Revealing the Role of Hydrogen in Highly Efficient Ag-Substituted CZTSSe Photovoltaic Devices: Photoelectric Properties Modulation and Defect Passivation
Corresponding Author: Sixin Wu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 84
Abstract
The presence of SnZn-related defects in Cu2ZnSn(S,Se)4 (CZTSSe) absorber results in large irreversible energy loss and extra irreversible electron–hole non-radiative recombination, thus hindering the efficiency enhancement of CZTSSe devices. Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance, an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution. Herein, this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices. In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution. Importantly, the C=O and O–H functional groups induced by hydrogen incorporation, serving as an electron donor, can interact with under-coordinated cations in CZTSSe material, effectively passivating the SnZn-related defects. Consequently, the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination, prolongs minority carrier lifetime, and thus yields a champion efficiency of 14.74%, showing its promising application in kesterite-based CZTSSe devices.
Highlights:
1 The Ag/H co-doping strategy has been proposed to promote the performance of Cu2ZnSn(S,Se)4 (CZTSSe) devices.
2 The incorporation of H in Ag-based CZTSSe photovoltaic absorber is expected to improve the poor electrical conductivity and the low carrier density caused by Ag substitution.
3 Benefiting from the synergism of the excellent defect passivation effect and photoelectric properties complementary effect enabled by Ag/H co-doping, a champion device with 14.74% efficiency is achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhou, X. Xu, H. Wu, J. Wang, L. Lou et al., Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy 8, 526–535 (2023). https://doi.org/10.1038/s41560-023-01251-6
- Y. Zhou, C. Xiang, Q. Dai, S. Xiang, R. Li et al., 11.4% efficiency kesterite solar cells on transparent electrode. Adv. Energy Mater. 13, 2370079 (2023). https://doi.org/10.1002/aenm.202370079
- J. Shen, D. Zhang, J. Li, X. Li, Z. Sun et al., Fabrication and evaluation of low-cost Cu2ZnSn(S,Se)4 counter electrodes for dye-sensitized solar cells. Nano-Micro Lett. 5, 281–288 (2013). https://doi.org/10.1007/BF03353759
- A. Wang, J. Huang, J. Cong, X. Yuan, M. He et al., Cd-free pure sulfide kesterite Cu2ZnSnS4 solar cell with over 800 mV open-circuit voltage enabled by phase evolution intervention. Adv. Mater. 36, 2307733 (2024). https://doi.org/10.1002/adma.202307733
- Y. Sun, P. Qiu, W. Yu, J. Li, H. Guo et al., N-type surface design for p-type CZTSSe thin film to attain high efficiency. Adv. Mater. 33, e2104330 (2021). https://doi.org/10.1002/adma.202104330
- W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32, 425–441 (2024). https://doi.org/10.1002/pip.3831
- J. Keller, K. Kiselman, O. Donzel-Gargand, N.M. Martin, M. Babucci et al., High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9, 467–478 (2024). https://doi.org/10.1038/s41560-024-01472-3
- H. Lin, M. Yang, X. Ru, G. Wang, S. Yin et al., Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023). https://doi.org/10.1038/s41560-023-01255-2
- S. Lie, J.M. Rui Tan, W. Li, S.W. Leow, Y.F. Tay et al., Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution. J. Mater. Chem. A 6, 1540–1550 (2018). https://doi.org/10.1039/C7TA09668B
