Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications
Corresponding Author: Fei Deng
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 68
Abstract
Superhydrophobic surface (SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting, and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally, the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.
Highlights:
1 An overview of the superhydrophobic surface -assisted strategies for fabricating microspheres and supraparticles are presented.
2 The applications of microspheres and supraparticles fabricated using SHS-assisted strategies are discussed in detail.
3 NCrucial challenges facing the development of microspheres and supraparticles fabricated through SHS-assisted strategies are analysed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.H. Nguyen, H.K. Webb, P.J. Mahon, R.J. Crawford, E.P. Ivanova, Natural insect and plant micro-/nanostructured surfaces: an excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules 19(9), 13614–13630 (2014). https://doi.org/10.3390/molecules190913614
- K. Koch, B. Bhushan, W. Barthlott, Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4(10), 1943–1963 (2008). https://doi.org/10.1039/B804854A
- W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Lett. 9, 1–40 (2017). https://doi.org/10.1007/s40820-016-0125-1
- Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interfac. 169(2), 80–105 (2011). https://doi.org/10.1016/j.cis.2011.08.005
- H. Liu, L. Zhang, J. Huang, J. Mao, Z. Chen et al., Smart surfaces with reversibly switchable wettability: concepts, synthesis and applications. Adv. Colloid Interface 300, 102584 (2022). https://doi.org/10.1016/j.cis.2021.102584
- F. Wang, S. Li, L. Wang, Fabrication of artificial super-hydrophobic lotus-leaf-like bamboo surfaces through soft lithography. Colloid. Surface A 513, 389–395 (2017). https://doi.org/10.1016/j.colsurfa.2016.11.001
- G.D. Bixler, B. Bhushan, Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 5(17), 7685–7710 (2013). https://doi.org/10.1039/c3nr01710a
- F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao et al., When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 6(3), 9727 (2020). https://doi.org/10.1126/sciadv.aaw9727
- K.D. Amirchand, K. Kaur, V. Singh, Biochar based self-cleaning superhydrophobic surface with aqueous desphobic properties. J. Mol. Liq. 380, 121736 (2023). https://doi.org/10.1016/j.molliq.2023.121736
- J.A. Howarter, J.P. Youngblood, Self-cleaning and next generation anti-fog surfaces and coatings. Macromol. Rapid Comm. 29(6), 455–466 (2008). https://doi.org/10.1002/marc.200700733
- J. Jeevahan, M. Chandrasekaran, G. Britto Joseph, R. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15, 231–250 (2018). https://doi.org/10.1007/s11998-017-0011-x
- Q. Shang, Y. Zhou, Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging. Ceram. Int. 42(7), 8706–8712 (2016). https://doi.org/10.1016/j.ceramint.2016.02.105
- C.J. Lai, Y.J. Chen, M.X. Wu, C.C. Wu, N.T. Tang et al., Self-cleaning and anti-fogging hierarchical structure arrays inspired by termite wing. Appl. Surf. Sci. 616, 156484 (2023). https://doi.org/10.1016/j.apsusc.2023.156484
- I.F. Wahab, B. Abd Razak, S.W. Teck, T.T. Azmi, M. Ibrahim et al., Fundamentals of antifogging strategies, coating techniques and properties of inorganic materials; a comprehensive review. J. Mater. Res. Technol. 23, 687–741 (2023). https://doi.org/10.1016/j.jmrt.2023.01.015
- W. Li, Y. Zhan, S. Yu, Applications of superhydrophobic coatings in anti-icing: theory, mechanisms, impact factors, challenges and perspectives. Prog. Org. Coat. 152, 106117 (2021). https://doi.org/10.1016/j.porgcoat.2020.106117
- Y. Wang, J. Xue, Q. Wang, Q. Chen, J. Ding, Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 5(8), 3370–3381 (2013). https://doi.org/10.1021/am400429q
- L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings. Langmuir 25(21), 12444–12448 (2009). https://doi.org/10.1021/la902882b10.1021/la902882b
- Y. Deng, F. Xu, Z. Yin, M. Xue, Y. Chen et al., Controllable fabrication of superhydrophobic alloys surface on 304 stainless steel substrate for anti-icing performance. Ceram. Int. 49, 25135–25143 (2023). https://doi.org/10.1016/j.ceramint.2023.05.044
- L. Wang, H. Zhao, D. Zhu, L. Yuan, H. Zhang et al., A review on ultrafast laser enabled excellent superhydrophobic anti-icing performances. Appl. Sci. 13(15), 5478 (2023). https://doi.org/10.3390/app13095478
- L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu et al., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 116(15), 2046–2048 (2004). https://doi.org/10.1002/ange.200353381
- B. Chen, J. Qiu, E. Sakai, N. Kanazawa, R. Liang et al., Robust and superhydrophobic surface modification by a “paint + adhesive” method: applications in self-cleaning after oil contamination and oil-water separation. ACS Appl. Mater. Interfaces 8(27), 17659–17667 (2016). https://doi.org/10.1021/acsami.6b04108
- N. Wang, Y. Wang, B. Shang, P. Wen, B. Peng et al., Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation. J. Colloid Interf. Sci. 531, 300–310 (2018). https://doi.org/10.1016/j.jcis.2018.07.056
- X. Li, X. Chen, C. Zhao, X. Luo, Y. Jiang et al., Fabrication and research of superhydrophobic paper for oil-water separation. Mater. Chem. Phys. 304, 127808 (2023). https://doi.org/10.1016/j.matchemphys.2023.127808
- Y. Zheng, H. Bai, Z. Huang, X. Tian, F.Q. Nie et al., Directional water collection on wetted spider silk. Nature 463(7281), 640–643 (2010). https://doi.org/10.1038/nature08729
- Y. Zhang, T. Wang, M. Wu, W. Wei, Durable superhydrophobic surface with hierarchical microstructures for efficient water collection. Surf. Coat. Tech. 419, 127279 (2021). https://doi.org/10.1016/j.surfcoat.2021.127279
- R.A. Pinheiro, A.A. Silva, V.J. Trava-Airoldi, E.J. Corat, Water vapor condensation and collection by super-hydrophilic and super-hydrophobic vacnts. Diam. Relat. Mater. 87, 43–49 (2018). https://doi.org/10.1016/j.diamond.2018.05.009
- J. Li, Y. Zhou, W. Wang, F. Du, L. Ren, A bio-inspired superhydrophobic surface for fog collection and directional water transport. J. Alloy. Compd. 819, 152968 (2020). https://doi.org/10.1016/j.jallcom.2019.152968
- Q. Zhang, X. Bai, Y. Li, X. Zhang, D. Tian et al., Ultrastable super-hydrophobic surface with an ordered scaly structure for decompression and guiding liquid manipulation. ACS Nano 16(10), 16843–16852 (2022). https://doi.org/10.1021/acsnano.2c06749
- M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho et al., Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromol. Rapid Comm. 26(22), 1805–1809 (2005). https://doi.org/10.1002/marc.200500458
- Y. Yang, X. Li, X. Zheng, Z. Chen, Q. Zhou et al., 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 30(9), 1704912 (2018). https://doi.org/10.1002/adma.201704912
- X. Hong, X. Gao, L. Jiang, Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 129(6), 1478–1479 (2007). https://doi.org/10.1021/ja065537c
- S. Feng, J. Delannoy, A. Malod, H. Zheng, D. Quéré et al., Tip-induced flipping of droplets on janus pillars: from local reconfiguration to global transport. Sci. Adv. 6(28), 4540 (2020). https://doi.org/10.1126/sciadv.abb4540
- Q. Sun, D. Wang, Y. Li, J. Zhang, S. Ye et al., Surface charge printing for programmed droplet transport. Nat. Mater. 18(9), 936–941 (2019). https://doi.org/10.1038/s41563-019-0440-2
- D. Guo, J. Xiao, J. Chen, Y. Liu, C. Yu et al., Superhydrophobic “aspirator”: toward dispersion and manipulation of micro/nanoliter droplets. Small 11(35), 4491–4496 (2015). https://doi.org/10.1002/smll.201501023
- T.T. Isimjan, T. Wang, S. Rohani, A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface. Chem. Eng. J. 210, 182–187 (2012). https://doi.org/10.1016/j.cej.2012.08.090
- T. He, Y. Wang, Y. Zhang, T. Xu, T. Liu, Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater. Corros. Sci. 51(8), 1757–1761 (2009). https://doi.org/10.1016/j.corsci.2009.04.027
- D.W. Li, H.Y. Wang, Y. Liu, D.S. Wei, Z.X. Zhao, Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance. Chem. Eng. J. 367, 169–179 (2019). https://doi.org/10.1016/j.cej.2019.02.093
- T. Xiang, Y. Han, Z. Guo, R. Wang, S. Zheng et al., Fabrication of inherent anticorrosion superhydrophobic surfaces on metals. ACS Sustain. Chem. Eng. 6(4), 5598–5606 (2018). https://doi.org/10.1021/acssuschemeng.8b00639
- Z. She, Q. Li, Z. Wang, L. Li, F. Chen et al., Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem. Eng. J. 228, 415–424 (2013). https://doi.org/10.1016/j.cej.2013.05.017
- M. Ran, W. Zheng, H. Wang, Fabrication of superhydrophobic surfaces for corrosion protection: a review. Mater. Sci. Tech. 35(3), 313–326 (2019). https://doi.org/10.1080/02670836.2018.1560985
- G. Xin, C. Wu, W. Liu, Y. Rong, Y. Huang, Anti-corrosion superhydrophobic surfaces of al alloy based on micro-protrusion array structure fabricated by laser direct writing. J. Alloy. Compd. 881, 160649 (2021). https://doi.org/10.1016/j.jallcom.2021.160649
- N. Shirtcliffe, P. Roach, Superhydrophobicity for antifouling microfluidic surfaces. Microfluidic Diagnostics: Methods and Protocols 949, 269–281 (2013). https://doi.org/10.1007/978-1-62703-134-9_18
