Pulse-Charging Energy Storage for Triboelectric Nanogenerator Based on Frequency Modulation
Corresponding Author: Changshin Jo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 210
Abstract
Energy harvesting storage hybrid devices have garnered considerable attention as self-rechargeable power sources for wireless and ubiquitous electronics. Triboelectric nanogenerators (TENGs), a common type of energy harvester, generate alternating current-based, irregular short pulses, posing a challenge for storing the generated electrical energy in energy storage systems that typically operate with direct current (DC)-based low-frequency response. In this study, we propose a new strategy that leverages high-frequency response to develop efficient chargeable TENG–supercapacitor (SC) hybrid devices. A high-frequency SC was fabricated using hollow-structured MXene electrode materials, resulting in a twofold increase in the charging efficiency of the hybrid device compared to a control SC made with conventional carbon electrode materials. For a systematic understanding, the electrochemical interplay between the TENGs and SCs was investigated as a function of the frequency characteristics of SCs (fSC) and the output pulse duration of TENGs (ΔtTENG). Increasing the fSC·ΔtTENG enhanced the charging efficiency of the TENG–SC hybrid devices. This study highlights the importance of frequency response design in developing efficient chargeable TENG–SC hybrid devices.
Highlights:
1 A system-level strategy is presented to achieve high charging efficiency in triboelectric nanogenerator (TENG)-supercapacitor (SC) hybrid devices, with a focus on frequency response design.
2 This study reveals that the high-frequency characteristics of SCs and the prolonged output pulse duration of TENGs are critical for achieving high charging efficiency.
3 A three-dimensional hollow-structured MXene is synthesized as a high-frequency SC electrode material, demonstrating a twofold increase in charging efficiency compared to conventional SCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
- C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
- X. Cao, Y. Jie, N. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). https://doi.org/10.1002/aenm.201600665
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
- S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
- J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1, 480–521 (2017). https://doi.org/10.1016/j.joule.2017.09.004
- Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen et al., Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). https://doi.org/10.1038/ncomms10987
- J. Kim, D. Kang, H.K. Lee, J.H. Hwang, H.Y. Lee et al., Design principles to maximize non-bonding states for highly tribopositive behavior. Adv. Funct. Mater. 33(1), 2209648 (2023). https://doi.org/10.1002/adfm.202209648
- D.I. Jeong, D. Kang, B.K. Kang, U.Y. Lee, I.Y. Suh et al., Self-powered water splitting of Ni3FeN@Fe24N10 bifunctional catalyst improved catalytic activity and durability by forming Fe24N10 on catalyst surface via the kirkendall effect. Small 20(33), e2400374 (2024). https://doi.org/10.1002/smll.202400374
- D. Kang, J.-H. Hwang, Y.-J. Kim, P. Zhao, H.Y. Lee et al., Contact electrification controlled by material deformation-induced electronic structure changes. Mater. Today 72, 109–116 (2024). https://doi.org/10.1016/j.mattod.2023.12.007
- D. Kang, H.Y. Lee, J.-H. Hwang, S. Jeon, D. Kim et al., Deformation-contributed negative triboelectric property of polytetrafluoroethylene: a density functional theory calculation. Nano Energy 100, 107531 (2022). https://doi.org/10.1016/j.nanoen.2022.107531
- J.-H. Lee, J. Kim, T.Y. Kim, M.S.A. Hossain, S.-W. Kim, J.H. Kim, All-in-one energy harvesting and storage devices. J. Mater. Chem. A 4(21), 7983–7999 (2016). https://doi.org/10.1039/C6TA01229A
- J. Luo, Z.L. Wang, Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater. 23, 617–628 (2019). https://doi.org/10.1016/j.ensm.2019.03.009