- D.-H. Son, D.-H. Jeon, D.-H. Kim, J.-K. Kang, S.-J. Sung et al., Identifying the relationships between subsurface absorber defects and the characteristics of kesterite solar cells. Carbon Energy 5, e336 (2023). https://doi.org/10.1002/cey2.336
- Y. Du, S. Wang, Q. Tian, Y. Zhao, X. Chang et al., Defect engineering in earth-abundant Cu2ZnSn(S, Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells. Adv. Funct. Mater. 31, 2010325 (2021). https://doi.org/10.1002/adfm.202010325
- J. Li, Z.-K. Yuan, S. Chen, X.-G. Gong, S.-H. Wei, Effective and noneffective recombination center defects in Cu2ZnSnS4: significant difference in carrier capture cross sections. Chem. Mater. 31, 826–833 (2019). https://doi.org/10.1021/acs.chemmater.8b03933
- Y. Li, C. Cui, H. Wei, Z. Shao, Z. Wu et al., Suppressing element inhomogeneity enables 14.9% efficiency CZTSSe solar cells. Adv. Mater. 36, e2400138 (2024). https://doi.org/10.1002/adma.202400138
- X. Chen, Y. Zhao, N. Ahmad, J. Zhao, Z. Zheng et al., Achieving high open-circuit voltage in efficient kesterite solar cells via lanthanide europium ion induced carrier lifetime enhancement. Nano Energy 124, 109448 (2024). https://doi.org/10.1016/j.nanoen.2024.109448
- N. Ahmad, Y. Zhao, F. Ye, J. Zhao, S. Chen et al., Cadmium-free kesterite thin-film solar cells with high efficiency approaching 12%. Adv. Sci. 10, e2302869 (2023). https://doi.org/10.1002/advs.202302869
- Y. Qi, N. Wei, Y. Li, D. Kou, W. Zhou et al., Passivating SnZn defect and optimizing energy level alignment via organic silicon salt incorporation toward efficient solution-processed CZTSSe solar cells. Adv. Funct. Mater. 34, 2308333 (2024). https://doi.org/10.1002/adfm.202308333
- C. Xu, Q. Li, Q. Song, Y. Zhao, X. Hu et al., Analyzing the synergistic effect of Ag and Ge co-incorporation on Cu2ZnSnSe4 thin-film solar cells. Mater. Today Energy 40, 101518 (2024). https://doi.org/10.1016/j.mtener.2024.101518
- K. Zhao, H. Xiang, R. Zhu, C. Liu, Y. Jia, Passivation principle of deep-level defects: a study of SnZn defects in kesterites for high-efficient solar cells. J. Mater. Chem. A 10, 2849–2855 (2022). https://doi.org/10.1039/D1TA10042D
- J. Park, J. Huang, J. Yun, F. Liu, Z. Ouyang et al., The role of hydrogen from ALD-Al2O3 in kesterite Cu2ZnSnS4 solar cells: grain surface passivation. Adv. Energy Mater. 8, 1701940 (2018). https://doi.org/10.1002/aenm.201701940
- J. Li, Y. Huang, J. Huang, G. Liang, Y. Zhang et al., Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment. Adv. Mater. 32, 2005268 (2020). https://doi.org/10.1002/adma.202005268
- E. Chagarov, K. Sardashti, A.C. Kummel, Y.S. Lee, R. Haight et al., Ag2ZnSn(S,Se)4: a highly promising absorber for thin film photovoltaics. J. Chem. Phys. 144, 104704 (2016). https://doi.org/10.1063/1.4943270
- R.M. Patil, G.H. Chandra, Y.P. Venkata Subbaiah, P. Prathap, M. Gupta, Growth of AZTSe thin films by rapid thermal processing and numerical simulation of p-CZTSe/n-AZTSe thin film heterojunction. Appl. Phys. A 127, 284 (2021). https://doi.org/10.1007/s00339-021-04441-9
- Z.-K. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh et al., Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu- and Ag-based kesterite compounds. Adv. Funct. Mater. 25, 6733–6743 (2015). https://doi.org/10.1002/adfm.201502272
- D. Shin, B. Saparov, D.B. Mitzi, Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 7, 1602366 (2017). https://doi.org/10.1002/aenm.201602366
