Microneedle-Based Approaches for Skin Disease Treatment
Corresponding Author: Tongkai Chen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 132
Abstract
The use of microneedles (MNs) has been established as an effective transdermal drug delivery strategy that has been extensively deployed for treating various diseases, including skin diseases. MNs can surpass the constraints of conventional drug delivery methods by their superior safety and efficacy through precise targeting, while simultaneously enabling painless delivery. Currently, MNs are increasingly used as carriers for drug delivery, with the loading of insoluble drugs to improve their treatment efficiency or combining with bioactive substances for the construction of an efficient drug delivery system to maximize the effects of bioactive substances. The methods used for preparation MNs are diverse, enabling them to meet the requirements of most applications. The emergence of MNs has addressed the shortcomings associated with insoluble drugs, expanded the applications of bioactive substances, and improved their use in clinical practice. This review summarizes current information on the application of MNs in a variety of skin diseases, such as psoriasis, vitiligo, alopecia, hypertrophic scarring, atopic dermatitis, melanoma, acne, and skin infections. The current clinical applications and future opportunities for MNs in the treatment of skin diseases are also discussed. Despite substantial progress in the clinical application of MNs as delivery vectors, issues such as low drug loading and poor mechanical strength during MNs preparation remain the main challenges. Therefore, clinical implementation of MNs-based therapies remains limited, highlighting key opportunities for future research.
Highlights:
1 Microneedles (MNs) are used extensively for treating skin diseases due to their capability to provide less-invasive targeted drug delivery.
2 Intelligent MNs can be fabricated from biocompatible materials with specialized properties, thereby providing improved treatment efficacy.
3 Currently, there are limitations in the clinical application of MNs, highlighting the significance of further investigation to facilitate the translation of this innovative technology into patient treatment contexts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Harel, A.M. Christiano, Genetics of structural hair disorders. J. Investig. Dermatol. 132, E22–E26 (2012). https://doi.org/10.1038/skinbio.2012.7
- Y. Yang, B.Z. Chen, X.P. Zhang, H. Zheng, Z. Li et al., Conductive microneedle patch with electricity-triggered drug release performance for atopic dermatitis treatment. ACS Appl. Mater. Interfaces 14, 31645–31654 (2022). https://doi.org/10.1021/acsami.2c05952
- D. Datta, D.S. Panchal, V.V.K. Venuganti, Transdermal delivery of vancomycin hydrochloride: influence of chemical and physical permeation enhancers. Int. J. Pharm. 602, 120663 (2021). https://doi.org/10.1016/j.ijpharm.2021.120663
- S.F. Cordery, S.M. Husbands, C.P. Bailey, R.H. Guy, M. Begoña Delgado-Charro, Simultaneous transdermal delivery of buprenorphine hydrochloride and naltrexone hydrochloride by iontophoresis. Mol. Pharm. 16, 2808–2816 (2019). https://doi.org/10.1021/acs.molpharmaceut.9b00337
- X. Chen, L. Zhu, R. Li, L. Pang, S. Zhu et al., Electroporation-enhanced transdermal drug delivery: effects of logP, pKa, solubility and penetration time. Eur. J. Pharm. Sci. 151, 105410 (2020). https://doi.org/10.1016/j.ejps.2020.105410
- A.-P. Tian, Y.-K. Yin, L. Yu, B.-Y. Yang, N. Li et al., Topical delivery of modified Da-Cheng-Qi decoction using low-frequency ultrasound sonophoresis for refractory metastatic malignant bowel obstruction: an open-label single-arm clinical trial. Chin. J. Integr. Med. 26, 382–387 (2020). https://doi.org/10.1007/s11655-019-3041-7