- M. Wang, Y. Zi, J. Zhu, W. Huang, Z. Zhang et al., Construction of super-hydrophobic PDMS@MOF@Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications. Chem. Eng. J. 417, 129265 (2021). https://doi.org/10.1016/j.cej.2021.129265
- A.S. Anjum, K.C. Sun, M. Ali, R. Riaz, S.H. Jeong, Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications. Chem. Eng. J. 401, 125859 (2020). https://doi.org/10.1016/j.cej.2020.125859
- F. Sahin, N. Celik, A. Ceylan, S. Pekdemir, M. Ruzi et al., Antifouling superhydrophobic surfaces with bactericidal and SERS activity. Chem. Eng. J. 431, 133445 (2022). https://doi.org/10.1016/j.cej.2021.133445
- L. Zhao, Q. Liu, R. Gao, J. Wang, W. Yang et al., One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corros. Sci. 80, 177–183 (2014). https://doi.org/10.1016/j.corsci.2013.11.026
- X. He, P. Cao, F. Tian, X. Bai, C. Yuan, Autoclaving-induced in-situ grown hierarchical structures for construction of superhydrophobic surfaces: a new route to fabricate antifouling coatings. Surf. Coat. Tech. 357, 180–188 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.015
- Z. Cheng, M. Du, H. Lai, N. Zhang, K. Sun, From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion. Nanoscale 5(7), 2776–2783 (2013). https://doi.org/10.1039/C3NR34256E
- M. Spaeth, W. Barthlott, Lotus-effect®: biomimetic super-hydrophobic surfaces and their application. Adv. Sci. Techn. 60, 38–46 (2009). https://doi.org/10.4028/www.scientific.net/AST.60.38
- M.M. Stanton, R.E. Ducker, J.C. MacDonald, C.R. Lambert, W.G. McGimpsey, Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces. J. Colloid Interf. Sci. 367(1), 502–508 (2012). https://doi.org/10.1016/j.jcis.2011.07.053
- W.H. Huang, C.S. Lin, Robust superhydrophobic transparent coatings fabricated by a low-temperature sol–gel process. Appl. Surf. Sci. 305, 702–709 (2014). https://doi.org/10.1016/j.apsusc.2014.03.179
- R. Wu, G. Chao, H. Jiang, Y. Hu, A. Pan, The superhydrophobic aluminum surface prepared by different methods. Mater. Lett. 142, 176–179 (2015). https://doi.org/10.1016/j.matlet.2014.12.007
- L. Feng, S. Li, Y. Li, H. Li, L. Zhang et al., Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002). https://doi.org/10.1002/adma.200290020
- D. Wang, Q. Sun, M.J. Hokkanen, C. Zhang, F.Y. Lin et al., Design of robust superhydrophobic surfaces. Nature 582(7810), 55–59 (2020). https://doi.org/10.1038/s41586-020-2331-8
- Z. Lei, P. Zheng, L. Niu, Y. Yang, J. Shen et al., Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with high oil retention. Appl. Surf. Sci. 489, 922–929 (2019). https://doi.org/10.1016/j.apsusc.2019.06.025
- H. Wang, M. Liang, J. Gao, Z. He, S. Tian et al., Super-hydrophobic coating prepared by mechanical milling method. J. Coat. Technol. Res. 19, 587–595 (2022). https://doi.org/10.1007/s11998-021-00546-1
- T. Kemala, E. Budianto, B. Soegiyono, Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (ɛ-caprolactone) with poly (vinyl alcohol) as emulsifier. Arab. J. Chem. 5(1), 103–108 (2012). https://doi.org/10.1016/j.arabjc.2010.08.003
- K. Sahil, M. Akanksha, S. Premjeet, A. Bilandi, B. Kapoor, Microsphere: a review. Int. J. Res. Pharm. Chem. 1(4), 1184–1198 (2011). https://doi.org/10.5958/2321-5844.2016.00006.6
- M. Lengyel, N. Kállai-Szabó, V. Antal, A.J. Laki, I. Antal, Microps, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 87(3), 20 (2019). https://doi.org/10.3390/scipharm87030020
- S. Wintzheimer, T. Granath, M. Oppmann, T. Kister, T. Thai et al., Supraps: functionality from uniform structural motifs. ACS Nano 12(6), 5093–5120 (2018). https://doi.org/10.1021/acsnano.8b00873
- H. Tan, S. Wooh, H.J. Butt, X. Zhang, D. Lohse, Porous suprap assembly through self-lubricating evaporating colloidal ouzo drops. Nat. Commun. 10(1), 478 (2019). https://doi.org/10.1038/s41467-019-08385-w
- I.M. Bjørge, A.M. Costa, A.S. Silva, J.P. Vidal, J.M. Nóbrega et al., Tuneable spheroidal hydrogel ps for cell and drug encapsulation. Soft Matter 14(27), 5622–5627 (2018). https://doi.org/10.1039/c8sm00921j
- W. Song, A.C. Lima, J.F. Mano, Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 6(23), 5868–5871 (2010). https://doi.org/10.1039/C0SM00901F
- X. Deng, M. Paven, P. Papadopoulos, M. Ye, S. Wu et al., Solvent-free synthesis of microps on superamphiphobic surfaces. Angew. Chem. Int. Ed. 125(43), 11496–11499 (2013). https://doi.org/10.1002/ange.201302903
- J. Song, W. Zhang, D. Wang, Y. Fan, C. Zhang et al., Polymeric microps generated via confinement-free fluid instability. Adv. Mater. 33(22), 2007154 (2021). https://doi.org/10.1002/adma.202007154
- M.I. Rial-Hermida, N.M. Oliveira, A. Concheiro, C. Alvarez-Lorenzo, J. Mano, Bioinspired superamphiphobic surfaces as a tool for polymer-and solvent-independent preparation of drug-loaded spherical ps. Acta Biomater. 10(10), 4314–4322 (2014). https://doi.org/10.1016/j.actbio.2014.06.009
- S. Wooh, H. Huesmann, M.N. Tahir, M. Paven, K. Wichmann et al., Synthesis of mesoporous supraps on superamphiphobic surfaces. Adv. Mater. 27(45), 7338–7343 (2015). https://doi.org/10.1002/adma.201503929
- J. Kim, H. Hwang, H.J. Butt, S. Wooh, Designing the shape of supraps by controlling the apparent contact angle and contact line friction of droplets. J. Colloid Interf. Sci. 588, 157–163 (2021). https://doi.org/10.1016/j.jcis.2020.12.072
- X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012). https://doi.org/10.1126/science.1207115
- Y. Huang, J. Zhou, B. Su, L. Shi, J. Wang et al., Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J. Am. Chem. Soc. 134(41), 17053–17058 (2012). https://doi.org/10.1021/ja304751k
- M.B. Bigdeli, P.A. Tsai, Making photonic crystals via evaporation of nanop-laden droplets on superhydrophobic microstructures. Langmuir 36(17), 4835–4841 (2020). https://doi.org/10.1021/acs.langmuir.0c00193
- A.M. Costa, J.F. Mano, Solvent-free strategy yields size and shape-uniform capsules. J. Am. Chem. Soc. 139(3), 1057–1060 (2017). https://doi.org/10.1021/jacs.6b11925
- A.M. Puga, A.C. Lima, J.F. Mano, A. Concheiro, C. Alvarez-Lorenzo, Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohyd. Polym. 98(1), 331–340 (2013). https://doi.org/10.1016/j.carbpol.2013.05.091
- A.C. Lima, W. Song, B. Blanco-Fernandez, C. Alvarez-Lorenzo, J.F. Mano, Synthesis of temperature-responsive dextran-MA/PNIPAAm ps for controlled drug delivery using superhydrophobic surfaces. Pharm. Res-Dordr. 28(6), 1294–1305 (2011). https://doi.org/10.1007/s11095-011-0380-2
- T. Takei, K. Araki, K. Terazono, Y. Ozuno, G. Hayase et al., Highly efficient encapsulation of ingredients in poly (methyl methacrylate) capsules using a superoleophobic material. Polym. Polym. Compos. 25(2), 129–134 (2017). https://doi.org/10.1177/096739111702500202
- A.M. Costa, M. Alatorre-Meda, N.M. Oliveira, J.F. Mano, Biocompatible polymeric microps produced by a simple biomimetic approach. Langmuir 30(16), 4535–4539 (2014). https://doi.org/10.1021/la500286v
- S. Kulinich, M. Farzaneh, Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 255(18), 8153–8157 (2009). https://doi.org/10.1016/j.apsusc.2009.05.033
- S. Sakai, K. Kawakami, Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater. 3(4), 495–501 (2007). https://doi.org/10.1016/j.actbio.2006.12.002
- Y. Baimark, Y. Srisuwan, Preparation of alginate microspheres by water-in-oil emulsion method for drug delivery: effect of Ca2+ post-cross-linking. Adv. Powder Technol. 25(5), 1541–1546 (2014). https://doi.org/10.1016/j.apt.2014.05.001
- T. Nakaoki, H. Yamashita, Bound states of water in poly (vinyl alcohol) hydrogel prepared by repeated freezing and melting method. J. Mol. Struct. 875(1–3), 282–287 (2008). https://doi.org/10.1016/j.molstruc.2007.04.040
- H. Adelnia, R. Ensandoost, S.S. Moonshi, J.N. Gavgani, E.I. Vasafi et al., Freeze/thawed polyvinyl alcohol hydrogels: present, past and future. Eur. Polym. J. 164, 110974 (2022). https://doi.org/10.1016/j.eurpolymj.2021.110974
- W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanops by ionic gelation technique. Colloid. Surface. B 90, 21–27 (2012). https://doi.org/10.1016/j.colsurfb.2011.09.042
- J. Liang, W. Liu, G. Yang, B. Zeng, C. Fu et al., Rapid preparation of hierarchically porous ceramic microspheres based on UV-curing-assisted molding. J. Eur. Ceram. Soc. 41(16), 232–238 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.09.033
- W. Liu, J. Liang, G. Yang, M. Huang, C. Fu et al., Novel strategy to prepare hierarchically porous ceramic microspheres via a self-assembly method on tunable superamphiphobic surfaces. ACS Appl. Mater. Interfaces 12(40), 45429–45436 (2020). https://doi.org/10.1021/acsami.0c05324
- R. Luo, Y. Cao, P. Shi, C.H. Chen, Near-infrared light responsive multi-compartmental hydrogel ps synthesized through droplets assembly induced by superhydrophobic surface. Small 10, 4886–4894 (2014). https://doi.org/10.1002/smll.201401312
- A.M. Costa, M. Alatorre-Meda, C. Alvarez-Lorenzo, J.F. Mano, Superhydrophobic surfaces as a tool for the fabrication of hierarchical spherical polymeric carriers. Small 11(30), 3648–3652 (2015). https://doi.org/10.1002/smll.201500192
- T. Shpigel, A. Uziel, D.Y. Lewitus, Sphrint-printing drug delivery microspheres from polymeric melts. Eur. J. Pharm. Biopharm. 127, 398–406 (2018). https://doi.org/10.1016/j.ejpb.2018.03.006