- M. Kangsabanik, R.N. Gayen, A comprehensive review on the recent strategy of cation substitution in CZTS(Se) thin films to achieve highly efficient kesterite solar cells. Sol. RRL 7, 2300670 (2023). https://doi.org/10.1002/solr.202300670
- T. Gershon, K. Sardashti, O. Gunawan, R. Mankad, S. Singh et al., Photovoltaic device with over 5% efficiency based on an n-type Ag2ZnSnSe4 absorber. Adv. Energy Mater. 6, 1601182 (2016). https://doi.org/10.1002/aenm.201601182
- Z. Zhang, L. Zhao, H. Du, J. Chu, Improved NO2 gas-sensing performance of PPy by hydrogen plasma treatment: experimental study and DFT verification. Sens. Actuat. A Phys. 364, 114848 (2023). https://doi.org/10.1016/j.sna.2023.114848
- A. Jimenez-Arguijo, A. Navarro Güell, Y. Sanchez, C. Malerba, M. Valentini et al., Small atom doping: a synergistic strategy to reduce SnZn recombination center concentration in Cu2ZnSnSe4. Sol. RRL 6, 2270114 (2022). https://doi.org/10.1002/solr.202270114
- J.B. Varley, V. Lordi, T. Ogitsu, A. Deangelis, K. Horsley et al., Assessing the role of hydrogen in Fermi-level pinning in chalcopyrite and kesterite solar absorbers from first-principles calculations. J. Appl. Phys. 123, 161408 (2018). https://doi.org/10.1063/1.5006272
- K. Pal, P. Singh, A. Bhaduri, K.B. Thapa, Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: a review. Sol. Energy Mater. Sol. Cells 196, 138–156 (2019). https://doi.org/10.1016/j.solmat.2019.03.001
- S. Kim, J.A. Márquez, T. Unold, A. Walsh, Upper limit to the photovoltaic efficiency of imperfect crystals from first principles. Energy Environ. Sci. 13, 1481–1491 (2020). https://doi.org/10.1039/D0EE00291G
- L. Cao, L. Wang, Z. Zhou, T. Zhou, R. Li et al., Modifying surface termination by bidentate chelating strategy enables 13.77% efficient kesterite solar cells. Adv. Mater. 36, e2311918 (2024). https://doi.org/10.1002/adma.202311918
- X. Zhao, Y. Qi, Z. Zhou, D. Kou, W. Zhou et al., Regulating charge carrier recombination in Cu2ZnSn(S,Se)4 solar cells via cesium treatment: bulk and interface effects. J. Mater. Chem. A 11, 11454–11462 (2023). https://doi.org/10.1039/D3TA01708G
- Y. Qi, X. Zhao, Y. Liu, D. Kou, W. Zhou et al., Synergistic effect of Mn on bandgap fluctuations and surface electrical characteristics in Ag-based Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. A 9, 2292–2300 (2021). https://doi.org/10.1039/D0TA10103F
- L. Cao, Z. Zhou, W. Zhou, D. Kou, Y. Meng et al., Passivating grain boundaries via graphene additive for efficient kesterite solar cells. Small 20, e2304866 (2024). https://doi.org/10.1002/smll.202304866
- R.H. Ellerbrock, H.H. Gerke, FTIR spectral band shifts explained by OM–cation interactions. J. Plant Nutr. Soil Sci. 184, 388–397 (2021). https://doi.org/10.1002/jpln.202100056
- A. Vasilev, M. Efimov, G. Bondarenko, V. Kozlov, E. Dzidziguri et al., Thermal behavior of chitosan as a carbon material precursor under IR radiation. IOP Conf. Ser.: Mater. Sci. Eng. 693, 012002 (2019). https://doi.org/10.1088/1757-899x/693/1/012002
- Y. Qi, Y. Liu, D. Kou, W. Zhou, Z. Zhou et al., Enhancing grain growth for efficient solution-processed (Cu, Ag)2ZnSn(S, Se) solar cells based on acetate precursor. ACS Appl. Mater. Interfaces 12, 14213–14223 (2020). https://doi.org/10.1021/acsami.0c02629
