A Molecular-Sieving Interphase Towards Low-Concentrated Aqueous Sodium-Ion Batteries
Corresponding Author: Guanglei Cui
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 144
Abstract
Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility. Improvements have been reported by salt-concentrated and organic-hybridized electrolyte designs, however, at the expense of cost and safety. Here, we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer. The as-formed composite interphase exhibits a molecular-sieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix, which enables high rejection of hydrated Na+ ions while allowing fast dehydrated Na+ permeance. Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg–1 sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na2MnFe(CN)6//NaTi2(PO4)3 full cells with an unprecedented cycling stability of 94.9% capacity retention after 200 cycles at 1 C. Combined with emerging electrolyte modifications, this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.
Highlights:
1 A molecular-sieving electrode coating towards low-concentrated aqueous sodium-ion batteries is constructed by applying a composite of NaX zeolite and NaOH-neutralized Nafion.
2 Resulting from a molecular sieving effect of zeolite channels and size-shrunken ionic domains in Nafion, the as-prepared coating layer reject hydrated Na+ ions and allow fast dehydrated Na+ permeance.
3 200 cycles of Na2MnFe(CN)6//NaTi2(PO4)3 full cells can be achieved in a practically feasible 2 m aqueous electrolyte.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
- C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016). https://doi.org/10.1038/nmat4777
- K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18, e2107662 (2022). https://doi.org/10.1002/smll.202107662
- P. Liu, T. Zhan, X. Chen, H. Li, Q. Wang et al., Regulating phase stability of O3-type-layered oxide cathode via Zn2+ substitution. J. Phys. Chem. C 127, 20632–20639 (2023). https://doi.org/10.1021/acs.jpcc.3c05873
- H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- D. Chao, S.-Z. Qiao, Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020). https://doi.org/10.1016/j.joule.2020.07.023
- J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 (2020). https://doi.org/10.1002/aenm.202000665
- Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu et al., Formation of solid–electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Energy Mater. 10, 1903665 (2020). https://doi.org/10.1002/aenm.201903665
- L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017). https://doi.org/10.1002/aenm.201701189
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- M. Peng, L. Wang, L. Li, Z. Peng, X. Tang et al., Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. Science 1, 83–90 (2021). https://doi.org/10.1016/j.esci.2021.09.004
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
- C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
- H. Ao, C. Chen, Z. Hou, W. Cai, M. Liu et al., Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries. J. Mater. Chem. A 8, 14190–14197 (2020). https://doi.org/10.1039/D0TA04800C
- R. Chua, Y. Cai, P.Q. Lim, S. Kumar, R. Satish et al., Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage. ACS Appl. Mater. Interfaces 12, 22862–22872 (2020). https://doi.org/10.1021/acsami.0c03423
- Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 (2023). https://doi.org/10.1002/anie.202309601
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, e2101649 (2021). https://doi.org/10.1002/adma.202101649
- T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9, 6013–6028 (2021). https://doi.org/10.1039/D0TA09111A
- K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu et al., Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017). https://doi.org/10.1126/sciadv.1601659
- J.-Y. Liang, X.-D. Zhang, X.-X. Zeng, M. Yan, Y.-X. Yin et al., Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries. Angew. Chem. Int. Ed. 59, 6585–6589 (2020). https://doi.org/10.1002/anie.201916301
- Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33, 2300339 (2023). https://doi.org/10.1002/adfm.202300339
- J. Zhang, C. Cui, P.-F. Wang, Q. Li, L. Chen et al., “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020). https://doi.org/10.1039/d0ee01510e
- C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
- Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
- E. Kendrick, J. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007). https://doi.org/10.1038/nmat2039