- Y. Fan, D.H. Wang, J.L. Yang, J.N. Song, X.M. Li et al., Top-down approach for fabrication of polymer microspheres by interfacial engineering. Chin. J. Polym. Sci. 38(12), 1286–1293 (2020). https://doi.org/10.1007/s10118-020-2453-3
- P.B. O’Donnell, J.W. McGinity, Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliver. Rev. 28(1), 25–42 (1997). https://doi.org/10.1016/s0169-409x(97)00049-5
- A.S. Utada, A. Fernandez-Nieves, J.M. Gordillo, D.A. Weitz, Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100(1), 014502 (2008). https://doi.org/10.1103/physrevlett.100.014502
- J.D. McGraw, J. Li, D.L. Tran, A.C. Shi, K. Dalnoki-Veress, Plateau-rayleigh instability in a torus: formation and breakup of a polymer ring. Soft Matter 6(6), 1258–1262 (2010). https://doi.org/10.1039/B919630G
- R. Mead-Hunter, A.J. King, B.J. Mullins, Plateau rayleigh instability simulation. Langmuir 28(17), 6731–6735 (2012). https://doi.org/10.1021/la300622h
- S.M. Emarati, M. Mozammel, Theoretical, fundamental and experimental study of liquid-repellency and corrosion resistance of fabricated superamphiphobic surface on Al alloy 2024. Chem. Eng. J. 387, 124046 (2020). https://doi.org/10.1016/j.cej.2020.124046
- L. Jiao, Q. Xu, J. Tong, S. Liu, Y. Hu et al., Facile preparation of pliable superamphiphobic papers with high and durable liquid repellency for anti-corrosion and open surface microfluidics. Appl. Surf. Sci. 606, 154845 (2022). https://doi.org/10.1016/j.apsusc.2022.154845
- B. Zhang, Y. Zeng, J. Wang, Y. Sun, J. Zhang et al., Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency. Mater. Design 188, 108479 (2020). https://doi.org/10.1016/j.matdes.2020.108479
- Q. Wu, A. Gao, F. Tao, P. Yang, Understanding biomolecular crystallization on amyloid-like superhydrophobic biointerface. Adv. Mater. Interfaces 5(6), 1701065 (2018). https://doi.org/10.1002/admi.201701065
- A. Gao, Q. Wu, D. Wang, Y. Ha, Z. Chen et al., A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization. Adv. Mater. 28(3), 579–587 (2016). https://doi.org/10.1002/adma.201504769
- F. Gentile, M.L. Coluccio, N. Coppede, F. Mecarini, G. Das et al., Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions. ACS Appl. Mater. Interfaces 4(6), 3213–3224 (2012). https://doi.org/10.1021/am300556w
- L. Jiao, J. Tong, Y. Wu, Y. Hu, H. Wu et al., Self-assembly of supraps on a lubricated-superamphiphobic patterned surface. Appl. Surf. Sci. 576, 151684 (2022). https://doi.org/10.1016/j.apsusc.2021.151684
- H. Tan, S. Wooh, H.J. Butt, X. Zhang, D. Lohse, Porous suprap assembly through self-lubricating evaporating colloidal ouzo drops. Nat. Commun. 10(1), 1–8 (2019). https://doi.org/10.1038/s41467-019-08385-w
- L. Jiao, Y. Wu, Y. Hu, Q. Guo, H. Wu et al., Mosaic patterned surfaces toward generating hardly-volatile capsular droplet arrays for high-precision droplet-based storage and detection. Small 19(14), 2206274 (2023). https://doi.org/10.1002/smll.202206274
- T. Sekido, S. Wooh, R. Fuchs, M. Kappl, Y. Nakamura et al., Controlling the structure of supraballs by pH-responsive p assembly. Langmuir 33(8), 1995–2002 (2017). https://doi.org/10.1021/acs.langmuir.6b04648
- V. Rastogi, A.A. García, M. Marquez, O.D. Velev, Anisotropic p synthesis inside droplet templates on superhydrophobic surfaces. Macromol. Rapid Comm. 31(2), 190–195 (2010). https://doi.org/10.1002/marc.200900587
- M. Hu, H.J. Butt, K. Landfester, M.B. Bannwarth, S. Wooh et al., Shaping the assembly of superparamagnetic nanops. ACS Nano 13(3), 3015–3022 (2019). https://doi.org/10.1021/acsnano.8b07783
- W. Liu, M. Kappl, H.J. Butt, Tuning the porosity of supraps. ACS Nano 13(12), 13949–13956 (2019). https://doi.org/10.1021/acsnano.9b05673
- V. Rastogi, S. Melle, O.G. Calderón, A.A. García, M. Marquez et al., Synthesis of light-diffracting assemblies from microspheres and nanops in droplets on a superhydrophobic surface. Adv. Mater. 20(22), 4263–4268 (2008). https://doi.org/10.1002/adma.200703008
- S.S. Liu, C.F. Wang, X.Q. Wang, J. Zhang, Y. Tian et al., Tunable janus colloidal photonic crystal supraballs with dual photonic band gaps. J. Mater. Chem. C 2(44), 9431–9438 (2014). https://doi.org/10.1039/c4tc01631a
- W. Shim, C.S. Moon, H. Kim, H.S. Kim, H. Zhang et al., Tailoring the morphology of supraps by primary colloids with different shapes, sizes and dispersities. Crystals 11(2), 79 (2021). https://doi.org/10.3390/cryst11020079
- L. Pauchard, Y. Couder, Invagination during the collapse of an inhomogeneous spheroidal shell. Epl-Europhys Lett. 66(5), 667 (2004). https://doi.org/10.1209/epl/i2003-10242-8
- B. Yu, H. Cong, H. Yuan, X. Liu, Q. Peng et al., Preparation of doughnut-like nanocomposite colloidal crystal ps with enhanced light diffraction using drying self-assembly method. Macromol. Rapid Comm. 11(2), 161–165 (2015). https://doi.org/10.2174/1573413710666141105212715
- R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827
- D.W. Lee, M.H. Jin, C.B. Lee, D. Oh, S.K. Ryi et al., Facile synthesis of mesoporous silica and titania supraps by a meniscus templating route on a superhydrophobic surface and their application to adsorbents. Nanoscale 6(7), 3483–3487 (2014). https://doi.org/10.1039/c3nr05501a
- A. Accardo, F. Di Stasio, M. Burghammer, C. Riekel, R. Krahne, Nanocrystal self-assembly into hollow dome-shaped microstructures by slow solvent evaporation on superhydrophobic substrates. Part. Part. Syst. Char. 32(5), 524–528 (2015). https://doi.org/10.1002/ppsc.201400205
- L. Chen, J.R. Evans, Drying of colloidal droplets on superhydrophobic surfaces. J. Colloid Interf. Sci. 351(1), 283–287 (2010). https://doi.org/10.1016/j.jcis.2010.07.037
- M. Sperling, O.D. Velev, M. Gradzielski, Controlling the shape of evaporating droplets by ionic strength: formation of highly anisometric silica supraps. Angew. Chem. Int. Ed. 53(2), 586–590 (2014). https://doi.org/10.1002/anie.201307401
- M. Sperling, P. Papadopoulos, M. Gradzielski, Understanding the formation of anisometric supraps: a mechanistic look inside droplets drying on a superhydrophobic surface. Langmuir 32(27), 6902–6908 (2016). https://doi.org/10.1021/acs.langmuir.6b01236
- M. Sperling, V.J. Spiering, O.D. Velev, M. Gradzielski, Controlled formation of patchy anisometric fumed silica supraps in droplets on bent superhydrophobic surfaces. Part Part Syst. Char. 34(1), 1600176 (2017). https://doi.org/10.1002/ppsc.201600176
- Y. Hu, B. Zhao, S. Lin, X. Deng, L. Chen, Evaporation and p deposition of bi-component colloidal droplets on a superhydrophobic surface. Int. J. Heat Mass Tran. 159, 120063 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120063
- J. Zhou, J. Yang, Z. Gu, G. Zhang, Y. Wei et al., Controllable fabrication of noniridescent microshaped photonic crystal assemblies by dynamic three-phase contact line behaviors on superhydrophobic substrates. ACS Appl. Mater. Interfaces 7(40), 22644–22651 (2015). https://doi.org/10.1021/acsami.5b07443
- R.K. Shah, J.W. Kim, D.A. Weitz, Janus supraps by induced phase separation of nanops in droplets. Adv. Mater. 21(19), 1949–1953 (2009). https://doi.org/10.1002/adma.200803115
- G. Yang, H. Zhong, R. Liu, Y. Li, B. Zou, In-situ aggregation of ZnSe nanops into supraps: shape control and doping effects. Langmuir 29(6), 1970–1976 (2013). https://doi.org/10.1021/la304458q
- Y. Xia, T.D. Nguyen, M. Yang, B. Lee, A. Santos et al., Self-assembly of self-limiting monodisperse supraps from polydisperse nanops. Nat. Nanotechnol. 7(7), 479–479 (2012). https://doi.org/10.1038/nnano.2012.106
- W. Liu, J. Midya, M. Kappl, H.J. Butt, A. Nikoubashman, Segregation in drying binary colloidal droplets. ACS Nano 13(5), 4972–4979 (2019). https://doi.org/10.1021/acsnano.9b00459
- X.D. Meng, R. Al-Salman, J.P. Zhao, N. Borissenko, Y. Li et al., Electrodeposition of 3D ordered macroporous germanium from ionic liquids: A feasible method to make photonic crystals with a high dielectric constant. Angew. Chem. Int. Ed. 48(15), 2703–2707 (2009). https://doi.org/10.1002/anie.200805252
- X. Zhang, Y. Niu, J. Zhao, Y. Li, Self-assembly, structural order and mechanism of γ-Fe2O3@SiO2 ellipsoids induced by magnetic fields. New J. Chem. 40(11), 9520–9525 (2016). https://doi.org/10.1039/C6NJ01415A
- G. von Freymann, V. Kitaev, B.V. Lotsch, G.A. Ozin, Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 42(7), 2528–2554 (2013). https://doi.org/10.1039/c2cs35309a
- J. Hou, H. Zhang, Q. Yang, M. Li, Y. Song et al., Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection. Angew. Chem. Inter. Ed. 53(23), 5791–5795 (2014). https://doi.org/10.1002/anie.201400686
- J. Hou, H. Zhang, Q. Yang, M. Li, L. Jiang et al., Hydrophilic–hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 11(23), 2738–2742 (2015). https://doi.org/10.1002/smll.201403640
- R. De Angelis, I. Venditti, I. Fratoddi, F. De Matteis, P. Prosposito et al., From nanospheres to microribbons: Self-assembled eosin Y doped PMMA nanops as photonic crystals. J. Colloid Interf. Sci. 414, 24–32 (2014). https://doi.org/10.1016/j.jcis.2013.09.045
- M. Li, X. Lai, C. Li, Y. Song, Recent advantages of colloidal photonic crystals and their applications for luminescence enhancement. Mater. Today Nano 6, 100039 (2019). https://doi.org/10.1016/j.mtnano.2019.100039
- M.Y. Pan, X.B. Li, C.J. Xiong, X.Y. Chen, L.B. Wang et al., Robust and flexible colloidal photonic crystal films with bending strain-independent structural colors for anticounterfeiting. Part. Part. Syst. Char. 37(4), 7 (2020)