- J. Wang, X. Li, Y. Zi, S. Wang, Z. Li et al., A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
- B. Li, M. Yu, Z. Li, C. Yu, H. Wang et al., Constructing flexible all-solid-state supercapacitors from 3D nanosheets active bricks via 3D manufacturing technology: a perspective review. Adv. Funct. Mater. 32(29), 2201166 (2022). https://doi.org/10.1002/adfm.202201166
- K. Zhao, Q. Qin, H. Wang, Y. Yang, J. Yan et al., Antibacterial triboelectric membrane-based highly-efficient self-charging supercapacitors. Nano Energy 36, 30–37 (2017). https://doi.org/10.1016/j.nanoen.2017.04.029
- B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17, 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
- P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
- Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). https://doi.org/10.1016/j.nanoen.2017.06.048
- H. Tang, Y. Tian, Z. Wu, Y. Zeng, Y. Wang et al., AC line filter electrochemical capacitors: materials, morphology, and configuration. Energy Environ. Mater. 5, 1060–1083 (2022). https://doi.org/10.1002/eem2.12285
- C. Fang, T. Tong, T. Bu, Y. Cao, S. Xu et al., Overview of power management for triboelectric nanogenerators. Adv. Intell. Syst. 2(2), 1900129 (2020). https://doi.org/10.1002/aisy.201900129
- Y. Song, H. Wang, X. Cheng, G. Li, X. Chen et al., High-efficiency self-charging smart bracelet for portable electronics. Nano Energy 55, 29–36 (2019). https://doi.org/10.1016/j.nanoen.2018.10.045
- H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28, 1805216 (2018). https://doi.org/10.1002/adfm.201805216
- Y. Song, N. Wang, Y. Wang, R. Zhang, H. Olin et al., Direct current triboelectric nanogenerators. Adv. Energy Mater. 10(45), 2002756 (2020). https://doi.org/10.1002/aenm.202002756
- X. Li, C. Zhang, Y. Gao, Z. Zhao, Y. Hu et al., A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 15(3), 1334–1345 (2022). https://doi.org/10.1039/d1ee03961j
- H. Ryu, J.H. Lee, U. Khan, S.S. Kwak, R. Hinchet et al., Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design. Energy Environ. Sci. 11(8), 2057–2063 (2018). https://doi.org/10.1039/C8EE00188J
- C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
- W. Liu, D. Zhang, H. Zhang, Y. Sun, Z. Wang et al., Ultrafast response humidity sensor based on titanium dioxide quantum dots/silica and its multifunctional applications. Chem. Eng. J. 495, 153551 (2024). https://doi.org/10.1016/j.cej.2024.153551
- H. Cai, D. Zhang, H. Zhang, M. Tang, Z. Xu et al., Trehalose-enhanced ionic conductive hydrogels with extreme stretchability, self-adhesive and anti-freezing abilities for both flexible strain sensor and all-solid-state supercapacitor. Chem. Eng. J. 472, 144849 (2023). https://doi.org/10.1016/j.cej.2023.144849
- H. Zhang, X. Zhang, C. Qiu, P. Jia, F. An et al., Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator. Chem. Eng. J. 496, 154226 (2024). https://doi.org/10.1016/j.cej.2024.154226
- H. Zhang, D. Zhang, Y. Yang, L. Zhou, Y. Liu et al., Eco-friendly triboelectric nanogenerator for self-powering stacked In2O3 nanosheets/PPy nanops-based NO2 gas sensor. Nano Energy 128, 109978 (2024). https://doi.org/10.1016/j.nanoen.2024.109978
- H. Zhang, D. Zhang, R. Mao, L. Zhou, C. Yang et al., MoS2-based charge trapping layer enabled triboelectric nanogenerator with assistance of CNN-GRU model for intelligent perception. Nano Energy 127, 109753 (2024). https://doi.org/10.1016/j.nanoen.2024.109753
- D. Zhang, L. Zhou, Y. Wu, C. Yang, H. Zhang, Triboelectric nanogenerator for self-powered gas sensing. Small 20(51), e2406964 (2024). https://doi.org/10.1002/smll.202406964
- Y. Zheng, W. Chen, Y. Sun, C. Huang, Z. Wang et al., High conductivity and stability of polystyrene/MXene composites with orientation-3D network binary structure. J. Colloid Interface Sci. 595, 151–158 (2021). https://doi.org/10.1016/j.jcis.2021.03.095