- J.J. Velasco-Velez, C.H. Wu, T.A. Pascal, L.F. Wan, J. Guo et al., Interfacial water. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014). https://doi.org/10.1126/science.1259437
- Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572–15581 (2021). https://doi.org/10.1002/anie.202104124
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- K.A. Mauritz, R.B. Moore, State of understanding of nafion. Chem. Rev. 104, 4535–4586 (2004). https://doi.org/10.1021/cr0207123
- J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11, 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- X. Liao, L. Ren, D. Chen, X. Liu, H. Zhang, Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes. J. Power. Sour. 286, 258–263 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.182
- H. Sun, Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998). https://doi.org/10.1021/jp980939v
- A.A. Samoletov, C.P. Dettmann, M.A.J. Chaplain, Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007). https://doi.org/10.1007/s10955-007-9365-2
- H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118
- P.P. Ewald, VII. das „reziproke gitter“in der strukturtheorie. Z. Kristallogr. Cryst. Mater. 56, 129–156 (1921). https://doi.org/10.1524/zkri.1921.56.1.129
- M.P. Tosi, Cohesion of ionic solids in the born model Solid state physics (Elsevier, Amsterdam, 1964), pp.1–120. https://doi.org/10.1016/s0081-1947(08)60515-9
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- M. Fishman, H.L. Zhuang, K. Mathew, W. Dirschka, R.G. Hennig, Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87, 245402 (2013). https://doi.org/10.1103/physrevb.87.245402
- K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014). https://doi.org/10.1063/1.4865107
- I.C. Medeiros-Costa, E. Dib, N. Nesterenko, J.-P. Dath, J.-P. Gilson et al., Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chem. Soc. Rev. 50, 11156–11179 (2021). https://doi.org/10.1039/d1cs00395j
- S. Byun, Y. Jeong, J. Park, S. Kim, H. Ha et al., Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-ting method. Solid State Ion. 177, 3233–3243 (2006). https://doi.org/10.1016/j.ssi.2006.09.014
- J.M. Choi, R. Patel, J. Han, B.R. Min, Proton conducting composite membranes comprising sulfonated poly(1, 4-phenylene sulfide) and zeolite for fuel cell. Ionics 16, 403–408 (2010). https://doi.org/10.1007/s11581-009-0416-3
- J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016). https://doi.org/10.1038/natrevmats.2016.18
- L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55, 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
- C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. U.S.A. 114, 6197–6202 (2017). https://doi.org/10.1073/pnas.1703937114
- J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8, 4362–4367 (2017). https://doi.org/10.1021/acs.jpclett.7b01879
- L. Droguet, A. Grimaud, O. Fontaine, J.-M. Tarascon, Water-in-salt electrolyte (WiSE) for aqueous batteries: a long way to practicality. Adv. Energy Mater. 10, 2002440 (2020). https://doi.org/10.1002/aenm.202002440
- L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
References
W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016). https://doi.org/10.1038/nmat4777
K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18, e2107662 (2022). https://doi.org/10.1002/smll.202107662
P. Liu, T. Zhan, X. Chen, H. Li, Q. Wang et al., Regulating phase stability of O3-type-layered oxide cathode via Zn2+ substitution. J. Phys. Chem. C 127, 20632–20639 (2023). https://doi.org/10.1021/acs.jpcc.3c05873
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014). https://doi.org/10.1021/cr500232y
D. Chao, S.-Z. Qiao, Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020). https://doi.org/10.1016/j.joule.2020.07.023
J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 (2020). https://doi.org/10.1002/aenm.202000665
Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu et al., Formation of solid–electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Energy Mater. 10, 1903665 (2020). https://doi.org/10.1002/aenm.201903665
L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017). https://doi.org/10.1002/aenm.201701189
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
M. Peng, L. Wang, L. Li, Z. Peng, X. Tang et al., Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. Science 1, 83–90 (2021). https://doi.org/10.1016/j.esci.2021.09.004
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