- M.Y. Pan, C.Y. Wang, Y.F. Hu, X. Wang, L. Pan et al., Dual optical information-encrypted/decrypted invisible photonic patterns based on controlled wettability. Adv. Opt. Mater. 10, 2101268 (2021). https://doi.org/10.1002/adom.202101268
- C. Xiong, J. Zhao, L. Wang, H. Geng, H. Xu et al., Trace detection of homologues and isomers based on hollow mesoporous silica sphere photonic crystals. Mater. Horiz. 4(5), 862–868 (2017). https://doi.org/10.1039/c7mh00447h
- X.Y. Fan, M. Xu, W.Z. Liu, A. Kuchmizhak, L. Pattelli et al., Resolving molecular size and homologues with a self-assembled metal-organic framework photonic crystal detector. ACS Mater. Lett. 5(6), 1703–1709 (2023). https://doi.org/10.1021/acsmaterialslett.3c00203
- H. Yang, L. Pan, Y. Han, L. Ma, Y. Li et al., A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure. Appl. Surf. Sci. 423, 421–425 (2017). https://doi.org/10.1016/j.apsusc.2017.06.140
- M. Pan, L. Wang, S. Dou, J. Zhao, H. Xu et al., Recent advances in colloidal photonic crystal-based anti-counterfeiting materials. Crystals 9(8), 417 (2019). https://doi.org/10.3390/cryst9080417
- Á.G. Marín, H. Gelderblom, A. Susarrey-Arce, A. van Houselt, L. Lefferts et al., Building microscopic soccer balls with evaporating colloidal fakir drops. Proc. Natl. Acad. Sci. 109(41), 16455–16458 (2012). https://doi.org/10.1073/pnas.1209553109
- M. Xiao, J. Liu, Z. Chen, W. Liu, C. Zhang et al., Magnetic assembly and manipulation of janus photonic crystal supraps from a colloidal mixture of spheres and ellipsoids. J. Mater. Chem. C 9(35), 11788–11793 (2021). https://doi.org/10.1039/D1TC01543E
- Z. Yu, C.F. Wang, L. Ling, L. Chen, S. Chen, Triphase microfluidic-directed self-assembly: anisotropic colloidal photonic crystal supraps and multicolor patterns made easy. Angew. Chem. Int. Ed. 10(124), 2425–2428 (2012). https://doi.org/10.1002/anie.201107126
- J. Liu, M. Xiao, C. Li, H. Li, Z. Wu et al., Rugby-ball-like photonic crystal supraps with non-close-packed structures and multiple magneto-optical responses. J. Mater. Chem. C 7(47), 15042–15048 (2019). https://doi.org/10.1039/C9TC05438C
- S.J. Yeo, F. Tu, S.H. Kim, G.R. Yi, P.J. Yoo et al., Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals. Soft Matter 11(8), 1582–1588 (2015). https://doi.org/10.1039/c4sm02482f
- K. Hou, J. Han, Z. Tang, Formation of supraps and their application in catalysis. ACS Mater. Lett. 2(1), 95–106 (2019). https://doi.org/10.1021/acsmaterialslett.9b00446
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014). https://doi.org/10.1021/cr5001892
- S.H. Ahn, D.J. Kim, W.S. Chi, J.H. Kim, Hierarchical double-shell nanostructures of TiO2 nanosheets on SnO2 hollow spheres for high-efficiency, solid-state, dye-sensitized solar cells. Adv. Funct. Mater. 24(32), 5037–5044 (2014). https://doi.org/10.1002/adfm.201400774
- C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song et al., Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 4(1), 4181 (2014). https://doi.org/10.1038/srep04181
- M. Sperling, H.J. Kim, O.D. Velev, M. Gradzielski, Active steerable catalytic supraps shuttling on preprogrammed vertical trajectories. Adv. Mater. Interfaces 3(15), 1600095 (2016). https://doi.org/10.1002/admi.201600095
- H.J. Kim, M. Sperling, O.D. Velev, M. Gradzielski, Silica supraps with self-oscillatory vertical propulsion: mechanism & theoretical description. Part. Part. Syst. Char. 39(7), 2200021 (2022). https://doi.org/10.1002/ppsc.202200021
- H.E. Oguztürk, L.J. Bauer, I. Mantouvalou, B. Kanngier, O.D. Velev et al., Preparation of reinforced anisometric patchy supraps for self-propulsion. Part. Part. Syst. Char. 38(6), 2000328 (2021). https://doi.org/10.1002/ppsc.202000328
- L.H. Lim, D.G. Macdonald, G.A. Hill, Hydrolysis of starch ps using immobilized barley α-amylase. Biochem. Eng. J. 13(1), 53–62 (2003). https://doi.org/10.1016/S1369-703X(02)00101-8
- C. Yousry, M.M. Amin, A.H. Elshafeey, O.N.E.I. Gazayerly, Ultrahigh verapamil-loaded controlled release polymeric beads using superamphiphobic substrate: d-optimal statistical design, in vitro and in vivo performance. Drug Deliv. 25(1), 1448–1460 (2018). https://doi.org/10.1080/10717544.2018.1482974
- A.C. Lima, C.R. Correia, M.B. Oliveira, J.F. Mano, Sequential ionic and thermogelation of chitosan spherical hydrogels prepared using superhydrophobic surfaces to immobilize cells and drugs. J. Bioact. Compat. Pol. 29(1), 50–65 (2014). https://doi.org/10.1177/0883911513513660
- E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.024
- E. Ruel-Gariepy, J.C. Leroux, In situ-forming hydrogels-review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58(2), 409–426 (2004). https://doi.org/10.1016/j.ejpb.2004.03.019
- P.M. Reddy, P. Venkatesu, Ionic liquid modifies the lower critical solution temperature (LCST) of poly (N-isopropylacrylamide) in aqueous solution. J. Phys. Chem. B 115(16), 4752–4757 (2011). https://doi.org/10.1021/jp201826v
- Y.K. Jhon, R.R. Bhat, C. Jeong, O.J. Rojas, I. Szleifer et al., Salt-induced depression of lower critical solution temperature in a surface-grafted neutral thermoresponsive polymer. Macromol. Rapid Comm. 27(9), 697–701 (2006). https://doi.org/10.1002/marc.200600031
- L. Hosta-Rigau, O. Shimoni, B. Städler, F. Caruso, Advanced subcompartmentalized microreactors: polymer hydrogel carriers encapsulating polymer capsules and liposomes. Small 9(21), 3573–3583 (2013). https://doi.org/10.1002/smll.201300125
- R. Chandrawati, F. Caruso, Biomimetic liposome-and polymersome-based multicompartmentalized assemblies. Langmuir 28(39), 13798–13807 (2012). https://doi.org/10.1021/la301958v
- A.C. Lima, C.A. Custódio, C. Alvarez-Lorenzo, J.F. Mano, Biomimetic methodology to produce polymeric multilayered ps for biotechnological and biomedical applications. Small 9(15), 2487–2492 (2013). https://doi.org/10.1002/smll.201202147
- Z. Zha, X. Yue, Q. Ren, Z. Dai, Uniform polypyrrole nanops with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 25(5), 777–782 (2013). https://doi.org/10.1002/adma.201202211
- Y. Dong, M. Gong, D. Huang, J. Gao, Q. Zhou, Shape memory, self-healing property, and NIR photothermal effect of epoxy resin coating with polydopamine@polypyrrole nanops. Prog. Org. Coat. 136, 105232 (2019). https://doi.org/10.1016/j.porgcoat.2019.105232
- D. Yang, B. Zhou, G. Han, Y. Feng, J. Ma et al., Flexible transparent polypyrrole-decorated mxene-based film with excellent photothermal energy conversion performance. ACS Appl. Mater. Interfaces 13(7), 8909–8918 (2021). https://doi.org/10.1021/acsami.0c20202
- C. Schlaich, Y. Fan, P. Dey, J. Cui, Q. Wei et al., Universal, surfactant-free preparation of hydrogel beads on superamphiphobic and slippery surfaces. Adv. Mater. Interfaces 5(7), 1701536 (2018). https://doi.org/10.1002/admi.201701536
- A. Schoubben, P. Blasi, S. Giovagnoli, C. Rossi, M. Ricci, Development of a scalable procedure for fine calcium alginate p preparation. Chem. Eng. J. 160(1), 363–369 (2010). https://doi.org/10.1016/j.cej.2010.02.062
- J.W. Krumpfer, T.J. McCarthy, Dip-coating crystallization on a superhydrophobic surface: a million mounted crystals in a 1 cm2 array. J. Am. Chem. Soc. 133(15), 5764–5766 (2011). https://doi.org/10.1021/ja2011548
- R. Nelson, M.R. Sawaya, M. Balbirnie, A.Ø. Madsen, C. Riekel et al., Structure of the cross-β spine of amyloid-like fibrils. Nature 435(7043), 773–778 (2005). https://doi.org/10.1038/nature03680
- C.Y. Zhang, H.F. Shen, Q.J. Wang, Y.Z. Guo, J. He et al., An investigation of the effects of self-assembled monolayers on protein crystallisation. Int. J. Mol. Sci. 14(6), 12329–12345 (2013). https://doi.org/10.3390/ijms140612329
- F. Shao, T.W. Ng, O.W. Liew, J. Fu, T. Sridhar, Evaporative preconcentration and cryopreservation of fluorescent analytes using superhydrophobic surfaces. Soft Matter 8(13), 3563–3569 (2012). https://doi.org/10.1039/C2SM07127D
- L. Cai, F. Bian, L. Sun, H. Wang, Y. Zhao, Condensing-enriched magnetic photonic barcodes on superhydrophobic surface for ultrasensitive multiple detection. Lab Chip 19(10), 1783–1789 (2019). https://doi.org/10.1039/c9lc00223e
- L.P. Xu, Y. Chen, G. Yang, W. Shi, B. Dai et al., Ultratrace DNA detection based on the condensing-enrichment effect of superwettable microchips. Adv. Mater. 27(43), 6878–6884 (2015). https://doi.org/10.1002/adma.201502982
- Y. Sun, X. Chen, Y. Zheng, Y. Song, H. Zhang et al., Surface-enhanced raman scattering trace-detection platform based on continuous-rolling-assisted evaporation on superhydrophobic surfaces. ACS Appl. Nano Mater. 3(5), 4767–4776 (2020). https://doi.org/10.1021/acsanm.0c00745
- M. Fan, F. Cheng, C. Wang, Z. Gong, C. Tang et al., SERS optrode as a “fishing rod” to direct pre-concentrate analytes from superhydrophobic surfaces. Chem. Commun. 51(10), 1965–1968 (2015). https://doi.org/10.1039/c4cc07928k
- Z. Wang, L. Feng, D. Xiao, N. Li, Y. Li et al., A silver nanoislands on silica spheres platform: Enriching trace amounts of analytes for ultrasensitive and reproducible sers detection. Nanoscale 9(43), 16749–16754 (2017). https://doi.org/10.1039/c7nr06987a