- T. Sun, J. Pan, W. Zhang, X. Jiang, M. Cheng et al., Intramolecular hydrogen bond improved durability and kinetics for zinc-organic batteries. Nano-Micro Lett. 16, 46 (2023). https://doi.org/10.1007/s40820-023-01263-7
- K. Zhang, X. Xia, S. Deng, Y. Zhong, D. Xie et al., Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction. Nano-Micro Lett. 11, 21 (2019). https://doi.org/10.1007/s40820-019-0253-5
- A. Soman, A. Antony, A critical study on different hydrogen plasma treatment methods of a-Si: H/c-Si interface for enhanced defect passivation. Appl. Surf. Sci. 553, 149551 (2021). https://doi.org/10.1016/j.apsusc.2021.149551
- X.-Y. Chen, M. Ishaq, N. Ahmad, R. Tang, Z.-H. Zheng et al., Ag, Ti dual-cation substitution in Cu2ZnSn(S,Se)4 induced growth promotion and defect suppression for high-efficiency solar cells. J. Mater. Chem. A 10, 22791–22802 (2022). https://doi.org/10.1039/D2TA05909F
- P. Stolz, G. Pensl, D. Grünebaum, N. Stolwijk, Hydrogen passivation and thermal reactivation of zinc double acceptors in silicon. Mater. Sci. Eng. B 4, 31–34 (1989). https://doi.org/10.1016/0921-5107(89)90211-0
- K.-H. Lim, K. Kim, S. Kim, S.Y. Park, H. Kim et al., UV–visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors. Adv. Mater. 25, 2994–3000 (2013). https://doi.org/10.1002/adma.201204236
- Y.-Y. Kim, J.-S. Hwang, J.-K. Kim, S. Kumar Vishwanath, J. Kim et al., Electrical and optical properties of hydrogen plasma treated molybdenum-doped indium oxide films synthesized by polymer-assisted deposition method. Ceram. Int. 43, S506–S510 (2017). https://doi.org/10.1016/j.ceramint.2017.05.256
- M. Choi, Hydrogen passivation of oxygen vacancies in LaAlO3. Curr. Appl. Phys. 39, 154–157 (2022). https://doi.org/10.1016/j.cap.2022.04.019
- C. Ge, Z. Liu, Y. Zhu, Y. Zhou, B. Jiang et al., Insight into the high mobility and stability of In2O3: H film. Small 20, e2304721 (2024). https://doi.org/10.1002/smll.202304721
- J. Li, H. Wang, M. Luo, J. Tang, C. Chen et al., 10% Efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width. Sol. Energy Mater. Sol. Cells 149, 242–249 (2016). https://doi.org/10.1016/j.solmat.2016.02.002
- J.C. Li, D. Li, X.Y. Qin, J. Zhang, Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scr. Mater. 126, 6–10 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.009
- C. Ma, H. Guo, K. Zhang, N. Yuan, J. Ding, Fabrication of p-type kesterite Ag2ZnSnS4 thin films with a high hole mobility. Mater. Lett. 186, 390–393 (2017). https://doi.org/10.1016/j.matlet.2016.10.013
- Y. Jiang, B. Yao, Y. Li, Z. Ding, H. Luan et al., Structure, optical and electrical properties of (Cu1-xAgx)2ZnSn(S, Se)4 alloy thin films for photovoltaic application. Mater. Sci. Semicond. Process. 81, 54–59 (2018). https://doi.org/10.1016/j.mssp.2018.03.014
- T. Zhou, J. Huang, S. Qian, X. Wang, G. Yang et al., Further boosting solar cell performance via bandgap-graded Ag doping in Cu2ZnSn(S,Se)4 solar cells compared to uniform Ag doping. ACS Appl. Mater. Interfaces 15, 1073–1084 (2023). https://doi.org/10.1021/acsami.2c18082
- Y. Ji, X. Zhao, Y. Pan, Z. Su, J. Lin et al., CuSCN modified back contacts for high performance CZTSSe solar cells. Adv. Funct. Mater. 33, 2211421 (2023). https://doi.org/10.1002/adfm.202211421
- H. Rottke, K.H. Welge, Photoionization of the hydrogen atom near the ionization limit in strong electric fields. Phys. Rev. A Gen. Phys. 33, 301–311 (1986). https://doi.org/10.1103/physreva.33.301
