/10.1002/adma.201603864
M. Nishikawa, Y. Mizuno, K. Mohri, N. Matsuoka, S. Rattanakiat, Y. Takahashi, H. Funabashi, D. Luo, Y. Takakura, Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials 32, 488–494 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.013
Y.K. Li, M. Fang, J. Zhang, J. Wang, Y. Song et al., Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 5, 1074374 (2016). https://doi.org/10.1080/2162402X.2015.1074374
H. Qiao, X. Chen, E. Chen, J. Zhang, D. Huang et al., Folated pH-degradable nanogels for the simultaneous delivery of docetaxel and an IDO1-inhibitor in enhancing cancer chemo-immunotherapy. Biomater. Sci. 7, 2749–2758 (2019). https://doi.org/10.1039/c9bm00324j
Q. Lv, C.L. He, F.L. Quan, S.J. Yu, X.S. Chen, DOX/IL-2/IFN-gamma co-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. Bioact. Mater. 3, 118–128 (2018). https://doi.org/10.1016/j.bioactmat.2017.08.003
H. Jin, C. Wan, Z. Zou, G. Zhao, L. Zhang et al., Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano 12, 3295–3310 (2018). https://doi.org/10.1021/acsnano.7b08148
P.F. Zhao, Y.H. Wang, X.J. Kang, A.H. Wu, W.M. Yin et al., Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophagemediated immunotherapy. Chem. Sci. 9, 2674–2689 (2018). https://doi.org/10.1039/c7sc04853j
H. Wang, Y. Tang, Y. Fang, M. Zhang, H. Wang, Z. He, B. Wang, Q. Xu, Y. Huang, Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 19, 2935–2944 (2019). https://doi.org/10.1021/acs.nanolett.9b00021
V. Vijayan, S. Uthaman, I.K. Park, Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics. Polymers 10, 1009098 (2018). https://doi.org/10.3390/polym10090983
H. Wang, Y. Liu, R. He, D. Xu, J. Zang, N. Weeranoppanant, H. Dong, Y. Li, Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater. Sci. 8, 552–568 (2020). https://doi.org/10.1039/c9bm01392j
D. Dehaini, R.H. Fang, L. Zhang, Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med. 1, 30–46 (2016). https://doi.org/10.1002/btm2.10004
R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018). https://doi.org/10.1002/adma.201706759
Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett. 11, 100 (2019). https://doi.org/10.1007/s40820-019-0330-9
W. Du, C. Chen, P. Sun, S. Zhang, J. Zhang et al., Eliciting an immune hot tumor niche with biomimetic drug-based multi-functional nanohybrids augments immune checkpoint blockade-based breast cancer therapy. Nanoscale 12, 3317–3329 (2020). https://doi.org/10.1039/c9nr09835f
E. Lasalvia-Prisco, P. Goldschmidt, F. Galmarini, S. Cucchi, J. Vazquez et al., Addition of an induction regimen of antiangiogenesis and antitumor immunity to standard chemotherapy improves survival in advanced malignancies. Med. Oncol. 29, 3626–3633 (2012). https://doi.org/10.1007/s12032-012-0301-1
I. Liikanen, L. Ahtiainen, M.L. Hirvinen, S. Bramante, V. Cerullo et al., Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol. Ther. 21, 1212–1223 (2013). https://doi.org/10.1038/mt.2013.51
B. Ding, X. Wu, W. Fan, Z. Wu, J. Gao et al., Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int. J. Nanomed. 6, 1991–2005 (2011). https://doi.org/10.2147/IJN.S24094
B.Y. Ding, W. Zhang, X. Wu, J. Wang, C. Xie et al., DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo. Oncotarget 7, 57160–57170 (2016). https://doi.org/10.18632/oncotarget.11014