- F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti et al., Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing sers structures. Nat. Photonics 5(11), 682–687 (2011). https://doi.org/10.1038/nphoton.2011.222
- H. Kang, Y.J. Heo, D.J. Kim, J.H. Kim, T.Y. Jeon et al., Droplet-guiding superhydrophobic arrays of plasmonic microposts for molecular concentration and detection. ACS Appl. Mater. Interfaces 9(42), 37201–37209 (2017). https://doi.org/10.1021/acsami.7b11506
- W. Song, D. Psaltis, K.B. Crozier, Superhydrophobic bull’s-eye for surface-enhanced raman scattering. Lab Chip 14(20), 3907–3911 (2014). https://doi.org/10.1039/c4lc00477a
References
S.H. Nguyen, H.K. Webb, P.J. Mahon, R.J. Crawford, E.P. Ivanova, Natural insect and plant micro-/nanostructured surfaces: an excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules 19(9), 13614–13630 (2014). https://doi.org/10.3390/molecules190913614
K. Koch, B. Bhushan, W. Barthlott, Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4(10), 1943–1963 (2008). https://doi.org/10.1039/B804854A
W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Lett. 9, 1–40 (2017). https://doi.org/10.1007/s40820-016-0125-1
Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interfac. 169(2), 80–105 (2011). https://doi.org/10.1016/j.cis.2011.08.005
H. Liu, L. Zhang, J. Huang, J. Mao, Z. Chen et al., Smart surfaces with reversibly switchable wettability: concepts, synthesis and applications. Adv. Colloid Interface 300, 102584 (2022). https://doi.org/10.1016/j.cis.2021.102584
F. Wang, S. Li, L. Wang, Fabrication of artificial super-hydrophobic lotus-leaf-like bamboo surfaces through soft lithography. Colloid. Surface A 513, 389–395 (2017). https://doi.org/10.1016/j.colsurfa.2016.11.001
G.D. Bixler, B. Bhushan, Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 5(17), 7685–7710 (2013). https://doi.org/10.1039/c3nr01710a
F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao et al., When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 6(3), 9727 (2020). https://doi.org/10.1126/sciadv.aaw9727
K.D. Amirchand, K. Kaur, V. Singh, Biochar based self-cleaning superhydrophobic surface with aqueous desphobic properties. J. Mol. Liq. 380, 121736 (2023). https://doi.org/10.1016/j.molliq.2023.121736
J.A. Howarter, J.P. Youngblood, Self-cleaning and next generation anti-fog surfaces and coatings. Macromol. Rapid Comm. 29(6), 455–466 (2008). https://doi.org/10.1002/marc.200700733
J. Jeevahan, M. Chandrasekaran, G. Britto Joseph, R. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15, 231–250 (2018). https://doi.org/10.1007/s11998-017-0011-x
Q. Shang, Y. Zhou, Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging. Ceram. Int. 42(7), 8706–8712 (2016). https://doi.org/10.1016/j.ceramint.2016.02.105
C.J. Lai, Y.J. Chen, M.X. Wu, C.C. Wu, N.T. Tang et al., Self-cleaning and anti-fogging hierarchical structure arrays inspired by termite wing. Appl. Surf. Sci. 616, 156484 (2023). https://doi.org/10.1016/j.apsusc.2023.156484
I.F. Wahab, B. Abd Razak, S.W. Teck, T.T. Azmi, M. Ibrahim et al., Fundamentals of antifogging strategies, coating techniques and properties of inorganic materials; a comprehensive review. J. Mater. Res. Technol. 23, 687–741 (2023). https://doi.org/10.1016/j.jmrt.2023.01.015
W. Li, Y. Zhan, S. Yu, Applications of superhydrophobic coatings in anti-icing: theory, mechanisms, impact factors, challenges and perspectives. Prog. Org. Coat. 152, 106117 (2021). https://doi.org/10.1016/j.porgcoat.2020.106117
Y. Wang, J. Xue, Q. Wang, Q. Chen, J. Ding, Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 5(8), 3370–3381 (2013). https://doi.org/10.1021/am400429q
L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings. Langmuir 25(21), 12444–12448 (2009). https://doi.org/10.1021/la902882b10.1021/la902882b
Y. Deng, F. Xu, Z. Yin, M. Xue, Y. Chen et al., Controllable fabrication of superhydrophobic alloys surface on 304 stainless steel substrate for anti-icing performance. Ceram. Int. 49, 25135–25143 (2023). https://doi.org/10.1016/j.ceramint.2023.05.044
L. Wang, H. Zhao, D. Zhu, L. Yuan, H. Zhang et al., A review on ultrafast laser enabled excellent superhydrophobic anti-icing performances. Appl. Sci. 13(15), 5478 (2023). https://doi.org/10.3390/app13095478
L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu et al., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 116(15), 2046–2048 (2004). https://doi.org/10.1002/ange.200353381
B. Chen, J. Qiu, E. Sakai, N. Kanazawa, R. Liang et al., Robust and superhydrophobic surface modification by a “paint + adhesive” method: applications in self-cleaning after oil contamination and oil-water separation. ACS Appl. Mater. Interfaces 8(27), 17659–17667 (2016). https://doi.org/10.1021/acsami.6b04108
N. Wang, Y. Wang, B. Shang, P. Wen, B. Peng et al., Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation. J. Colloid Interf. Sci. 531, 300–310 (2018). https://doi.org/10.1016/j.jcis.2018.07.056
X. Li, X. Chen, C. Zhao, X. Luo, Y. Jiang et al., Fabrication and research of superhydrophobic paper for oil-water separation. Mater. Chem. Phys. 304, 127808 (2023). https://doi.org/10.1016/j.matchemphys.2023.127808
Y. Zheng, H. Bai, Z. Huang, X. Tian, F.Q. Nie et al., Directional water collection on wetted spider silk. Nature 463(7281), 640–643 (2010). https://doi.org/10.1038/nature08729
Y. Zhang, T. Wang, M. Wu, W. Wei, Durable superhydrophobic surface with hierarchical microstructures for efficient water collection. Surf. Coat. Tech. 419, 127279 (2021). https://doi.org/10.1016/j.surfcoat.2021.127279
R.A. Pinheiro, A.A. Silva, V.J. Trava-Airoldi, E.J. Corat, Water vapor condensation and collection by super-hydrophilic and super-hydrophobic vacnts. Diam. Relat. Mater. 87, 43–49 (2018). https://doi.org/10.1016/j.diamond.2018.05.009
J. Li, Y. Zhou, W. Wang, F. Du, L. Ren, A bio-inspired superhydrophobic surface for fog collection and directional water transport. J. Alloy. Compd. 819, 152968 (2020). https://doi.org/10.1016/j.jallcom.2019.152968
Q. Zhang, X. Bai, Y. Li, X. Zhang, D. Tian et al., Ultrastable super-hydrophobic surface with an ordered scaly structure for decompression and guiding liquid manipulation. ACS Nano 16(10), 16843–16852 (2022). https://doi.org/10.1021/acsnano.2c06749
M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho et al., Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromol. Rapid Comm. 26(22), 1805–1809 (2005). https://doi.org/10.1002/marc.200500458
Y. Yang, X. Li, X. Zheng, Z. Chen, Q. Zhou et al., 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 30(9), 1704912 (2018). https://doi.org/10.1002/adma.201704912
X. Hong, X. Gao, L. Jiang, Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 129(6), 1478–1479 (2007). https://doi.org/10.1021/ja065537c
S. Feng, J. Delannoy, A. Malod, H. Zheng, D. Quéré et al., Tip-induced flipping of droplets on janus pillars: from local reconfiguration to global transport. Sci. Adv. 6(28), 4540 (2020). https://doi.org/10.1126/sciadv.abb4540
Q. Sun, D. Wang, Y. Li, J. Zhang, S. Ye et al., Surface charge printing for programmed droplet transport. Nat. Mater. 18(9), 936–941 (2019). https://doi.org/10.1038/s41563-019-0440-2
D. Guo, J. Xiao, J. Chen, Y. Liu, C. Yu et al., Superhydrophobic “aspirator”: toward dispersion and manipulation of micro/nanoliter droplets. Small 11(35), 4491–4496 (2015). https://doi.org/10.1002/smll.201501023
T.T. Isimjan, T. Wang, S. Rohani, A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface. Chem. Eng. J. 210, 182–187 (2012). https://doi.org/10.1016/j.cej.2012.08.090
T. He, Y. Wang, Y. Zhang, T. Xu, T. Liu, Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater. Corros. Sci. 51(8), 1757–1761 (2009). https://doi.org/10.1016/j.corsci.2009.04.027
D.W. Li, H.Y. Wang, Y. Liu, D.S. Wei, Z.X. Zhao, Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance. Chem. Eng. J. 367, 169–179 (2019). https://doi.org/10.1016/j.cej.2019.02.093
T. Xiang, Y. Han, Z. Guo, R. Wang, S. Zheng et al., Fabrication of inherent anticorrosion superhydrophobic surfaces on metals. ACS Sustain. Chem. Eng. 6(4), 5598–5606 (2018). https://doi.org/10.1021/acssuschemeng.8b00639
Z. She, Q. Li, Z. Wang, L. Li, F. Chen et al., Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem. Eng. J. 228, 415–424 (2013). https://doi.org/10.1016/j.cej.2013.05.017
M. Ran, W. Zheng, H. Wang, Fabrication of superhydrophobic surfaces for corrosion protection: a review. Mater. Sci. Tech. 35(3), 313–326 (2019). https://doi.org/10.1080/02670836.2018.1560985
G. Xin, C. Wu, W. Liu, Y. Rong, Y. Huang, Anti-corrosion superhydrophobic surfaces of al alloy based on micro-protrusion array structure fabricated by laser direct writing. J. Alloy. Compd. 881, 160649 (2021). https://doi.org/10.1016/j.jallcom.2021.160649
N. Shirtcliffe, P. Roach, Superhydrophobicity for antifouling microfluidic surfaces. Microfluidic Diagnostics: Methods and Protocols 949, 269–281 (2013). https://doi.org/10.1007/978-1-62703-134-9_18
M. Wang, Y. Zi, J. Zhu, W. Huang, Z. Zhang et al., Construction of super-hydrophobic PDMS@MOF@Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications. Chem. Eng. J. 417, 129265 (2021). https://doi.org/10.1016/j.cej.2021.129265
A.S. Anjum, K.C. Sun, M. Ali, R. Riaz, S.H. Jeong, Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications. Chem. Eng. J. 401, 125859 (2020). https://doi.org/10.1016/j.cej.2020.125859
