Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes
Corresponding Author: Sang‑Young Lee
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 112
Abstract
Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter. The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent. This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density, thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes. Consequently, a homogeneous redox reaction is achieved throughout the electrodes. The resulting CEF-based cathode (overlithiated layered oxide (OLO) is chosen as a benchmark electrode active material) exhibits a high areal-mass-loading (50 mg cm–2, equivalent to an areal capacity of 12.5 mAh cm–2) and a high specific energy density (445.4 Wh kg–1) of a cell, which far exceeds those of previously reported OLO cathodes. This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders.
Highlights:
1 Cellulose elementary fibrils (CEFs), the most fundamental unit of cellulose, are proposed as a deagglomerated binder for high-mass-loading Li battery electrodes.
2 The CEFs, due to their increased surface area and anionic charge density, promote uniform dispersion with carbon additives and mitigate interfacial side reactions in electrodes.
3 The CEF-based overlithiated layered oxide cathode exhibits a high areal-mass-loading (50 mg cm–2) and a high specific energy density (445.4 Wh kg–1) of a cell.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- J. Lu, Z. Chen, Z. Ma, F. Pan, L.A. Curtiss et al., The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016). https://doi.org/10.1038/nnano.2016.207
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
- J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui et al., From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 33, e2101275 (2021). https://doi.org/10.1002/adma.202101275
- Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
- J. Kong, H. Yang, X. Guo, S. Yang, Z. Huang et al., High-mass-loading porous Ti3C2Tx films for ultrahigh-rate pseudocapacitors. ACS Energy Lett. 5, 2266–2274 (2020). https://doi.org/10.1021/acsenergylett.0c00704
- M. Singh, J. Kaiser, H. Hahn, A systematic study of thick electrodes for high energy lithiumionbatteries. J. Electroanal. Chem. 782, 245–249 (2016). https://doi.org/10.1016/j.jelechem.2016.10.040
- J. Li, N. Sharma, Z. Jiang, Y. Yang, F. Monaco et al., Dynamics of p network in composite battery cathodes. Science 376, 517–521 (2022). https://doi.org/10.1126/science.abm8962
- Z. Jiang, J. Li, Y. Yang, L. Mu, C. Wei et al., Machine-learning-revealed statistics of the p-carbon/binder detachment in lithium-ion battery cathodes. Nat. Commun. 11, 2310 (2020). https://doi.org/10.1038/s41467-020-16233-5
- X. Zhang, Z. Ju, Y. Zhu, K.J. Takeuchi, E.S. Takeuchi et al., Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 11, 2000808 (2021). https://doi.org/10.1002/aenm.202000808
- M. Zhu, J. Park, A.M. Sastry, P interaction and aggregation in cathode material of Li-ion batteries: a numerical study. J. Electrochem. Soc. 158, A1155 (2011). https://doi.org/10.1149/1.3625286
- Y. Shi, J. Zhang, A.M. Bruck, Y. Zhang, J. Li et al., A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries. Adv. Mater. 29, 1603922 (2017). https://doi.org/10.1002/adma.201603922
- A. Kraytsberg, Y. Ein-Eli, Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills. Adv. Energy Mater. 6, 1600655 (2016). https://doi.org/10.1002/aenm.201600655
- K. Ngamchuea, K. Tschulik, S. Eloul, R.G. Compton, In situ detection of p aggregation on electrode surfaces. ChemPhysChem 16, 2338–2347 (2015). https://doi.org/10.1002/cphc.201500168
- Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei et al., A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010). https://doi.org/10.1002/adma.201001029
- O.V. Kharissova, B.I. Kharisov, E.G. de Casas Ortiz, Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 3, 24812–24852 (2013). https://doi.org/10.1039/C3RA43852J
- Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4, 275–295 (2012). https://doi.org/10.3390/polym4010275
- J.-H. Ha, S.-E. Lee, S.-H. Park, Effect of dispersion by three-roll milling on electrical properties and filler length of carbon nanotube composites. Materials (Basel) 12, 3823 (2019). https://doi.org/10.3390/ma12233823
- L. Jiang, L. Gao, J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci. 260, 89–94 (2003). https://doi.org/10.1016/S0021-9797(02)00176-5
- M. Ganß, B.K. Satapathy, M. Thunga, R. Weidisch, P. Pötschke et al., Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. Acta Mater. 56, 2247–2261 (2008). https://doi.org/10.1016/j.actamat.2008.01.010
- R. Rastogi, R. Kaushal, S.K. Tripathi, A.L. Sharma, I. Kaur et al., Comparative study of carbon nanotube dispersion using surfactants. J. Colloid Interface Sci. 328, 421–428 (2008). https://doi.org/10.1016/j.jcis.2008.09.015
- J.-H. Kim, J.-M. Kim, S.-K. Cho, N.-Y. Kim, S.-Y. Lee, Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nat. Commun. 13, 2541 (2022). https://doi.org/10.1038/s41467-022-30112-1
- J.H. Kim, K.M. Lee, J.W. Kim, S.H. Kweon, H.S. Moon et al., Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes. Nat. Commun. 14, 5721 (2023). https://doi.org/10.1038/s41467-023-41513-1
- J.-H. Lee, S.-B. Wee, M.-S. Kwon, H.-H. Kim, J.-M. Choi et al., Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries. J. Power. Sour. 196, 6449–6455 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.041
- G. Liu, H. Zheng, X. Song, V.S. Battaglia, Ps and polymer binder interaction: a controlling factor in lithium-ion electrode performance. J. Electrochem. Soc. 159, A214–A221 (2012). https://doi.org/10.1149/2.024203jes
- H. Qi, J. Liu, S. Gao, E. Mäder, Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J. Mater. Chem. A 1, 2161–2168 (2013). https://doi.org/10.1039/C2TA00882C
- N.-Y. Kim, J. Moon, M.-H. Ryou, S.-H. Kim, J.-H. Kim et al., Amphiphilic bottlebrush polymeric binders for high-mass-loading cathodes in lithium-ion batteries. Adv. Energy Mater. 12, 2102109 (2022). https://doi.org/10.1002/aenm.202102109
- B. Chang, J. Kim, Y. Cho, I. Hwang, M.S. Jung et al., Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv. Energy Mater. 10, 2001069 (2020). https://doi.org/10.1002/aenm.202001069
- L. Rao, X. Jiao, C.-Y. Yu, A. Schmidt, C. O’Meara et al., Multifunctional composite binder for thick high-voltage cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 861–872 (2022). https://doi.org/10.1021/acsami.1c19554
- J.M. Kim, S.H. Kim, N.Y. Kim, M.H. Ryou, H. Bae et al., Nanofibrous conductive binders based on DNA-wrapped carbon nanotubes for lithium battery electrodes. iScience 23, 101739 (2020). https://doi.org/10.1016/j.isci.2020.101739
- T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
- D. Sawada, Y. Nishiyama, R. Shah, V.T. Forsyth, E. Mossou et al., Untangling the threads of cellulose mercerization. Nat. Commun. 13, 6189 (2022). https://doi.org/10.1038/s41467-022-33812-w
- H.C. Tai, C.H. Chang, W. Cai, J.H. Lin, S.J. Huang et al., Wood cellulose microfibrils have a 24-chain core-shell nanostructure in seed plants. Nat. Plants 9, 1154–1168 (2023). https://doi.org/10.1038/s41477-023-01430-z