- M. Jinwoo Lee, C. Orilall, S.C. Warren, M. Kamperman, F.J. DiSalvo, U. Wiesner, Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 7(3), 222–228 (2008). https://doi.org/10.1038/nmat2111
- R. Liu, W. Li, High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 3(3), 2609–2617 (2018). https://doi.org/10.1021/acsomega.7b02001
- B. Ahmed, D.H. Anjum, M.N. Hedhili, Y. Gogotsi, H.N. Alshareef, H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8(14), 7580–7587 (2016). https://doi.org/10.1039/c6nr00002a
- J. Hong, C. Paeng, S. Park, I. In, H. Lee et al., Flashlight treatment for instantaneous structuring of dense MXene film into porous MXene/TiO2 nanocomposite for lithium-ion battery anodes. Chem. Eng. J. 484, 149598 (2024). https://doi.org/10.1016/j.cej.2024.149598
- P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT:PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33(24), 2214867 (2023). https://doi.org/10.1002/adfm.202214867
- J. Ouyang, “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34(5), 423–436 (2013). https://doi.org/10.1016/j.displa.2013.08.007
- K.-H. Lee, J. Jeon, W. Cho, S.-W. Kim, H. Moon et al., Light-triggered autonomous shape-reconfigurable and locomotive rechargeable power sources. Mater. Today 55, 56–65 (2022). https://doi.org/10.1016/j.mattod.2022.04.003
- X. Cheng, L. Miao, Y. Song, Z. Su, H. Chen et al., High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy 38, 438–446 (2017). https://doi.org/10.1016/j.nanoen.2017.05.063
- M. Zhao, J. Nie, H. Li, M. Xia, M. Liu et al., High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators. Nano Energy 55, 447–453 (2019). https://doi.org/10.1016/j.nanoen.2018.11.016
- Z. Zhang, G. Gu, G. Gu, G. Cheng, Z. Du, Power management strategy for unidirectional current pulsed triboelectric nanogenerator. Nanotechnology 33(46), 465401 (2022). https://doi.org/10.1088/1361-6528/ac8882
- Y.-J. Kim, J. Lee, J.-H. Hwang, Y. Chung, B.-J. Park et al., High-performing and capacitive-matched triboelectric implants driven by ultrasound. Adv. Mater. 36(2), e2307194 (2024). https://doi.org/10.1002/adma.202307194
- H. Ryu, H.-J. Yoon, S.-W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31(34), e1802898 (2019). https://doi.org/10.1002/adma.201802898
- M. Zhao, Y. Qin, X. Wang, L. Wang, Q. Jin et al., PEDOT: PSS/ketjenblack holey nanosheets with ultrahigh areal capacitance for kHz AC line-filtering micro-supercapacitors. Adv. Funct. Mater. 34(12), 2313495 (2024). https://doi.org/10.1002/adfm.202313495
- Y. Yoo, S. Kim, B. Kim, W. Kim, 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering. J. Mater. Chem. A 3(22), 11801–11806 (2015). https://doi.org/10.1039/C5TA02073E
- Z. Li, X. Wang, L. Zhao, F. Chi, C. Gao et al., Aqueous hybrid electrochemical capacitors with ultra-high energy density approaching for thousand-volts alternating current line filtering. Nat. Commun. 13(1), 6359 (2022). https://doi.org/10.1038/s41467-022-34082-2
- M. Zhang, Q. Zhou, J. Chen, X. Yu, L. Huang et al., An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy Environ. Sci. 9(6), 2005–2010 (2016). https://doi.org/10.1039/C6EE00615A
- K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for AC line-filtering. Sci. Rep. 2, 247 (2012). https://doi.org/10.1038/srep00247
References
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
X. Cao, Y. Jie, N. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). https://doi.org/10.1002/aenm.201600665
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1, 480–521 (2017). https://doi.org/10.1016/j.joule.2017.09.004
Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen et al., Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). https://doi.org/10.1038/ncomms10987
J. Kim, D. Kang, H.K. Lee, J.H. Hwang, H.Y. Lee et al., Design principles to maximize non-bonding states for highly tribopositive behavior. Adv. Funct. Mater. 33(1), 2209648 (2023). https://doi.org/10.1002/adfm.202209648