- M. Yin, Y. Zeng, H.-Q. Liu, W. Zhang, C. Wang et al., Dissolving microneedle patch integrated with microspheres for long-acting hair regrowth therapy. ACS Appl. Mater. Interfaces 15, 17532–17542 (2023). https://doi.org/10.1021/acsami.2c22814
- S. Wang, M. Zhao, Y. Yan, P. Li, W. Huang, Flexible monitoring, diagnosis, and therapy by microneedles with versatile materials and devices toward multifunction scope. Research 6, 0128 (2023). https://doi.org/10.34133/research.0128
- Y.-C. Kim, J.-H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
- A. Yuan, Y. Gu, Q. Bian, R. Wang, Y. Xu et al., Conditioned media-integrated microneedles for hair regeneration through perifollicular angiogenesis. J. Control. Release 350, 204–214 (2022). https://doi.org/10.1016/j.jconrel.2022.08.007
- D. Wu, X. Shou, Y. Yu, X. Wang, G. Chen et al., Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 32, 2205847 (2022). https://doi.org/10.1002/adfm.202205847
- J. Zhu, R. Chang, B. Wei, Y. Fu, X. Chen et al., Photothermal nano-vaccine promoting antigen presentation and dendritic cells infiltration for enhanced immunotherapy of melanoma via transdermal microneedles delivery. Research 2022, 9816272 (2022). https://doi.org/10.34133/2022/9816272
- Y. Zhang, Y. Xu, H. Kong, J. Zhang, H.F. Chan et al., Microneedle system for tissue engineering and regenerative medicine. Exploration 3, 20210170 (2023). https://doi.org/10.1002/EXP.20210170
- C. Flohr, R. Hay, Putting the burden of skin diseases on the global map. Br. J. Dermatol. 184, 189–190 (2021). https://doi.org/10.1111/bjd.19704
- D. Seth, K. Cheldize, D. Brown, E.E. Freeman, Global burden of skin disease: inequities and innovations. Curr. Dermatol. Rep. 6, 204–210 (2017). https://doi.org/10.1007/s13671-017-0192-7
- P. Abdi, C. Awad, M.R. Anthony, C. Farkouh, B. Kenny et al., Efficacy and safety of combinational therapy using topical minoxidil and microneedling for the treatment of androgenetic alopecia: a systematic review and meta-analysis. Arch. Dermatol. Res. 315, 2775–2785 (2023). https://doi.org/10.1007/s00403-023-02688-1
- T. Wan, Q. Pan, Y. Ping, Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci. Adv. 7, eabe2888 (2021). https://doi.org/10.1126/sciadv.abe2888
- A. Yuan, F. Xia, Q. Bian, H. Wu, Y. Gu et al., Ceria nanozyme-integrated microneedles reshape the perifollicular microenvironment for androgenetic alopecia treatment. ACS Nano 15, 13759–13769 (2021). https://doi.org/10.1021/acsnano.1c05272
- X. Ai, J. Yang, Z. Liu, T. Guo, N. Feng, Recent progress of microneedles in transdermal immunotherapy: a review. Int. J. Pharm. 662, 124481 (2024). https://doi.org/10.1016/j.ijpharm.2024.124481
- W. Zhang, Y. Chen, Z. Zhao, H. Zheng, S. Wang et al., Adoptive Treg therapy with metabolic intervention via perforated microneedles ameliorates psoriasis syndrome. Sci. Adv. 9, eadg6007 (2023). https://doi.org/10.1126/sciadv.adg6007
- D.C. Yeo, E.R. Balmayor, J.-T. Schantz, C. Xu, Microneedle physical contact as a therapeutic for abnormal scars. Eur. J. Med. Res. 22, 28 (2017). https://doi.org/10.1186/s40001-017-0269-6
- C. Tan, D. Yeo Chen Long, T. Cao, V. Tan Wei Ding, R. Srivastava et al., Drug-free microneedles in the treatment of keloids: a single-blinded intraindividual controlled clinical trial. Br. J. Dermatol. 179, 1418–1419 (2018). https://doi.org/10.1111/bjd.17078
- Y.-C. Hsu, E. Fuchs, Building and maintaining the skin. Cold Spring Harb. Perspect. Biol. 14, a040840 (2022). https://doi.org/10.1101/cshperspect.a040840
- B. Dyring-Andersen, M.B. Løvendorf, F. Coscia, A. Santos, L.B.P. Møller et al., Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 11, 5587 (2020). https://doi.org/10.1038/s41467-020-19383-8
- J. Sandby-Møller, T. Poulsen, H.C. Wulf, Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 83, 410–413 (2003). https://doi.org/10.1080/00015550310015419
- Y. Lee, K. Hwang, Skin thickness of Korean adults. Surg. Radiol. Anat. 24, 183–189 (2002). https://doi.org/10.1007/s00276-002-0034-5