- X. Shi, Z. Wang, S. Liu, Q. Xia, Y. Liu et al., Scalable production of carboxylated cellulose nanofibres using a green and recyclable solvent. Nat. Sustain. 7, 315–325 (2024). https://doi.org/10.1038/s41893-024-01267-0
- A. Hajian, S.B. Lindström, T. Pettersson, M.M. Hamedi, L. Wågberg, Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett. 17, 1439–1447 (2017). https://doi.org/10.1021/acs.nanolett.6b04405
- P.K. Nayak, E.M. Erickson, F. Schipper, T.R. Penki, N. Munichandraiah et al., Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018). https://doi.org/10.1002/aenm.201702397
- S.-L. Cui, M.-Y. Gao, G.-R. Li, X.-P. Gao, Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv. Energy Mater. 12, 2003885 (2022). https://doi.org/10.1002/aenm.202003885
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
- R. Zhang, Z. Hu, Y. Wang, H. Hu, F. Li et al., Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification. Nat. Commun. 14, 1100 (2023). https://doi.org/10.1038/s41467-023-36856-8
- A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/c0nr00583e
- B. Medronho, B. Lindman, Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interface Sci. 222, 502–508 (2015). https://doi.org/10.1016/j.cis.2014.05.004
- J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu et al., Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41, 9345–9351 (2008). https://doi.org/10.1021/ma801110g
- S. Cichosz, A. Masek, IR study on cellulose with the varied moisture contents: insight into the supramolecular structure. Materials (Basel) 13, 4573 (2020). https://doi.org/10.3390/ma13204573
- Y. Hishikawa, E. Togawa, T. Kondo, Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega 2, 1469–1476 (2017). https://doi.org/10.1021/acsomega.6b00364
- D. Miyashiro, R. Hamano, K. Umemura, A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials (Basel) 10, 186 (2020). https://doi.org/10.3390/nano10020186
- Y.-R. Kang, Y.-L. Li, F. Hou, Y.-Y. Wen, D. Su, Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4, 3248–3253 (2012). https://doi.org/10.1039/c2nr30318c
- A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund et al., Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes. Phys. Rev. Lett. 86, 3895–3898 (2001). https://doi.org/10.1103/PhysRevLett.86.3895
- X. Yan, T. Itoh, Y. Kitahama, T. Suzuki, H. Sato et al., A Raman spectroscopy study on single-wall carbon nanotube/polystyrene nanocomposites: mechanical compression transferred from the polymer to single-wall carbon nanotubes. J. Phys. Chem. C 116, 17897–17903 (2012). https://doi.org/10.1021/jp303509g
- D.-S. Ko, J.-H. Park, B.Y. Yu, D. Ahn, K. Kim et al., Degradation of high-nickel-layered oxide cathodes from surface to bulk: a comprehensive structural, chemical, and electrical analysis. Adv. Energy Mater. 10, 2001035 (2020). https://doi.org/10.1002/aenm.202001035
- N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119, 4612–4619 (2015). https://doi.org/10.1021/jp512564f
- Q. Li, D. Ning, D. Wong, K. An, Y. Tang et al., Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. Nat. Commun. 13, 1123 (2022). https://doi.org/10.1038/s41467-022-28793-9
- X. Zhu, T.U. Schülli, X. Yang, T. Lin, Y. Hu et al., Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat. Commun. 13, 1565 (2022). https://doi.org/10.1038/s41467-022-28963-9
- Y. Li, W. Chen, T. Lei, H. Xie, A. Hu et al., Reconstruction suppressed solid-electrolyte interphase by functionalized metal-organic framework. Energy Storage Mater. 59, 102765 (2023). https://doi.org/10.1016/j.ensm.2023.04.004