F. Sahin, N. Celik, A. Ceylan, S. Pekdemir, M. Ruzi et al., Antifouling superhydrophobic surfaces with bactericidal and SERS activity. Chem. Eng. J. 431, 133445 (2022). https://doi.org/10.1016/j.cej.2021.133445
L. Zhao, Q. Liu, R. Gao, J. Wang, W. Yang et al., One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corros. Sci. 80, 177–183 (2014). https://doi.org/10.1016/j.corsci.2013.11.026
X. He, P. Cao, F. Tian, X. Bai, C. Yuan, Autoclaving-induced in-situ grown hierarchical structures for construction of superhydrophobic surfaces: a new route to fabricate antifouling coatings. Surf. Coat. Tech. 357, 180–188 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.015
Z. Cheng, M. Du, H. Lai, N. Zhang, K. Sun, From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion. Nanoscale 5(7), 2776–2783 (2013). https://doi.org/10.1039/C3NR34256E
M. Spaeth, W. Barthlott, Lotus-effect®: biomimetic super-hydrophobic surfaces and their application. Adv. Sci. Techn. 60, 38–46 (2009). https://doi.org/10.4028/www.scientific.net/AST.60.38
M.M. Stanton, R.E. Ducker, J.C. MacDonald, C.R. Lambert, W.G. McGimpsey, Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces. J. Colloid Interf. Sci. 367(1), 502–508 (2012). https://doi.org/10.1016/j.jcis.2011.07.053
W.H. Huang, C.S. Lin, Robust superhydrophobic transparent coatings fabricated by a low-temperature sol–gel process. Appl. Surf. Sci. 305, 702–709 (2014). https://doi.org/10.1016/j.apsusc.2014.03.179
R. Wu, G. Chao, H. Jiang, Y. Hu, A. Pan, The superhydrophobic aluminum surface prepared by different methods. Mater. Lett. 142, 176–179 (2015). https://doi.org/10.1016/j.matlet.2014.12.007
L. Feng, S. Li, Y. Li, H. Li, L. Zhang et al., Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002). https://doi.org/10.1002/adma.200290020
D. Wang, Q. Sun, M.J. Hokkanen, C. Zhang, F.Y. Lin et al., Design of robust superhydrophobic surfaces. Nature 582(7810), 55–59 (2020). https://doi.org/10.1038/s41586-020-2331-8
Z. Lei, P. Zheng, L. Niu, Y. Yang, J. Shen et al., Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with high oil retention. Appl. Surf. Sci. 489, 922–929 (2019). https://doi.org/10.1016/j.apsusc.2019.06.025
H. Wang, M. Liang, J. Gao, Z. He, S. Tian et al., Super-hydrophobic coating prepared by mechanical milling method. J. Coat. Technol. Res. 19, 587–595 (2022). https://doi.org/10.1007/s11998-021-00546-1
T. Kemala, E. Budianto, B. Soegiyono, Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (ɛ-caprolactone) with poly (vinyl alcohol) as emulsifier. Arab. J. Chem. 5(1), 103–108 (2012). https://doi.org/10.1016/j.arabjc.2010.08.003
K. Sahil, M. Akanksha, S. Premjeet, A. Bilandi, B. Kapoor, Microsphere: a review. Int. J. Res. Pharm. Chem. 1(4), 1184–1198 (2011). https://doi.org/10.5958/2321-5844.2016.00006.6
M. Lengyel, N. Kállai-Szabó, V. Antal, A.J. Laki, I. Antal, Microps, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 87(3), 20 (2019). https://doi.org/10.3390/scipharm87030020
S. Wintzheimer, T. Granath, M. Oppmann, T. Kister, T. Thai et al., Supraps: functionality from uniform structural motifs. ACS Nano 12(6), 5093–5120 (2018). https://doi.org/10.1021/acsnano.8b00873
H. Tan, S. Wooh, H.J. Butt, X. Zhang, D. Lohse, Porous suprap assembly through self-lubricating evaporating colloidal ouzo drops. Nat. Commun. 10(1), 478 (2019). https://doi.org/10.1038/s41467-019-08385-w
I.M. Bjørge, A.M. Costa, A.S. Silva, J.P. Vidal, J.M. Nóbrega et al., Tuneable spheroidal hydrogel ps for cell and drug encapsulation. Soft Matter 14(27), 5622–5627 (2018). https://doi.org/10.1039/c8sm00921j
W. Song, A.C. Lima, J.F. Mano, Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 6(23), 5868–5871 (2010). https://doi.org/10.1039/C0SM00901F
X. Deng, M. Paven, P. Papadopoulos, M. Ye, S. Wu et al., Solvent-free synthesis of microps on superamphiphobic surfaces. Angew. Chem. Int. Ed. 125(43), 11496–11499 (2013). https://doi.org/10.1002/ange.201302903
J. Song, W. Zhang, D. Wang, Y. Fan, C. Zhang et al., Polymeric microps generated via confinement-free fluid instability. Adv. Mater. 33(22), 2007154 (2021). https://doi.org/10.1002/adma.202007154
M.I. Rial-Hermida, N.M. Oliveira, A. Concheiro, C. Alvarez-Lorenzo, J. Mano, Bioinspired superamphiphobic surfaces as a tool for polymer-and solvent-independent preparation of drug-loaded spherical ps. Acta Biomater. 10(10), 4314–4322 (2014). https://doi.org/10.1016/j.actbio.2014.06.009
S. Wooh, H. Huesmann, M.N. Tahir, M. Paven, K. Wichmann et al., Synthesis of mesoporous supraps on superamphiphobic surfaces. Adv. Mater. 27(45), 7338–7343 (2015). https://doi.org/10.1002/adma.201503929
J. Kim, H. Hwang, H.J. Butt, S. Wooh, Designing the shape of supraps by controlling the apparent contact angle and contact line friction of droplets. J. Colloid Interf. Sci. 588, 157–163 (2021). https://doi.org/10.1016/j.jcis.2020.12.072
X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012). https://doi.org/10.1126/science.1207115
Y. Huang, J. Zhou, B. Su, L. Shi, J. Wang et al., Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J. Am. Chem. Soc. 134(41), 17053–17058 (2012). https://doi.org/10.1021/ja304751k
M.B. Bigdeli, P.A. Tsai, Making photonic crystals via evaporation of nanop-laden droplets on superhydrophobic microstructures. Langmuir 36(17), 4835–4841 (2020). https://doi.org/10.1021/acs.langmuir.0c00193
A.M. Costa, J.F. Mano, Solvent-free strategy yields size and shape-uniform capsules. J. Am. Chem. Soc. 139(3), 1057–1060 (2017). https://doi.org/10.1021/jacs.6b11925
A.M. Puga, A.C. Lima, J.F. Mano, A. Concheiro, C. Alvarez-Lorenzo, Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohyd. Polym. 98(1), 331–340 (2013). https://doi.org/10.1016/j.carbpol.2013.05.091
A.C. Lima, W. Song, B. Blanco-Fernandez, C. Alvarez-Lorenzo, J.F. Mano, Synthesis of temperature-responsive dextran-MA/PNIPAAm ps for controlled drug delivery using superhydrophobic surfaces. Pharm. Res-Dordr. 28(6), 1294–1305 (2011). https://doi.org/10.1007/s11095-011-0380-2
T. Takei, K. Araki, K. Terazono, Y. Ozuno, G. Hayase et al., Highly efficient encapsulation of ingredients in poly (methyl methacrylate) capsules using a superoleophobic material. Polym. Polym. Compos. 25(2), 129–134 (2017). https://doi.org/10.1177/096739111702500202
A.M. Costa, M. Alatorre-Meda, N.M. Oliveira, J.F. Mano, Biocompatible polymeric microps produced by a simple biomimetic approach. Langmuir 30(16), 4535–4539 (2014). https://doi.org/10.1021/la500286v
S. Kulinich, M. Farzaneh, Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 255(18), 8153–8157 (2009). https://doi.org/10.1016/j.apsusc.2009.05.033
S. Sakai, K. Kawakami, Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater. 3(4), 495–501 (2007). https://doi.org/10.1016/j.actbio.2006.12.002
Y. Baimark, Y. Srisuwan, Preparation of alginate microspheres by water-in-oil emulsion method for drug delivery: effect of Ca2+ post-cross-linking. Adv. Powder Technol. 25(5), 1541–1546 (2014). https://doi.org/10.1016/j.apt.2014.05.001
T. Nakaoki, H. Yamashita, Bound states of water in poly (vinyl alcohol) hydrogel prepared by repeated freezing and melting method. J. Mol. Struct. 875(1–3), 282–287 (2008). https://doi.org/10.1016/j.molstruc.2007.04.040
H. Adelnia, R. Ensandoost, S.S. Moonshi, J.N. Gavgani, E.I. Vasafi et al., Freeze/thawed polyvinyl alcohol hydrogels: present, past and future. Eur. Polym. J. 164, 110974 (2022). https://doi.org/10.1016/j.eurpolymj.2021.110974
W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanops by ionic gelation technique. Colloid. Surface. B 90, 21–27 (2012). https://doi.org/10.1016/j.colsurfb.2011.09.042
J. Liang, W. Liu, G. Yang, B. Zeng, C. Fu et al., Rapid preparation of hierarchically porous ceramic microspheres based on UV-curing-assisted molding. J. Eur. Ceram. Soc. 41(16), 232–238 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.09.033
W. Liu, J. Liang, G. Yang, M. Huang, C. Fu et al., Novel strategy to prepare hierarchically porous ceramic microspheres via a self-assembly method on tunable superamphiphobic surfaces. ACS Appl. Mater. Interfaces 12(40), 45429–45436 (2020). https://doi.org/10.1021/acsami.0c05324
R. Luo, Y. Cao, P. Shi, C.H. Chen, Near-infrared light responsive multi-compartmental hydrogel ps synthesized through droplets assembly induced by superhydrophobic surface. Small 10, 4886–4894 (2014). https://doi.org/10.1002/smll.201401312
A.M. Costa, M. Alatorre-Meda, C. Alvarez-Lorenzo, J.F. Mano, Superhydrophobic surfaces as a tool for the fabrication of hierarchical spherical polymeric carriers. Small 11(30), 3648–3652 (2015). https://doi.org/10.1002/smll.201500192
T. Shpigel, A. Uziel, D.Y. Lewitus, Sphrint-printing drug delivery microspheres from polymeric melts. Eur. J. Pharm. Biopharm. 127, 398–406 (2018). https://doi.org/10.1016/j.ejpb.2018.03.006
Y. Fan, D.H. Wang, J.L. Yang, J.N. Song, X.M. Li et al., Top-down approach for fabrication of polymer microspheres by interfacial engineering. Chin. J. Polym. Sci. 38(12), 1286–1293 (2020). https://doi.org/10.1007/s10118-020-2453-3
P.B. O’Donnell, J.W. McGinity, Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliver. Rev. 28(1), 25–42 (1997). https://doi.org/10.1016/s0169-409x(97)00049-5