- C. Blanpain, E. Fuchs, Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009). https://doi.org/10.1038/nrm2636
- X. Feng, G.-Y. Li, A. Ramier, A.M. Eltony, S.-H. Yun, In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater. 146, 295–305 (2022). https://doi.org/10.1016/j.actbio.2022.04.030
- Z. Santos, P. Avci, M.R. Hamblin, Drug discovery for alopecia: gone today, hair tomorrow. Expert Opin. Drug Discov. 10, 269–292 (2015). https://doi.org/10.1517/17460441.2015.1009892
- M. Hosseini, K.R. Koehler, A. Shafiee, Biofabrication of human skin with its appendages. Adv. Healthc. Mater. 11, 2201626 (2022). https://doi.org/10.1002/adhm.202201626
- M. Hosseini, A. Shafiee, Engineering bioactive scaffolds for skin regeneration. Small 17, 2101384 (2021). https://doi.org/10.1002/smll.202101384
- E. Fuchs, V. Horsley, More than one way to skin. Genes Dev. 22, 976–985 (2008). https://doi.org/10.1101/gad.1645908
- S. Cao, Y. Wang, M. Wang, X. Yang, Y. Tang et al., Microneedles mediated bioinspired lipid nanocarriers for targeted treatment of alopecia. J. Control. Release 329, 1–15 (2021). https://doi.org/10.1016/j.jconrel.2020.11.038
- J. Wang, Z. Lu, R. Cai, H. Zheng, J. Yu et al., Microneedle-based transdermal detection and sensing devices. Lab Chip 23, 869–887 (2023). https://doi.org/10.1039/d2lc00790h
- S. Lim, T.Y. Park, E.Y. Jeon, K.I. Joo, H.J. Cha, Double-layered adhesive microneedle bandage based on biofunctionalized mussel protein for cardiac tissue regeneration. Biomaterials 278, 121171 (2021). https://doi.org/10.1016/j.biomaterials.2021.121171
- Y. Xiang, J. Lu, C. Mao, Y. Zhu, C. Wang et al., Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci. Adv. 9, eadf0854 (2023). https://doi.org/10.1126/sciadv.adf0854
- Y. Zhou, L. Jia, D. Zhou, G. Chen, Q. Fu et al., Advances in microneedles research based on promoting hair regrowth. J. Control. Release 353, 965–974 (2023). https://doi.org/10.1016/j.jconrel.2022.12.040
- C.S. Kolli, A.K. Banga, Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 25, 104–113 (2008). https://doi.org/10.1007/s11095-007-9350-0
- H.S. Gill, M.R. Prausnitz, Coated microneedles for transdermal delivery. J. Control. Release 117, 227–237 (2007). https://doi.org/10.1016/j.jconrel.2006.10.017
- S. Lyu, Z. Dong, X. Xu, H.P. Bei, H.Y. Yuen et al., Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact. Mater. 27, 303–326 (2023). https://doi.org/10.1016/j.bioactmat.2023.04.003
- Y. Ren, J. Li, Y. Chen, J. Wang, Y. Chen et al., Customized flexible hollow microneedles for psoriasis treatment with reduced-dose drug. Bioeng. Transl. Med. 8, e10530 (2023). https://doi.org/10.1002/btm2.10530
- H. Wang, Y. Fu, J. Mao, H. Jiang, S. Du et al., Strong and tough supramolecular microneedle patches with ultrafast dissolution and rapid-onset capabilities. Adv. Mater. 34, 2207832 (2022). https://doi.org/10.1002/adma.202207832
- X. Hu, H. Zhang, Z. Wang, C.Y.A. Shiu, Z. Gu, Microneedle array patches integrated with nanops for therapy and diagnosis. Small Struct. 2, 2000097 (2021). https://doi.org/10.1002/sstr.202000097
- D. Yang, M. Chen, Y. Sun, Y. Jin, C. Lu et al., Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 121, 119–133 (2021). https://doi.org/10.1016/j.actbio.2020.12.004
- Y. Shi, J. Zhao, H. Li, M. Yu, W. Zhang et al., A drug-free, hair follicle cycling regulatable, separable, antibacterial microneedle patch for hair regeneration therapy. Adv. Healthc. Mater. 11, e2200908 (2022). https://doi.org/10.1002/adhm.202200908
- X.-Q. Pu, X.-J. Ju, W.-Y. Liu, Y.-Q. Liu, X.-J. Li et al., Stimulus-responsive nanop-integrated dissolving microneedles for synergetic chemo-photothermal therapy of superficial skin tumors. Ind. Eng. Chem. Res. 61, 7982–7995 (2022). https://doi.org/10.1021/acs.iecr.2c00831
- Q. Jing, H. Ruan, J. Li, Z. Wang, L. Pei et al., Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials 278, 121142 (2021). https://doi.org/10.1016/j.biomaterials.2021.121142