- Y. Fan, T. Wu, M. He, W. Chen, C. Yan et al., Achieving stable lithium metal anode at 50 mA cm−2 current density by LiCl enriched SEI. Small 19, e2301433 (2023). https://doi.org/10.1002/smll.202301433
- Y. Li, Y. Liu, L. Xue, W. Chen, T. Lei et al., Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. Nano Energy 92, 106708 (2022). https://doi.org/10.1016/j.nanoen.2021.106708
- C. Wang, L. Xing, J. Vatamanu, Z. Chen, G. Lan et al., Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nat. Commun. 10, 3423 (2019). https://doi.org/10.1038/s41467-019-11439-8
- J. Betz, J.-P. Brinkmann, R. Nölle, C. Lürenbaum, M. Kolek et al., Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9, 1900574 (2019). https://doi.org/10.1002/aenm.201900574
- A. Hu, W. Chen, F. Li, M. He, D. Chen et al., Nonflammable polyfluorides-anchored quasi-solid electrolytes for ultra-safe anode-free lithium pouch cells without thermal runaway. Adv. Mater. 35, e2304762 (2023). https://doi.org/10.1002/adma.202304762
- Y.-G. Cho, S.-H. Jung, S.H. Joo, Y. Jeon, M. Kim et al., A metal-ion-chelating organogel electrolyte for Le Chatelier depression of Mn3+ disproportionation of lithium manganese oxide spinel. J. Mater. Chem. A 6, 22483–22488 (2018). https://doi.org/10.1039/C8TA08560A
- J. Mun, J.-H. Park, W. Choi, A. Benayad, J.-H. Park et al., New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. J. Mater. Chem. A 2, 19670–19677 (2014). https://doi.org/10.1039/C4TA04818K
- H. Yang, Y. Wan, K. Sun, M. Zhang, C. Wang et al., Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater. 33, 2215076 (2023). https://doi.org/10.1002/adfm.202215076
- J.-M. Kim, J.A. Kim, S.-H. Kim, I.S. Uhm, S.J. Kang et al., All-nanomat lithium-ion batteries: a new cell architecture platform for ultrahigh energy density and mechanical flexibility. Adv. Energy Mater. 7, 1701099 (2017). https://doi.org/10.1002/aenm.201701099
- J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177–186 (2019). https://doi.org/10.1039/C8EE01879K
- S.-H. Kim, N.-Y. Kim, U.-J. Choe, J.-M. Kim, Y.-G. Lee et al., Ultrahigh-energy-density flexible lithium-metal full cells based on conductive fibrous skeletons. Adv. Energy Mater. 11, 2100531 (2021). https://doi.org/10.1002/aenm.202100531
- J.-M. Kim, C.-H. Park, Q. Wu, S.-Y. Lee, Cathodes: 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Adv. Energy Mater. 6, 1670008 (2016). https://doi.org/10.1002/aenm.201670008
- Y. Jiao, S. Wang, Y. Ma, M. Zhou, L. Zhang et al., Tailoring interfacial derivative for lithium–sulfur pouch cells with ultra-long cycling performance. Adv. Energy Mater. 13, 2301233 (2023). https://doi.org/10.1002/aenm.202301233
References
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
J. Lu, Z. Chen, Z. Ma, F. Pan, L.A. Curtiss et al., The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016). https://doi.org/10.1038/nnano.2016.207
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui et al., From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 33, e2101275 (2021). https://doi.org/10.1002/adma.202101275
Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
J. Kong, H. Yang, X. Guo, S. Yang, Z. Huang et al., High-mass-loading porous Ti3C2Tx films for ultrahigh-rate pseudocapacitors. ACS Energy Lett. 5, 2266–2274 (2020). https://doi.org/10.1021/acsenergylett.0c00704
M. Singh, J. Kaiser, H. Hahn, A systematic study of thick electrodes for high energy lithiumionbatteries. J. Electroanal. Chem. 782, 245–249 (2016). https://doi.org/10.1016/j.jelechem.2016.10.040
J. Li, N. Sharma, Z. Jiang, Y. Yang, F. Monaco et al., Dynamics of p network in composite battery cathodes. Science 376, 517–521 (2022). https://doi.org/10.1126/science.abm8962