- X. Zhao, Y. Pan, C. Zuo, F. Zhang, Z. Huang et al., Ambient air-processed Cu2ZnSn(S,Se)4 solar cells with over 12% efficiency. Sci. Bull. 66, 880–883 (2021). https://doi.org/10.1016/j.scib.2020.12.030
- T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh et al., Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1–x)2ZnSnSe4. Adv. Energy Mater. 6, 1502468 (2016). https://doi.org/10.1002/aenm.201502468
- Y. Zhao, S. Chen, M. Ishaq, M. Cathelinaud, C. Yan et al., Controllable double gradient bandgap strategy enables high efficiency solution-processed kesterite solar cells. Adv. Funct. Mater. 34, 2311992 (2024). https://doi.org/10.1002/adfm.202311992
- S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013). https://doi.org/10.1002/adma.201203146
- X. Yuan, J. Li, K. Sun, J. Huang, X. Cui et al., Improved carrier collection efficiency in CZTS solar cells by Li-enhanced liquid-phase-assisted grain growth. EcoEnergy 2, 181–191 (2024). https://doi.org/10.1002/ece2.31
References
J. Zhou, X. Xu, H. Wu, J. Wang, L. Lou et al., Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy 8, 526–535 (2023). https://doi.org/10.1038/s41560-023-01251-6
Y. Zhou, C. Xiang, Q. Dai, S. Xiang, R. Li et al., 11.4% efficiency kesterite solar cells on transparent electrode. Adv. Energy Mater. 13, 2370079 (2023). https://doi.org/10.1002/aenm.202370079
J. Shen, D. Zhang, J. Li, X. Li, Z. Sun et al., Fabrication and evaluation of low-cost Cu2ZnSn(S,Se)4 counter electrodes for dye-sensitized solar cells. Nano-Micro Lett. 5, 281–288 (2013). https://doi.org/10.1007/BF03353759
A. Wang, J. Huang, J. Cong, X. Yuan, M. He et al., Cd-free pure sulfide kesterite Cu2ZnSnS4 solar cell with over 800 mV open-circuit voltage enabled by phase evolution intervention. Adv. Mater. 36, 2307733 (2024). https://doi.org/10.1002/adma.202307733
Y. Sun, P. Qiu, W. Yu, J. Li, H. Guo et al., N-type surface design for p-type CZTSSe thin film to attain high efficiency. Adv. Mater. 33, e2104330 (2021). https://doi.org/10.1002/adma.202104330
W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32, 425–441 (2024). https://doi.org/10.1002/pip.3831
J. Keller, K. Kiselman, O. Donzel-Gargand, N.M. Martin, M. Babucci et al., High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9, 467–478 (2024). https://doi.org/10.1038/s41560-024-01472-3
H. Lin, M. Yang, X. Ru, G. Wang, S. Yin et al., Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023). https://doi.org/10.1038/s41560-023-01255-2
S. Lie, J.M. Rui Tan, W. Li, S.W. Leow, Y.F. Tay et al., Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution. J. Mater. Chem. A 6, 1540–1550 (2018). https://doi.org/10.1039/C7TA09668B
D.-H. Son, D.-H. Jeon, D.-H. Kim, J.-K. Kang, S.-J. Sung et al., Identifying the relationships between subsurface absorber defects and the characteristics of kesterite solar cells. Carbon Energy 5, e336 (2023). https://doi.org/10.1002/cey2.336
Y. Du, S. Wang, Q. Tian, Y. Zhao, X. Chang et al., Defect engineering in earth-abundant Cu2ZnSn(S, Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells. Adv. Funct. Mater. 31, 2010325 (2021). https://doi.org/10.1002/adfm.202010325
J. Li, Z.-K. Yuan, S. Chen, X.-G. Gong, S.-H. Wei, Effective and noneffective recombination center defects in Cu2ZnSnS4: significant difference in carrier capture cross sections. Chem. Mater. 31, 826–833 (2019). https://doi.org/10.1021/acs.chemmater.8b03933