- S. Chong, C. Wei, L. Feng, R. Guo, Silk fibroin-based hydrogel microneedles deliver α-MSH to promote melanosome delivery for vitiligo treatment. ACS Biomater. Sci. Eng. 9, 3368–3378 (2023). https://doi.org/10.1021/acsbiomaterials.3c00284
- R. Wang, T. Zhong, Q. Bian, S. Zhang, X. Ma et al., PROTAC degraders of androgen receptor-integrated dissolving microneedles for androgenetic alopecia and recrudescence treatment via single topical administration. Small Methods 7, e2201293 (2023). https://doi.org/10.1002/smtd.202201293
- M.J. Kim, K.Y. Seong, D.S. Kim, J.S. Jeong, S.Y. Kim et al., Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater. 143, 189–202 (2022). https://doi.org/10.1016/j.actbio.2022.02.011
- S.W. Lee, M. Juhasz, P. Mobasher, C. Ekelem, N.A. Mesinkovska, A systematic review of topical finasteride in the treatment of androgenetic alopecia in men and women. J. Drugs Dermatol. 17, 457–463 (2018)
- A.G. Messenger, J. Rundegren, Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150, 186–194 (2004). https://doi.org/10.1111/j.1365-2133.2004.05785.x
- L. Wen, Z. Fan, W. Huang, Y. Miao, J. Zhang et al., Retinoic acid drives hair follicle stem cell activation via Wnt/β-catenin signalling in androgenetic alopecia. J. Eur. Acad. Dermatol. Venereol. 39, 189–201 (2025). https://doi.org/10.1111/jdv.20000
- Y.-H. Li, K. Zhang, K. Yang, J.-X. Ye, Y.-Z. Xing et al., Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J. Investig. Dermatol. 133, 42–48 (2013). https://doi.org/10.1038/jid.2012.235
- P. Mill, R. Mo, H. Fu, M. Grachtchouk, P.C.W. Kim et al., Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev. 17, 282–294 (2003). https://doi.org/10.1101/gad.1038103
- S. Fakhraei Lahiji, S.H. Seo, S. Kim, M. Dangol, J. Shim et al., Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials 167, 69–79 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.019
- H. Zhang, N.-X. Zhu, K. Huang, B.-Z. Cai, Y. Zeng et al., iTRAQ-based quantitative proteomic comparison of early- and late-passage human dermal papilla cell secretome in relation to inducing hair follicle regeneration. PLoS ONE 11, e0167474 (2016). https://doi.org/10.1371/journal.pone.0167474
- D. Enshell-Seijffers, C. Lindon, M. Kashiwagi, B.A. Morgan, β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18, 633–642 (2010). https://doi.org/10.1016/j.devcel.2010.01.016
- Y. Sun, L. Yang, L. Du, Y. Zhou, K. Xu et al., Duo-role platelet-rich plasma: temperature-induced fibrin gel and growth factors’ reservoir for microneedles to promote hair regrowth. J. Adv. Res. 55, 89–102 (2024). https://doi.org/10.1016/j.jare.2023.02.014
- C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
- G. Yang, Q. Chen, D. Wen, Z. Chen, J. Wang et al., A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 13, 4354–4360 (2019). https://doi.org/10.1021/acsnano.8b09573
- Z. Zhao, H. Wang, L. Yao, X. Zhang, Q. Yu et al., Efficient local delivery of FK506 using blocking patches in psoriasis. J. Colloid Interface Sci. 630, 676–687 (2023). https://doi.org/10.1016/j.jcis.2022.09.146
- L. Xi, Z. Lin, F. Qiu, S. Chen, P. Li et al., Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm. Sin. B 12, 339–352 (2022). https://doi.org/10.1016/j.apsb.2021.07.019
- S.S. Yerneni, E.P. Yalcintas, J.D. Smith, S. Averick, P.G. Campbell et al., Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays. Acta Biomater. 149, 198–212 (2022). https://doi.org/10.1016/j.actbio.2022.06.046
- J. Ohn, M. Jang, B.M. Kang, H. Yang, J.T. Hong et al., Dissolving candlelit microneedle for chronic inflammatory skin diseases. Adv. Sci. 8, 2004873 (2021). https://doi.org/10.1002/advs.202004873
- L. Nussbaum, Y.L. Chen, G.S. Ogg, Role of regulatory T cells in psoriasis pathogenesis and treatment. Br. J. Dermatol. 184, 14–24 (2021). https://doi.org/10.1111/bjd.19380