Z. Jiang, J. Li, Y. Yang, L. Mu, C. Wei et al., Machine-learning-revealed statistics of the p-carbon/binder detachment in lithium-ion battery cathodes. Nat. Commun. 11, 2310 (2020). https://doi.org/10.1038/s41467-020-16233-5
X. Zhang, Z. Ju, Y. Zhu, K.J. Takeuchi, E.S. Takeuchi et al., Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 11, 2000808 (2021). https://doi.org/10.1002/aenm.202000808
M. Zhu, J. Park, A.M. Sastry, P interaction and aggregation in cathode material of Li-ion batteries: a numerical study. J. Electrochem. Soc. 158, A1155 (2011). https://doi.org/10.1149/1.3625286
Y. Shi, J. Zhang, A.M. Bruck, Y. Zhang, J. Li et al., A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries. Adv. Mater. 29, 1603922 (2017). https://doi.org/10.1002/adma.201603922
A. Kraytsberg, Y. Ein-Eli, Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills. Adv. Energy Mater. 6, 1600655 (2016). https://doi.org/10.1002/aenm.201600655
K. Ngamchuea, K. Tschulik, S. Eloul, R.G. Compton, In situ detection of p aggregation on electrode surfaces. ChemPhysChem 16, 2338–2347 (2015). https://doi.org/10.1002/cphc.201500168
Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei et al., A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010). https://doi.org/10.1002/adma.201001029
O.V. Kharissova, B.I. Kharisov, E.G. de Casas Ortiz, Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 3, 24812–24852 (2013). https://doi.org/10.1039/C3RA43852J
Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4, 275–295 (2012). https://doi.org/10.3390/polym4010275
J.-H. Ha, S.-E. Lee, S.-H. Park, Effect of dispersion by three-roll milling on electrical properties and filler length of carbon nanotube composites. Materials (Basel) 12, 3823 (2019). https://doi.org/10.3390/ma12233823
L. Jiang, L. Gao, J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci. 260, 89–94 (2003). https://doi.org/10.1016/S0021-9797(02)00176-5
M. Ganß, B.K. Satapathy, M. Thunga, R. Weidisch, P. Pötschke et al., Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. Acta Mater. 56, 2247–2261 (2008). https://doi.org/10.1016/j.actamat.2008.01.010
R. Rastogi, R. Kaushal, S.K. Tripathi, A.L. Sharma, I. Kaur et al., Comparative study of carbon nanotube dispersion using surfactants. J. Colloid Interface Sci. 328, 421–428 (2008). https://doi.org/10.1016/j.jcis.2008.09.015
J.-H. Kim, J.-M. Kim, S.-K. Cho, N.-Y. Kim, S.-Y. Lee, Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nat. Commun. 13, 2541 (2022). https://doi.org/10.1038/s41467-022-30112-1
J.H. Kim, K.M. Lee, J.W. Kim, S.H. Kweon, H.S. Moon et al., Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes. Nat. Commun. 14, 5721 (2023). https://doi.org/10.1038/s41467-023-41513-1
J.-H. Lee, S.-B. Wee, M.-S. Kwon, H.-H. Kim, J.-M. Choi et al., Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries. J. Power. Sour. 196, 6449–6455 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.041
G. Liu, H. Zheng, X. Song, V.S. Battaglia, Ps and polymer binder interaction: a controlling factor in lithium-ion electrode performance. J. Electrochem. Soc. 159, A214–A221 (2012). https://doi.org/10.1149/2.024203jes
H. Qi, J. Liu, S. Gao, E. Mäder, Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J. Mater. Chem. A 1, 2161–2168 (2013). https://doi.org/10.1039/C2TA00882C
N.-Y. Kim, J. Moon, M.-H. Ryou, S.-H. Kim, J.-H. Kim et al., Amphiphilic bottlebrush polymeric binders for high-mass-loading cathodes in lithium-ion batteries. Adv. Energy Mater. 12, 2102109 (2022). https://doi.org/10.1002/aenm.202102109