Y. Li, C. Cui, H. Wei, Z. Shao, Z. Wu et al., Suppressing element inhomogeneity enables 14.9% efficiency CZTSSe solar cells. Adv. Mater. 36, e2400138 (2024). https://doi.org/10.1002/adma.202400138
X. Chen, Y. Zhao, N. Ahmad, J. Zhao, Z. Zheng et al., Achieving high open-circuit voltage in efficient kesterite solar cells via lanthanide europium ion induced carrier lifetime enhancement. Nano Energy 124, 109448 (2024). https://doi.org/10.1016/j.nanoen.2024.109448
N. Ahmad, Y. Zhao, F. Ye, J. Zhao, S. Chen et al., Cadmium-free kesterite thin-film solar cells with high efficiency approaching 12%. Adv. Sci. 10, e2302869 (2023). https://doi.org/10.1002/advs.202302869
Y. Qi, N. Wei, Y. Li, D. Kou, W. Zhou et al., Passivating SnZn defect and optimizing energy level alignment via organic silicon salt incorporation toward efficient solution-processed CZTSSe solar cells. Adv. Funct. Mater. 34, 2308333 (2024). https://doi.org/10.1002/adfm.202308333
C. Xu, Q. Li, Q. Song, Y. Zhao, X. Hu et al., Analyzing the synergistic effect of Ag and Ge co-incorporation on Cu2ZnSnSe4 thin-film solar cells. Mater. Today Energy 40, 101518 (2024). https://doi.org/10.1016/j.mtener.2024.101518
K. Zhao, H. Xiang, R. Zhu, C. Liu, Y. Jia, Passivation principle of deep-level defects: a study of SnZn defects in kesterites for high-efficient solar cells. J. Mater. Chem. A 10, 2849–2855 (2022). https://doi.org/10.1039/D1TA10042D
J. Park, J. Huang, J. Yun, F. Liu, Z. Ouyang et al., The role of hydrogen from ALD-Al2O3 in kesterite Cu2ZnSnS4 solar cells: grain surface passivation. Adv. Energy Mater. 8, 1701940 (2018). https://doi.org/10.1002/aenm.201701940
J. Li, Y. Huang, J. Huang, G. Liang, Y. Zhang et al., Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment. Adv. Mater. 32, 2005268 (2020). https://doi.org/10.1002/adma.202005268
E. Chagarov, K. Sardashti, A.C. Kummel, Y.S. Lee, R. Haight et al., Ag2ZnSn(S,Se)4: a highly promising absorber for thin film photovoltaics. J. Chem. Phys. 144, 104704 (2016). https://doi.org/10.1063/1.4943270
R.M. Patil, G.H. Chandra, Y.P. Venkata Subbaiah, P. Prathap, M. Gupta, Growth of AZTSe thin films by rapid thermal processing and numerical simulation of p-CZTSe/n-AZTSe thin film heterojunction. Appl. Phys. A 127, 284 (2021). https://doi.org/10.1007/s00339-021-04441-9
Z.-K. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh et al., Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu- and Ag-based kesterite compounds. Adv. Funct. Mater. 25, 6733–6743 (2015). https://doi.org/10.1002/adfm.201502272
D. Shin, B. Saparov, D.B. Mitzi, Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 7, 1602366 (2017). https://doi.org/10.1002/aenm.201602366
M. Kangsabanik, R.N. Gayen, A comprehensive review on the recent strategy of cation substitution in CZTS(Se) thin films to achieve highly efficient kesterite solar cells. Sol. RRL 7, 2300670 (2023). https://doi.org/10.1002/solr.202300670
T. Gershon, K. Sardashti, O. Gunawan, R. Mankad, S. Singh et al., Photovoltaic device with over 5% efficiency based on an n-type Ag2ZnSnSe4 absorber. Adv. Energy Mater. 6, 1601182 (2016). https://doi.org/10.1002/aenm.201601182
Z. Zhang, L. Zhao, H. Du, J. Chu, Improved NO2 gas-sensing performance of PPy by hydrogen plasma treatment: experimental study and DFT verification. Sens. Actuat. A Phys. 364, 114848 (2023). https://doi.org/10.1016/j.sna.2023.114848