D.I. Jeong, D. Kang, B.K. Kang, U.Y. Lee, I.Y. Suh et al., Self-powered water splitting of Ni3FeN@Fe24N10 bifunctional catalyst improved catalytic activity and durability by forming Fe24N10 on catalyst surface via the kirkendall effect. Small 20(33), e2400374 (2024). https://doi.org/10.1002/smll.202400374
D. Kang, J.-H. Hwang, Y.-J. Kim, P. Zhao, H.Y. Lee et al., Contact electrification controlled by material deformation-induced electronic structure changes. Mater. Today 72, 109–116 (2024). https://doi.org/10.1016/j.mattod.2023.12.007
D. Kang, H.Y. Lee, J.-H. Hwang, S. Jeon, D. Kim et al., Deformation-contributed negative triboelectric property of polytetrafluoroethylene: a density functional theory calculation. Nano Energy 100, 107531 (2022). https://doi.org/10.1016/j.nanoen.2022.107531
J.-H. Lee, J. Kim, T.Y. Kim, M.S.A. Hossain, S.-W. Kim, J.H. Kim, All-in-one energy harvesting and storage devices. J. Mater. Chem. A 4(21), 7983–7999 (2016). https://doi.org/10.1039/C6TA01229A
J. Luo, Z.L. Wang, Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater. 23, 617–628 (2019). https://doi.org/10.1016/j.ensm.2019.03.009
J. Wang, X. Li, Y. Zi, S. Wang, Z. Li et al., A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
B. Li, M. Yu, Z. Li, C. Yu, H. Wang et al., Constructing flexible all-solid-state supercapacitors from 3D nanosheets active bricks via 3D manufacturing technology: a perspective review. Adv. Funct. Mater. 32(29), 2201166 (2022). https://doi.org/10.1002/adfm.202201166
K. Zhao, Q. Qin, H. Wang, Y. Yang, J. Yan et al., Antibacterial triboelectric membrane-based highly-efficient self-charging supercapacitors. Nano Energy 36, 30–37 (2017). https://doi.org/10.1016/j.nanoen.2017.04.029
B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17, 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). https://doi.org/10.1016/j.nanoen.2017.06.048
H. Tang, Y. Tian, Z. Wu, Y. Zeng, Y. Wang et al., AC line filter electrochemical capacitors: materials, morphology, and configuration. Energy Environ. Mater. 5, 1060–1083 (2022). https://doi.org/10.1002/eem2.12285
C. Fang, T. Tong, T. Bu, Y. Cao, S. Xu et al., Overview of power management for triboelectric nanogenerators. Adv. Intell. Syst. 2(2), 1900129 (2020). https://doi.org/10.1002/aisy.201900129
Y. Song, H. Wang, X. Cheng, G. Li, X. Chen et al., High-efficiency self-charging smart bracelet for portable electronics. Nano Energy 55, 29–36 (2019). https://doi.org/10.1016/j.nanoen.2018.10.045
H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28, 1805216 (2018). https://doi.org/10.1002/adfm.201805216
Y. Song, N. Wang, Y. Wang, R. Zhang, H. Olin et al., Direct current triboelectric nanogenerators. Adv. Energy Mater. 10(45), 2002756 (2020). https://doi.org/10.1002/aenm.202002756
X. Li, C. Zhang, Y. Gao, Z. Zhao, Y. Hu et al., A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 15(3), 1334–1345 (2022). https://doi.org/10.1039/d1ee03961j
H. Ryu, J.H. Lee, U. Khan, S.S. Kwak, R. Hinchet et al., Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design. Energy Environ. Sci. 11(8), 2057–2063 (2018). https://doi.org/10.1039/C8EE00188J
C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
W. Liu, D. Zhang, H. Zhang, Y. Sun, Z. Wang et al., Ultrafast response humidity sensor based on titanium dioxide quantum dots/silica and its multifunctional applications. Chem. Eng. J. 495, 153551 (2024). https://doi.org/10.1016/j.cej.2024.153551
H. Cai, D. Zhang, H. Zhang, M. Tang, Z. Xu et al., Trehalose-enhanced ionic conductive hydrogels with extreme stretchability, self-adhesive and anti-freezing abilities for both flexible strain sensor and all-solid-state supercapacitor. Chem. Eng. J. 472, 144849 (2023). https://doi.org/10.1016/j.cej.2023.144849
H. Zhang, X. Zhang, C. Qiu, P. Jia, F. An et al., Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator. Chem. Eng. J. 496, 154226 (2024). https://doi.org/10.1016/j.cej.2024.154226
H. Zhang, D. Zhang, Y. Yang, L. Zhou, Y. Liu et al., Eco-friendly triboelectric nanogenerator for self-powering stacked In2O3 nanosheets/PPy nanops-based NO2 gas sensor. Nano Energy 128, 109978 (2024). https://doi.org/10.1016/j.nanoen.2024.109978