B. Chang, J. Kim, Y. Cho, I. Hwang, M.S. Jung et al., Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv. Energy Mater. 10, 2001069 (2020). https://doi.org/10.1002/aenm.202001069
L. Rao, X. Jiao, C.-Y. Yu, A. Schmidt, C. O’Meara et al., Multifunctional composite binder for thick high-voltage cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 861–872 (2022). https://doi.org/10.1021/acsami.1c19554
J.M. Kim, S.H. Kim, N.Y. Kim, M.H. Ryou, H. Bae et al., Nanofibrous conductive binders based on DNA-wrapped carbon nanotubes for lithium battery electrodes. iScience 23, 101739 (2020). https://doi.org/10.1016/j.isci.2020.101739
T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
D. Sawada, Y. Nishiyama, R. Shah, V.T. Forsyth, E. Mossou et al., Untangling the threads of cellulose mercerization. Nat. Commun. 13, 6189 (2022). https://doi.org/10.1038/s41467-022-33812-w
H.C. Tai, C.H. Chang, W. Cai, J.H. Lin, S.J. Huang et al., Wood cellulose microfibrils have a 24-chain core-shell nanostructure in seed plants. Nat. Plants 9, 1154–1168 (2023). https://doi.org/10.1038/s41477-023-01430-z
X. Shi, Z. Wang, S. Liu, Q. Xia, Y. Liu et al., Scalable production of carboxylated cellulose nanofibres using a green and recyclable solvent. Nat. Sustain. 7, 315–325 (2024). https://doi.org/10.1038/s41893-024-01267-0
A. Hajian, S.B. Lindström, T. Pettersson, M.M. Hamedi, L. Wågberg, Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett. 17, 1439–1447 (2017). https://doi.org/10.1021/acs.nanolett.6b04405
P.K. Nayak, E.M. Erickson, F. Schipper, T.R. Penki, N. Munichandraiah et al., Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018). https://doi.org/10.1002/aenm.201702397
S.-L. Cui, M.-Y. Gao, G.-R. Li, X.-P. Gao, Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv. Energy Mater. 12, 2003885 (2022). https://doi.org/10.1002/aenm.202003885
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
R. Zhang, Z. Hu, Y. Wang, H. Hu, F. Li et al., Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification. Nat. Commun. 14, 1100 (2023). https://doi.org/10.1038/s41467-023-36856-8
A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/c0nr00583e
B. Medronho, B. Lindman, Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interface Sci. 222, 502–508 (2015). https://doi.org/10.1016/j.cis.2014.05.004
J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu et al., Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41, 9345–9351 (2008). https://doi.org/10.1021/ma801110g
S. Cichosz, A. Masek, IR study on cellulose with the varied moisture contents: insight into the supramolecular structure. Materials (Basel) 13, 4573 (2020). https://doi.org/10.3390/ma13204573
Y. Hishikawa, E. Togawa, T. Kondo, Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega 2, 1469–1476 (2017). https://doi.org/10.1021/acsomega.6b00364
D. Miyashiro, R. Hamano, K. Umemura, A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials (Basel) 10, 186 (2020). https://doi.org/10.3390/nano10020186
Y.-R. Kang, Y.-L. Li, F. Hou, Y.-Y. Wen, D. Su, Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4, 3248–3253 (2012). https://doi.org/10.1039/c2nr30318c
A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund et al., Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes. Phys. Rev. Lett. 86, 3895–3898 (2001). https://doi.org/10.1103/PhysRevLett.86.3895
X. Yan, T. Itoh, Y. Kitahama, T. Suzuki, H. Sato et al., A Raman spectroscopy study on single-wall carbon nanotube/polystyrene nanocomposites: mechanical compression transferred from the polymer to single-wall carbon nanotubes. J. Phys. Chem. C 116, 17897–17903 (2012). https://doi.org/10.1021/jp303509g