A. Jimenez-Arguijo, A. Navarro Güell, Y. Sanchez, C. Malerba, M. Valentini et al., Small atom doping: a synergistic strategy to reduce SnZn recombination center concentration in Cu2ZnSnSe4. Sol. RRL 6, 2270114 (2022). https://doi.org/10.1002/solr.202270114
J.B. Varley, V. Lordi, T. Ogitsu, A. Deangelis, K. Horsley et al., Assessing the role of hydrogen in Fermi-level pinning in chalcopyrite and kesterite solar absorbers from first-principles calculations. J. Appl. Phys. 123, 161408 (2018). https://doi.org/10.1063/1.5006272
K. Pal, P. Singh, A. Bhaduri, K.B. Thapa, Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: a review. Sol. Energy Mater. Sol. Cells 196, 138–156 (2019). https://doi.org/10.1016/j.solmat.2019.03.001
S. Kim, J.A. Márquez, T. Unold, A. Walsh, Upper limit to the photovoltaic efficiency of imperfect crystals from first principles. Energy Environ. Sci. 13, 1481–1491 (2020). https://doi.org/10.1039/D0EE00291G
L. Cao, L. Wang, Z. Zhou, T. Zhou, R. Li et al., Modifying surface termination by bidentate chelating strategy enables 13.77% efficient kesterite solar cells. Adv. Mater. 36, e2311918 (2024). https://doi.org/10.1002/adma.202311918
X. Zhao, Y. Qi, Z. Zhou, D. Kou, W. Zhou et al., Regulating charge carrier recombination in Cu2ZnSn(S,Se)4 solar cells via cesium treatment: bulk and interface effects. J. Mater. Chem. A 11, 11454–11462 (2023). https://doi.org/10.1039/D3TA01708G
Y. Qi, X. Zhao, Y. Liu, D. Kou, W. Zhou et al., Synergistic effect of Mn on bandgap fluctuations and surface electrical characteristics in Ag-based Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. A 9, 2292–2300 (2021). https://doi.org/10.1039/D0TA10103F
L. Cao, Z. Zhou, W. Zhou, D. Kou, Y. Meng et al., Passivating grain boundaries via graphene additive for efficient kesterite solar cells. Small 20, e2304866 (2024). https://doi.org/10.1002/smll.202304866
R.H. Ellerbrock, H.H. Gerke, FTIR spectral band shifts explained by OM–cation interactions. J. Plant Nutr. Soil Sci. 184, 388–397 (2021). https://doi.org/10.1002/jpln.202100056
A. Vasilev, M. Efimov, G. Bondarenko, V. Kozlov, E. Dzidziguri et al., Thermal behavior of chitosan as a carbon material precursor under IR radiation. IOP Conf. Ser.: Mater. Sci. Eng. 693, 012002 (2019). https://doi.org/10.1088/1757-899x/693/1/012002
Y. Qi, Y. Liu, D. Kou, W. Zhou, Z. Zhou et al., Enhancing grain growth for efficient solution-processed (Cu, Ag)2ZnSn(S, Se) solar cells based on acetate precursor. ACS Appl. Mater. Interfaces 12, 14213–14223 (2020). https://doi.org/10.1021/acsami.0c02629
T. Sun, J. Pan, W. Zhang, X. Jiang, M. Cheng et al., Intramolecular hydrogen bond improved durability and kinetics for zinc-organic batteries. Nano-Micro Lett. 16, 46 (2023). https://doi.org/10.1007/s40820-023-01263-7
K. Zhang, X. Xia, S. Deng, Y. Zhong, D. Xie et al., Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction. Nano-Micro Lett. 11, 21 (2019). https://doi.org/10.1007/s40820-019-0253-5
A. Soman, A. Antony, A critical study on different hydrogen plasma treatment methods of a-Si: H/c-Si interface for enhanced defect passivation. Appl. Surf. Sci. 553, 149551 (2021). https://doi.org/10.1016/j.apsusc.2021.149551
X.-Y. Chen, M. Ishaq, N. Ahmad, R. Tang, Z.-H. Zheng et al., Ag, Ti dual-cation substitution in Cu2ZnSn(S,Se)4 induced growth promotion and defect suppression for high-efficiency solar cells. J. Mater. Chem. A 10, 22791–22802 (2022). https://doi.org/10.1039/D2TA05909F