H. Zhang, D. Zhang, R. Mao, L. Zhou, C. Yang et al., MoS2-based charge trapping layer enabled triboelectric nanogenerator with assistance of CNN-GRU model for intelligent perception. Nano Energy 127, 109753 (2024). https://doi.org/10.1016/j.nanoen.2024.109753
D. Zhang, L. Zhou, Y. Wu, C. Yang, H. Zhang, Triboelectric nanogenerator for self-powered gas sensing. Small 20(51), e2406964 (2024). https://doi.org/10.1002/smll.202406964
Y. Zheng, W. Chen, Y. Sun, C. Huang, Z. Wang et al., High conductivity and stability of polystyrene/MXene composites with orientation-3D network binary structure. J. Colloid Interface Sci. 595, 151–158 (2021). https://doi.org/10.1016/j.jcis.2021.03.095
M. Jinwoo Lee, C. Orilall, S.C. Warren, M. Kamperman, F.J. DiSalvo, U. Wiesner, Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 7(3), 222–228 (2008). https://doi.org/10.1038/nmat2111
R. Liu, W. Li, High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 3(3), 2609–2617 (2018). https://doi.org/10.1021/acsomega.7b02001
B. Ahmed, D.H. Anjum, M.N. Hedhili, Y. Gogotsi, H.N. Alshareef, H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8(14), 7580–7587 (2016). https://doi.org/10.1039/c6nr00002a
J. Hong, C. Paeng, S. Park, I. In, H. Lee et al., Flashlight treatment for instantaneous structuring of dense MXene film into porous MXene/TiO2 nanocomposite for lithium-ion battery anodes. Chem. Eng. J. 484, 149598 (2024). https://doi.org/10.1016/j.cej.2024.149598
P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT:PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33(24), 2214867 (2023). https://doi.org/10.1002/adfm.202214867
J. Ouyang, “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34(5), 423–436 (2013). https://doi.org/10.1016/j.displa.2013.08.007
K.-H. Lee, J. Jeon, W. Cho, S.-W. Kim, H. Moon et al., Light-triggered autonomous shape-reconfigurable and locomotive rechargeable power sources. Mater. Today 55, 56–65 (2022). https://doi.org/10.1016/j.mattod.2022.04.003
X. Cheng, L. Miao, Y. Song, Z. Su, H. Chen et al., High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy 38, 438–446 (2017). https://doi.org/10.1016/j.nanoen.2017.05.063
M. Zhao, J. Nie, H. Li, M. Xia, M. Liu et al., High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators. Nano Energy 55, 447–453 (2019). https://doi.org/10.1016/j.nanoen.2018.11.016
Z. Zhang, G. Gu, G. Gu, G. Cheng, Z. Du, Power management strategy for unidirectional current pulsed triboelectric nanogenerator. Nanotechnology 33(46), 465401 (2022). https://doi.org/10.1088/1361-6528/ac8882
Y.-J. Kim, J. Lee, J.-H. Hwang, Y. Chung, B.-J. Park et al., High-performing and capacitive-matched triboelectric implants driven by ultrasound. Adv. Mater. 36(2), e2307194 (2024). https://doi.org/10.1002/adma.202307194
H. Ryu, H.-J. Yoon, S.-W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31(34), e1802898 (2019). https://doi.org/10.1002/adma.201802898
M. Zhao, Y. Qin, X. Wang, L. Wang, Q. Jin et al., PEDOT: PSS/ketjenblack holey nanosheets with ultrahigh areal capacitance for kHz AC line-filtering micro-supercapacitors. Adv. Funct. Mater. 34(12), 2313495 (2024). https://doi.org/10.1002/adfm.202313495
Y. Yoo, S. Kim, B. Kim, W. Kim, 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering. J. Mater. Chem. A 3(22), 11801–11806 (2015). https://doi.org/10.1039/C5TA02073E
Z. Li, X. Wang, L. Zhao, F. Chi, C. Gao et al., Aqueous hybrid electrochemical capacitors with ultra-high energy density approaching for thousand-volts alternating current line filtering. Nat. Commun. 13(1), 6359 (2022). https://doi.org/10.1038/s41467-022-34082-2
M. Zhang, Q. Zhou, J. Chen, X. Yu, L. Huang et al., An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy Environ. Sci. 9(6), 2005–2010 (2016). https://doi.org/10.1039/C6EE00615A
K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for AC line-filtering. Sci. Rep. 2, 247 (2012). https://doi.org/10.1038/srep00247