D.-S. Ko, J.-H. Park, B.Y. Yu, D. Ahn, K. Kim et al., Degradation of high-nickel-layered oxide cathodes from surface to bulk: a comprehensive structural, chemical, and electrical analysis. Adv. Energy Mater. 10, 2001035 (2020). https://doi.org/10.1002/aenm.202001035
N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119, 4612–4619 (2015). https://doi.org/10.1021/jp512564f
Q. Li, D. Ning, D. Wong, K. An, Y. Tang et al., Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. Nat. Commun. 13, 1123 (2022). https://doi.org/10.1038/s41467-022-28793-9
X. Zhu, T.U. Schülli, X. Yang, T. Lin, Y. Hu et al., Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat. Commun. 13, 1565 (2022). https://doi.org/10.1038/s41467-022-28963-9
Y. Li, W. Chen, T. Lei, H. Xie, A. Hu et al., Reconstruction suppressed solid-electrolyte interphase by functionalized metal-organic framework. Energy Storage Mater. 59, 102765 (2023). https://doi.org/10.1016/j.ensm.2023.04.004
Y. Fan, T. Wu, M. He, W. Chen, C. Yan et al., Achieving stable lithium metal anode at 50 mA cm−2 current density by LiCl enriched SEI. Small 19, e2301433 (2023). https://doi.org/10.1002/smll.202301433
Y. Li, Y. Liu, L. Xue, W. Chen, T. Lei et al., Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. Nano Energy 92, 106708 (2022). https://doi.org/10.1016/j.nanoen.2021.106708
C. Wang, L. Xing, J. Vatamanu, Z. Chen, G. Lan et al., Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nat. Commun. 10, 3423 (2019). https://doi.org/10.1038/s41467-019-11439-8
J. Betz, J.-P. Brinkmann, R. Nölle, C. Lürenbaum, M. Kolek et al., Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9, 1900574 (2019). https://doi.org/10.1002/aenm.201900574
A. Hu, W. Chen, F. Li, M. He, D. Chen et al., Nonflammable polyfluorides-anchored quasi-solid electrolytes for ultra-safe anode-free lithium pouch cells without thermal runaway. Adv. Mater. 35, e2304762 (2023). https://doi.org/10.1002/adma.202304762
Y.-G. Cho, S.-H. Jung, S.H. Joo, Y. Jeon, M. Kim et al., A metal-ion-chelating organogel electrolyte for Le Chatelier depression of Mn3+ disproportionation of lithium manganese oxide spinel. J. Mater. Chem. A 6, 22483–22488 (2018). https://doi.org/10.1039/C8TA08560A
J. Mun, J.-H. Park, W. Choi, A. Benayad, J.-H. Park et al., New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. J. Mater. Chem. A 2, 19670–19677 (2014). https://doi.org/10.1039/C4TA04818K
H. Yang, Y. Wan, K. Sun, M. Zhang, C. Wang et al., Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater. 33, 2215076 (2023). https://doi.org/10.1002/adfm.202215076
J.-M. Kim, J.A. Kim, S.-H. Kim, I.S. Uhm, S.J. Kang et al., All-nanomat lithium-ion batteries: a new cell architecture platform for ultrahigh energy density and mechanical flexibility. Adv. Energy Mater. 7, 1701099 (2017). https://doi.org/10.1002/aenm.201701099
J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177–186 (2019). https://doi.org/10.1039/C8EE01879K
S.-H. Kim, N.-Y. Kim, U.-J. Choe, J.-M. Kim, Y.-G. Lee et al., Ultrahigh-energy-density flexible lithium-metal full cells based on conductive fibrous skeletons. Adv. Energy Mater. 11, 2100531 (2021). https://doi.org/10.1002/aenm.202100531
J.-M. Kim, C.-H. Park, Q. Wu, S.-Y. Lee, Cathodes: 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Adv. Energy Mater. 6, 1670008 (2016). https://doi.org/10.1002/aenm.201670008
Y. Jiao, S. Wang, Y. Ma, M. Zhou, L. Zhang et al., Tailoring interfacial derivative for lithium–sulfur pouch cells with ultra-long cycling performance. Adv. Energy Mater. 13, 2301233 (2023). https://doi.org/10.1002/aenm.202301233