P. Stolz, G. Pensl, D. Grünebaum, N. Stolwijk, Hydrogen passivation and thermal reactivation of zinc double acceptors in silicon. Mater. Sci. Eng. B 4, 31–34 (1989). https://doi.org/10.1016/0921-5107(89)90211-0
K.-H. Lim, K. Kim, S. Kim, S.Y. Park, H. Kim et al., UV–visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors. Adv. Mater. 25, 2994–3000 (2013). https://doi.org/10.1002/adma.201204236
Y.-Y. Kim, J.-S. Hwang, J.-K. Kim, S. Kumar Vishwanath, J. Kim et al., Electrical and optical properties of hydrogen plasma treated molybdenum-doped indium oxide films synthesized by polymer-assisted deposition method. Ceram. Int. 43, S506–S510 (2017). https://doi.org/10.1016/j.ceramint.2017.05.256
M. Choi, Hydrogen passivation of oxygen vacancies in LaAlO3. Curr. Appl. Phys. 39, 154–157 (2022). https://doi.org/10.1016/j.cap.2022.04.019
C. Ge, Z. Liu, Y. Zhu, Y. Zhou, B. Jiang et al., Insight into the high mobility and stability of In2O3: H film. Small 20, e2304721 (2024). https://doi.org/10.1002/smll.202304721
J. Li, H. Wang, M. Luo, J. Tang, C. Chen et al., 10% Efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width. Sol. Energy Mater. Sol. Cells 149, 242–249 (2016). https://doi.org/10.1016/j.solmat.2016.02.002
J.C. Li, D. Li, X.Y. Qin, J. Zhang, Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scr. Mater. 126, 6–10 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.009
C. Ma, H. Guo, K. Zhang, N. Yuan, J. Ding, Fabrication of p-type kesterite Ag2ZnSnS4 thin films with a high hole mobility. Mater. Lett. 186, 390–393 (2017). https://doi.org/10.1016/j.matlet.2016.10.013
Y. Jiang, B. Yao, Y. Li, Z. Ding, H. Luan et al., Structure, optical and electrical properties of (Cu1-xAgx)2ZnSn(S, Se)4 alloy thin films for photovoltaic application. Mater. Sci. Semicond. Process. 81, 54–59 (2018). https://doi.org/10.1016/j.mssp.2018.03.014
T. Zhou, J. Huang, S. Qian, X. Wang, G. Yang et al., Further boosting solar cell performance via bandgap-graded Ag doping in Cu2ZnSn(S,Se)4 solar cells compared to uniform Ag doping. ACS Appl. Mater. Interfaces 15, 1073–1084 (2023). https://doi.org/10.1021/acsami.2c18082
Y. Ji, X. Zhao, Y. Pan, Z. Su, J. Lin et al., CuSCN modified back contacts for high performance CZTSSe solar cells. Adv. Funct. Mater. 33, 2211421 (2023). https://doi.org/10.1002/adfm.202211421
H. Rottke, K.H. Welge, Photoionization of the hydrogen atom near the ionization limit in strong electric fields. Phys. Rev. A Gen. Phys. 33, 301–311 (1986). https://doi.org/10.1103/physreva.33.301
X. Zhao, Y. Pan, C. Zuo, F. Zhang, Z. Huang et al., Ambient air-processed Cu2ZnSn(S,Se)4 solar cells with over 12% efficiency. Sci. Bull. 66, 880–883 (2021). https://doi.org/10.1016/j.scib.2020.12.030
T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh et al., Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1–x)2ZnSnSe4. Adv. Energy Mater. 6, 1502468 (2016). https://doi.org/10.1002/aenm.201502468
Y. Zhao, S. Chen, M. Ishaq, M. Cathelinaud, C. Yan et al., Controllable double gradient bandgap strategy enables high efficiency solution-processed kesterite solar cells. Adv. Funct. Mater. 34, 2311992 (2024). https://doi.org/10.1002/adfm.202311992
S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013). https://doi.org/10.1002/adma.201203146
X. Yuan, J. Li, K. Sun, J. Huang, X. Cui et al., Improved carrier collection efficiency in CZTS solar cells by Li-enhanced liquid-phase-assisted grain growth. EcoEnergy 2, 181–191 (2024). https://doi.org/10.1002/ece2.31