H. Ao, C. Chen, Z. Hou, W. Cai, M. Liu et al., Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries. J. Mater. Chem. A 8, 14190–14197 (2020). https://doi.org/10.1039/D0TA04800C
R. Chua, Y. Cai, P.Q. Lim, S. Kumar, R. Satish et al., Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage. ACS Appl. Mater. Interfaces 12, 22862–22872 (2020). https://doi.org/10.1021/acsami.0c03423
Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 (2023). https://doi.org/10.1002/anie.202309601
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, e2101649 (2021). https://doi.org/10.1002/adma.202101649
T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9, 6013–6028 (2021). https://doi.org/10.1039/D0TA09111A
K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu et al., Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017). https://doi.org/10.1126/sciadv.1601659
J.-Y. Liang, X.-D. Zhang, X.-X. Zeng, M. Yan, Y.-X. Yin et al., Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries. Angew. Chem. Int. Ed. 59, 6585–6589 (2020). https://doi.org/10.1002/anie.201916301
Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33, 2300339 (2023). https://doi.org/10.1002/adfm.202300339
J. Zhang, C. Cui, P.-F. Wang, Q. Li, L. Chen et al., “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020). https://doi.org/10.1039/d0ee01510e
C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
E. Kendrick, J. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007). https://doi.org/10.1038/nmat2039
J.J. Velasco-Velez, C.H. Wu, T.A. Pascal, L.F. Wan, J. Guo et al., Interfacial water. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014). https://doi.org/10.1126/science.1259437
Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572–15581 (2021). https://doi.org/10.1002/anie.202104124
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
K.A. Mauritz, R.B. Moore, State of understanding of nafion. Chem. Rev. 104, 4535–4586 (2004). https://doi.org/10.1021/cr0207123
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11, 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
X. Liao, L. Ren, D. Chen, X. Liu, H. Zhang, Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes. J. Power. Sour. 286, 258–263 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.182
H. Sun, Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998). https://doi.org/10.1021/jp980939v
A.A. Samoletov, C.P. Dettmann, M.A.J. Chaplain, Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007). https://doi.org/10.1007/s10955-007-9365-2
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118
P.P. Ewald, VII. das „reziproke gitter“in der strukturtheorie. Z. Kristallogr. Cryst. Mater. 56, 129–156 (1921). https://doi.org/10.1524/zkri.1921.56.1.129
M.P. Tosi, Cohesion of ionic solids in the born model Solid state physics (Elsevier, Amsterdam, 1964), pp.1–120. https://doi.org/10.1016/s0081-1947(08)60515-9
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
M. Fishman, H.L. Zhuang, K. Mathew, W. Dirschka, R.G. Hennig, Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87, 245402 (2013). https://doi.org/10.1103/physrevb.87.245402
K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014). https://doi.org/10.1063/1.4865107
I.C. Medeiros-Costa, E. Dib, N. Nesterenko, J.-P. Dath, J.-P. Gilson et al., Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chem. Soc. Rev. 50, 11156–11179 (2021). https://doi.org/10.1039/d1cs00395j
S. Byun, Y. Jeong, J. Park, S. Kim, H. Ha et al., Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-ting method. Solid State Ion. 177, 3233–3243 (2006). https://doi.org/10.1016/j.ssi.2006.09.014
J.M. Choi, R. Patel, J. Han, B.R. Min, Proton conducting composite membranes comprising sulfonated poly(1, 4-phenylene sulfide) and zeolite for fuel cell. Ionics 16, 403–408 (2010). https://doi.org/10.1007/s11581-009-0416-3
J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016). https://doi.org/10.1038/natrevmats.2016.18
L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55, 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. U.S.A. 114, 6197–6202 (2017). https://doi.org/10.1073/pnas.1703937114
J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8, 4362–4367 (2017). https://doi.org/10.1021/acs.jpclett.7b01879
L. Droguet, A. Grimaud, O. Fontaine, J.-M. Tarascon, Water-in-salt electrolyte (WiSE) for aqueous batteries: a long way to practicality. Adv. Energy Mater. 10, 2002440 (2020). https://doi.org/10.1002/aenm.202002440
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0