A.S. Utada, A. Fernandez-Nieves, J.M. Gordillo, D.A. Weitz, Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100(1), 014502 (2008). https://doi.org/10.1103/physrevlett.100.014502
J.D. McGraw, J. Li, D.L. Tran, A.C. Shi, K. Dalnoki-Veress, Plateau-rayleigh instability in a torus: formation and breakup of a polymer ring. Soft Matter 6(6), 1258–1262 (2010). https://doi.org/10.1039/B919630G
R. Mead-Hunter, A.J. King, B.J. Mullins, Plateau rayleigh instability simulation. Langmuir 28(17), 6731–6735 (2012). https://doi.org/10.1021/la300622h
S.M. Emarati, M. Mozammel, Theoretical, fundamental and experimental study of liquid-repellency and corrosion resistance of fabricated superamphiphobic surface on Al alloy 2024. Chem. Eng. J. 387, 124046 (2020). https://doi.org/10.1016/j.cej.2020.124046
L. Jiao, Q. Xu, J. Tong, S. Liu, Y. Hu et al., Facile preparation of pliable superamphiphobic papers with high and durable liquid repellency for anti-corrosion and open surface microfluidics. Appl. Surf. Sci. 606, 154845 (2022). https://doi.org/10.1016/j.apsusc.2022.154845
B. Zhang, Y. Zeng, J. Wang, Y. Sun, J. Zhang et al., Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency. Mater. Design 188, 108479 (2020). https://doi.org/10.1016/j.matdes.2020.108479
Q. Wu, A. Gao, F. Tao, P. Yang, Understanding biomolecular crystallization on amyloid-like superhydrophobic biointerface. Adv. Mater. Interfaces 5(6), 1701065 (2018). https://doi.org/10.1002/admi.201701065
A. Gao, Q. Wu, D. Wang, Y. Ha, Z. Chen et al., A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization. Adv. Mater. 28(3), 579–587 (2016). https://doi.org/10.1002/adma.201504769
F. Gentile, M.L. Coluccio, N. Coppede, F. Mecarini, G. Das et al., Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions. ACS Appl. Mater. Interfaces 4(6), 3213–3224 (2012). https://doi.org/10.1021/am300556w
L. Jiao, J. Tong, Y. Wu, Y. Hu, H. Wu et al., Self-assembly of supraps on a lubricated-superamphiphobic patterned surface. Appl. Surf. Sci. 576, 151684 (2022). https://doi.org/10.1016/j.apsusc.2021.151684
H. Tan, S. Wooh, H.J. Butt, X. Zhang, D. Lohse, Porous suprap assembly through self-lubricating evaporating colloidal ouzo drops. Nat. Commun. 10(1), 1–8 (2019). https://doi.org/10.1038/s41467-019-08385-w
L. Jiao, Y. Wu, Y. Hu, Q. Guo, H. Wu et al., Mosaic patterned surfaces toward generating hardly-volatile capsular droplet arrays for high-precision droplet-based storage and detection. Small 19(14), 2206274 (2023). https://doi.org/10.1002/smll.202206274
T. Sekido, S. Wooh, R. Fuchs, M. Kappl, Y. Nakamura et al., Controlling the structure of supraballs by pH-responsive p assembly. Langmuir 33(8), 1995–2002 (2017). https://doi.org/10.1021/acs.langmuir.6b04648
V. Rastogi, A.A. García, M. Marquez, O.D. Velev, Anisotropic p synthesis inside droplet templates on superhydrophobic surfaces. Macromol. Rapid Comm. 31(2), 190–195 (2010). https://doi.org/10.1002/marc.200900587
M. Hu, H.J. Butt, K. Landfester, M.B. Bannwarth, S. Wooh et al., Shaping the assembly of superparamagnetic nanops. ACS Nano 13(3), 3015–3022 (2019). https://doi.org/10.1021/acsnano.8b07783
W. Liu, M. Kappl, H.J. Butt, Tuning the porosity of supraps. ACS Nano 13(12), 13949–13956 (2019). https://doi.org/10.1021/acsnano.9b05673
V. Rastogi, S. Melle, O.G. Calderón, A.A. García, M. Marquez et al., Synthesis of light-diffracting assemblies from microspheres and nanops in droplets on a superhydrophobic surface. Adv. Mater. 20(22), 4263–4268 (2008). https://doi.org/10.1002/adma.200703008
S.S. Liu, C.F. Wang, X.Q. Wang, J. Zhang, Y. Tian et al., Tunable janus colloidal photonic crystal supraballs with dual photonic band gaps. J. Mater. Chem. C 2(44), 9431–9438 (2014). https://doi.org/10.1039/c4tc01631a
W. Shim, C.S. Moon, H. Kim, H.S. Kim, H. Zhang et al., Tailoring the morphology of supraps by primary colloids with different shapes, sizes and dispersities. Crystals 11(2), 79 (2021). https://doi.org/10.3390/cryst11020079
L. Pauchard, Y. Couder, Invagination during the collapse of an inhomogeneous spheroidal shell. Epl-Europhys Lett. 66(5), 667 (2004). https://doi.org/10.1209/epl/i2003-10242-8
B. Yu, H. Cong, H. Yuan, X. Liu, Q. Peng et al., Preparation of doughnut-like nanocomposite colloidal crystal ps with enhanced light diffraction using drying self-assembly method. Macromol. Rapid Comm. 11(2), 161–165 (2015). https://doi.org/10.2174/1573413710666141105212715
R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827
D.W. Lee, M.H. Jin, C.B. Lee, D. Oh, S.K. Ryi et al., Facile synthesis of mesoporous silica and titania supraps by a meniscus templating route on a superhydrophobic surface and their application to adsorbents. Nanoscale 6(7), 3483–3487 (2014). https://doi.org/10.1039/c3nr05501a
A. Accardo, F. Di Stasio, M. Burghammer, C. Riekel, R. Krahne, Nanocrystal self-assembly into hollow dome-shaped microstructures by slow solvent evaporation on superhydrophobic substrates. Part. Part. Syst. Char. 32(5), 524–528 (2015). https://doi.org/10.1002/ppsc.201400205
L. Chen, J.R. Evans, Drying of colloidal droplets on superhydrophobic surfaces. J. Colloid Interf. Sci. 351(1), 283–287 (2010). https://doi.org/10.1016/j.jcis.2010.07.037
M. Sperling, O.D. Velev, M. Gradzielski, Controlling the shape of evaporating droplets by ionic strength: formation of highly anisometric silica supraps. Angew. Chem. Int. Ed. 53(2), 586–590 (2014). https://doi.org/10.1002/anie.201307401
M. Sperling, P. Papadopoulos, M. Gradzielski, Understanding the formation of anisometric supraps: a mechanistic look inside droplets drying on a superhydrophobic surface. Langmuir 32(27), 6902–6908 (2016). https://doi.org/10.1021/acs.langmuir.6b01236
M. Sperling, V.J. Spiering, O.D. Velev, M. Gradzielski, Controlled formation of patchy anisometric fumed silica supraps in droplets on bent superhydrophobic surfaces. Part Part Syst. Char. 34(1), 1600176 (2017). https://doi.org/10.1002/ppsc.201600176
Y. Hu, B. Zhao, S. Lin, X. Deng, L. Chen, Evaporation and p deposition of bi-component colloidal droplets on a superhydrophobic surface. Int. J. Heat Mass Tran. 159, 120063 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120063
J. Zhou, J. Yang, Z. Gu, G. Zhang, Y. Wei et al., Controllable fabrication of noniridescent microshaped photonic crystal assemblies by dynamic three-phase contact line behaviors on superhydrophobic substrates. ACS Appl. Mater. Interfaces 7(40), 22644–22651 (2015). https://doi.org/10.1021/acsami.5b07443
R.K. Shah, J.W. Kim, D.A. Weitz, Janus supraps by induced phase separation of nanops in droplets. Adv. Mater. 21(19), 1949–1953 (2009). https://doi.org/10.1002/adma.200803115
G. Yang, H. Zhong, R. Liu, Y. Li, B. Zou, In-situ aggregation of ZnSe nanops into supraps: shape control and doping effects. Langmuir 29(6), 1970–1976 (2013). https://doi.org/10.1021/la304458q
Y. Xia, T.D. Nguyen, M. Yang, B. Lee, A. Santos et al., Self-assembly of self-limiting monodisperse supraps from polydisperse nanops. Nat. Nanotechnol. 7(7), 479–479 (2012). https://doi.org/10.1038/nnano.2012.106
W. Liu, J. Midya, M. Kappl, H.J. Butt, A. Nikoubashman, Segregation in drying binary colloidal droplets. ACS Nano 13(5), 4972–4979 (2019). https://doi.org/10.1021/acsnano.9b00459
X.D. Meng, R. Al-Salman, J.P. Zhao, N. Borissenko, Y. Li et al., Electrodeposition of 3D ordered macroporous germanium from ionic liquids: A feasible method to make photonic crystals with a high dielectric constant. Angew. Chem. Int. Ed. 48(15), 2703–2707 (2009). https://doi.org/10.1002/anie.200805252
X. Zhang, Y. Niu, J. Zhao, Y. Li, Self-assembly, structural order and mechanism of γ-Fe2O3@SiO2 ellipsoids induced by magnetic fields. New J. Chem. 40(11), 9520–9525 (2016). https://doi.org/10.1039/C6NJ01415A
G. von Freymann, V. Kitaev, B.V. Lotsch, G.A. Ozin, Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 42(7), 2528–2554 (2013). https://doi.org/10.1039/c2cs35309a
J. Hou, H. Zhang, Q. Yang, M. Li, Y. Song et al., Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection. Angew. Chem. Inter. Ed. 53(23), 5791–5795 (2014). https://doi.org/10.1002/anie.201400686
J. Hou, H. Zhang, Q. Yang, M. Li, L. Jiang et al., Hydrophilic–hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 11(23), 2738–2742 (2015). https://doi.org/10.1002/smll.201403640
R. De Angelis, I. Venditti, I. Fratoddi, F. De Matteis, P. Prosposito et al., From nanospheres to microribbons: Self-assembled eosin Y doped PMMA nanops as photonic crystals. J. Colloid Interf. Sci. 414, 24–32 (2014). https://doi.org/10.1016/j.jcis.2013.09.045
M. Li, X. Lai, C. Li, Y. Song, Recent advantages of colloidal photonic crystals and their applications for luminescence enhancement. Mater. Today Nano 6, 100039 (2019). https://doi.org/10.1016/j.mtnano.2019.100039
M.Y. Pan, X.B. Li, C.J. Xiong, X.Y. Chen, L.B. Wang et al., Robust and flexible colloidal photonic crystal films with bending strain-independent structural colors for anticounterfeiting. Part. Part. Syst. Char. 37(4), 7 (2020)
M.Y. Pan, C.Y. Wang, Y.F. Hu, X. Wang, L. Pan et al., Dual optical information-encrypted/decrypted invisible photonic patterns based on controlled wettability. Adv. Opt. Mater. 10, 2101268 (2021). https://doi.org/10.1002/adom.202101268
C. Xiong, J. Zhao, L. Wang, H. Geng, H. Xu et al., Trace detection of homologues and isomers based on hollow mesoporous silica sphere photonic crystals. Mater. Horiz. 4(5), 862–868 (2017). https://doi.org/10.1039/c7mh00447h
X.Y. Fan, M. Xu, W.Z. Liu, A. Kuchmizhak, L. Pattelli et al., Resolving molecular size and homologues with a self-assembled metal-organic framework photonic crystal detector. ACS Mater. Lett. 5(6), 1703–1709 (2023). https://doi.org/10.1021/acsmaterialslett.3c00203
H. Yang, L. Pan, Y. Han, L. Ma, Y. Li et al., A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure. Appl. Surf. Sci. 423, 421–425 (2017). https://doi.org/10.1016/j.apsusc.2017.06.140
M. Pan, L. Wang, S. Dou, J. Zhao, H. Xu et al., Recent advances in colloidal photonic crystal-based anti-counterfeiting materials. Crystals 9(8), 417 (2019). https://doi.org/10.3390/cryst9080417
Á.G. Marín, H. Gelderblom, A. Susarrey-Arce, A. van Houselt, L. Lefferts et al., Building microscopic soccer balls with evaporating colloidal fakir drops. Proc. Natl. Acad. Sci. 109(41), 16455–16458 (2012). https://doi.org/10.1073/pnas.1209553109
M. Xiao, J. Liu, Z. Chen, W. Liu, C. Zhang et al., Magnetic assembly and manipulation of janus photonic crystal supraps from a colloidal mixture of spheres and ellipsoids. J. Mater. Chem. C 9(35), 11788–11793 (2021). https://doi.org/10.1039/D1TC01543E
Z. Yu, C.F. Wang, L. Ling, L. Chen, S. Chen, Triphase microfluidic-directed self-assembly: anisotropic colloidal photonic crystal supraps and multicolor patterns made easy. Angew. Chem. Int. Ed. 10(124), 2425–2428 (2012). https://doi.org/10.1002/anie.201107126
J. Liu, M. Xiao, C. Li, H. Li, Z. Wu et al., Rugby-ball-like photonic crystal supraps with non-close-packed structures and multiple magneto-optical responses. J. Mater. Chem. C 7(47), 15042–15048 (2019). https://doi.org/10.1039/C9TC05438C
S.J. Yeo, F. Tu, S.H. Kim, G.R. Yi, P.J. Yoo et al., Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals. Soft Matter 11(8), 1582–1588 (2015). https://doi.org/10.1039/c4sm02482f
K. Hou, J. Han, Z. Tang, Formation of supraps and their application in catalysis. ACS Mater. Lett. 2(1), 95–106 (2019). https://doi.org/10.1021/acsmaterialslett.9b00446
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014). https://doi.org/10.1021/cr5001892
S.H. Ahn, D.J. Kim, W.S. Chi, J.H. Kim, Hierarchical double-shell nanostructures of TiO2 nanosheets on SnO2 hollow spheres for high-efficiency, solid-state, dye-sensitized solar cells. Adv. Funct. Mater. 24(32), 5037–5044 (2014). https://doi.org/10.1002/adfm.201400774
C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song et al., Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 4(1), 4181 (2014). https://doi.org/10.1038/srep04181
M. Sperling, H.J. Kim, O.D. Velev, M. Gradzielski, Active steerable catalytic supraps shuttling on preprogrammed vertical trajectories. Adv. Mater. Interfaces 3(15), 1600095 (2016). https://doi.org/10.1002/admi.201600095
H.J. Kim, M. Sperling, O.D. Velev, M. Gradzielski, Silica supraps with self-oscillatory vertical propulsion: mechanism & theoretical description. Part. Part. Syst. Char. 39(7), 2200021 (2022). https://doi.org/10.1002/ppsc.202200021
H.E. Oguztürk, L.J. Bauer, I. Mantouvalou, B. Kanngier, O.D. Velev et al., Preparation of reinforced anisometric patchy supraps for self-propulsion. Part. Part. Syst. Char. 38(6), 2000328 (2021). https://doi.org/10.1002/ppsc.202000328
L.H. Lim, D.G. Macdonald, G.A. Hill, Hydrolysis of starch ps using immobilized barley α-amylase. Biochem. Eng. J. 13(1), 53–62 (2003). https://doi.org/10.1016/S1369-703X(02)00101-8
C. Yousry, M.M. Amin, A.H. Elshafeey, O.N.E.I. Gazayerly, Ultrahigh verapamil-loaded controlled release polymeric beads using superamphiphobic substrate: d-optimal statistical design, in vitro and in vivo performance. Drug Deliv. 25(1), 1448–1460 (2018). https://doi.org/10.1080/10717544.2018.1482974
A.C. Lima, C.R. Correia, M.B. Oliveira, J.F. Mano, Sequential ionic and thermogelation of chitosan spherical hydrogels prepared using superhydrophobic surfaces to immobilize cells and drugs. J. Bioact. Compat. Pol. 29(1), 50–65 (2014). https://doi.org/10.1177/0883911513513660
E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.024
E. Ruel-Gariepy, J.C. Leroux, In situ-forming hydrogels-review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58(2), 409–426 (2004). https://doi.org/10.1016/j.ejpb.2004.03.019
P.M. Reddy, P. Venkatesu, Ionic liquid modifies the lower critical solution temperature (LCST) of poly (N-isopropylacrylamide) in aqueous solution. J. Phys. Chem. B 115(16), 4752–4757 (2011). https://doi.org/10.1021/jp201826v
Y.K. Jhon, R.R. Bhat, C. Jeong, O.J. Rojas, I. Szleifer et al., Salt-induced depression of lower critical solution temperature in a surface-grafted neutral thermoresponsive polymer. Macromol. Rapid Comm. 27(9), 697–701 (2006). https://doi.org/10.1002/marc.200600031
L. Hosta-Rigau, O. Shimoni, B. Städler, F. Caruso, Advanced subcompartmentalized microreactors: polymer hydrogel carriers encapsulating polymer capsules and liposomes. Small 9(21), 3573–3583 (2013). https://doi.org/10.1002/smll.201300125
R. Chandrawati, F. Caruso, Biomimetic liposome-and polymersome-based multicompartmentalized assemblies. Langmuir 28(39), 13798–13807 (2012). https://doi.org/10.1021/la301958v
A.C. Lima, C.A. Custódio, C. Alvarez-Lorenzo, J.F. Mano, Biomimetic methodology to produce polymeric multilayered ps for biotechnological and biomedical applications. Small 9(15), 2487–2492 (2013). https://doi.org/10.1002/smll.201202147
Z. Zha, X. Yue, Q. Ren, Z. Dai, Uniform polypyrrole nanops with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 25(5), 777–782 (2013). https://doi.org/10.1002/adma.201202211
Y. Dong, M. Gong, D. Huang, J. Gao, Q. Zhou, Shape memory, self-healing property, and NIR photothermal effect of epoxy resin coating with polydopamine@polypyrrole nanops. Prog. Org. Coat. 136, 105232 (2019). https://doi.org/10.1016/j.porgcoat.2019.105232
D. Yang, B. Zhou, G. Han, Y. Feng, J. Ma et al., Flexible transparent polypyrrole-decorated mxene-based film with excellent photothermal energy conversion performance. ACS Appl. Mater. Interfaces 13(7), 8909–8918 (2021). https://doi.org/10.1021/acsami.0c20202
C. Schlaich, Y. Fan, P. Dey, J. Cui, Q. Wei et al., Universal, surfactant-free preparation of hydrogel beads on superamphiphobic and slippery surfaces. Adv. Mater. Interfaces 5(7), 1701536 (2018). https://doi.org/10.1002/admi.201701536
A. Schoubben, P. Blasi, S. Giovagnoli, C. Rossi, M. Ricci, Development of a scalable procedure for fine calcium alginate p preparation. Chem. Eng. J. 160(1), 363–369 (2010). https://doi.org/10.1016/j.cej.2010.02.062
J.W. Krumpfer, T.J. McCarthy, Dip-coating crystallization on a superhydrophobic surface: a million mounted crystals in a 1 cm2 array. J. Am. Chem. Soc. 133(15), 5764–5766 (2011). https://doi.org/10.1021/ja2011548
R. Nelson, M.R. Sawaya, M. Balbirnie, A.Ø. Madsen, C. Riekel et al., Structure of the cross-β spine of amyloid-like fibrils. Nature 435(7043), 773–778 (2005). https://doi.org/10.1038/nature03680
C.Y. Zhang, H.F. Shen, Q.J. Wang, Y.Z. Guo, J. He et al., An investigation of the effects of self-assembled monolayers on protein crystallisation. Int. J. Mol. Sci. 14(6), 12329–12345 (2013). https://doi.org/10.3390/ijms140612329
F. Shao, T.W. Ng, O.W. Liew, J. Fu, T. Sridhar, Evaporative preconcentration and cryopreservation of fluorescent analytes using superhydrophobic surfaces. Soft Matter 8(13), 3563–3569 (2012). https://doi.org/10.1039/C2SM07127D
L. Cai, F. Bian, L. Sun, H. Wang, Y. Zhao, Condensing-enriched magnetic photonic barcodes on superhydrophobic surface for ultrasensitive multiple detection. Lab Chip 19(10), 1783–1789 (2019). https://doi.org/10.1039/c9lc00223e
L.P. Xu, Y. Chen, G. Yang, W. Shi, B. Dai et al., Ultratrace DNA detection based on the condensing-enrichment effect of superwettable microchips. Adv. Mater. 27(43), 6878–6884 (2015). https://doi.org/10.1002/adma.201502982
Y. Sun, X. Chen, Y. Zheng, Y. Song, H. Zhang et al., Surface-enhanced raman scattering trace-detection platform based on continuous-rolling-assisted evaporation on superhydrophobic surfaces. ACS Appl. Nano Mater. 3(5), 4767–4776 (2020). https://doi.org/10.1021/acsanm.0c00745
M. Fan, F. Cheng, C. Wang, Z. Gong, C. Tang et al., SERS optrode as a “fishing rod” to direct pre-concentrate analytes from superhydrophobic surfaces. Chem. Commun. 51(10), 1965–1968 (2015). https://doi.org/10.1039/c4cc07928k
Z. Wang, L. Feng, D. Xiao, N. Li, Y. Li et al., A silver nanoislands on silica spheres platform: Enriching trace amounts of analytes for ultrasensitive and reproducible sers detection. Nanoscale 9(43), 16749–16754 (2017). https://doi.org/10.1039/c7nr06987a
F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti et al., Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing sers structures. Nat. Photonics 5(11), 682–687 (2011). https://doi.org/10.1038/nphoton.2011.222
H. Kang, Y.J. Heo, D.J. Kim, J.H. Kim, T.Y. Jeon et al., Droplet-guiding superhydrophobic arrays of plasmonic microposts for molecular concentration and detection. ACS Appl. Mater. Interfaces 9(42), 37201–37209 (2017). https://doi.org/10.1021/acsami.7b11506
W. Song, D. Psaltis, K.B. Crozier, Superhydrophobic bull’s-eye for surface-enhanced raman scattering. Lab Chip 14(20), 3907–3911 (2014). https://doi.org/10.1039/c4lc00477a