- L. Xu, Z. Shao, X. Fang, Z. Xin, S. Zhao et al., Exploring precision treatments in immune-mediated inflammatory diseases: harnessing the infinite potential of nucleic acid delivery. Exploration (2024). https://doi.org/10.1002/EXP.20230165
- D. Bi, F. Qu, W. Xiao, J. Wu, P. Liu et al., Reactive oxygen species-responsive gel-based microneedle patches for prolonged and intelligent psoriasis management. ACS Nano 17, 4346–4357 (2023). https://doi.org/10.1021/acsnano.2c08979
- L. Qian, F. Jin, Z. Wei, T. Li, Z. Sun et al., Wearable, self-powered, drug-loaded electronic microneedles for accelerated tissue repair of inflammatory skin disorders. Adv. Funct. Mater. 33, 2209407 (2023). https://doi.org/10.1002/adfm.202209407
- H. Du, P. Liu, J. Zhu, J. Lan, Y. Li et al., Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl. Mater. Interfaces 11, 43588–43598 (2019). https://doi.org/10.1021/acsami.9b15668
- H. Wang, Y. Fu, P. Liu, F. Qu, S. Du et al., Supramolecular dissolving microneedle patch loading hydrophobic glucocorticoid for effective psoriasis treatment. ACS Appl. Mater. Interfaces 15, 15162–15171 (2023). https://doi.org/10.1021/acsami.3c00058
- H. Du, J. Yang, M. Li, Y. Xia, Y. Li et al., Microneedle-assisted percutaneous delivery of methotrexate-loaded nanops enabling sustained anti-inflammatory effects in psoriasis therapy. J. Mater. Chem. B 12, 2618–2627 (2024). https://doi.org/10.1039/D3TB02643D
- M. Jang, B.M. Kang, H. Yang, J. Ohn, O. Kwon et al., High-dose steroid dissolving microneedle for relieving atopic dermatitis. Adv. Healthc. Mater. 10, e2001691 (2021). https://doi.org/10.1002/adhm.202001691
- L. Song, J. Chi, Z. Li, Y. Tao, Y. Sun et al., An inflammation-responsive double-layer microneedle patch for recurrent atopic dermatitis therapy. Int. J. Pharm. 643, 123215 (2023). https://doi.org/10.1016/j.ijpharm.2023.123215
- Y.-L. Chen, C.-C. Chang, Y.-C. Lin, M.-C. Chen, Double-layered PLGA/HA microneedle systems as a long-acting formulation of polyphenols for effective and long-term management of atopic dermatitis. Biomater. Sci. 11, 4995–5011 (2023). https://doi.org/10.1039/d3bm00182b
- Y.-H. Chiu, Y.-W. Wu, J.-I. Hung, M.-C. Chen, Epigallocatechin gallate/L-ascorbic acid-loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater. 130, 223–233 (2021). https://doi.org/10.1016/j.actbio.2021.05.032
- M.-C. Chen, C.-S. Chen, Y.-W. Wu, Y.-Y. Yang, Poly-γ-glutamate microneedles as transdermal immunomodulators for ameliorating atopic dermatitis-like skin lesions in Nc/Nga mice. Acta Biomater. 114, 183–192 (2020). https://doi.org/10.1016/j.actbio.2020.07.029
- E.M. Attwa, S.A. Khashaba, N.A. Ezzat, Evaluation of the additional effect of topical 5-fluorouracil to needling in the treatment of localized vitiligo. J. Cosmet. Dermatol. 19, 1473–1478 (2020). https://doi.org/10.1111/jocd.13152
- J. Liang, Y. Yu, C. Li, Q. Li, P. Chen et al., Tofacitinib combined with melanocyte protector α-MSH to treat vitiligo through dextran based hydrogel microneedles. Carbohydr. Polym. 305, 120549 (2023). https://doi.org/10.1016/j.carbpol.2023.120549
- A. Salloum, N. Bazzi, D. Maalouf, M. Habre, Microneedling in vitiligo: a systematic review. Dermatol. Ther. 33, e14297 (2020). https://doi.org/10.1111/dth.14297
- B. Zhao, W. Guo, X. Zhou, Y. Xue, T. Wang et al., Ferroptosis-mediated synergistic therapy of hypertrophic scarring based on metal–organic framework microneedle patch. Adv. Funct. Mater. 33, 2300575 (2023). https://doi.org/10.1002/adfm.202300575
- F.S. Frech, L. Hernandez, R. Urbonas, G.A. Zaken, I. Dreyfuss et al., Hypertrophic scars and keloids: advances in treatment and review of established therapies. Am. J. Clin. Dermatol. 24, 225–245 (2023). https://doi.org/10.1007/s40257-022-00744-6
- Q. Zhang, L. Shi, H. He, X. Liu, Y. Huang et al., Down-regulating scar formation by microneedles directly via a mechanical communication pathway. ACS Nano 16, 10163–10178 (2022). https://doi.org/10.1021/acsnano.1c11016
- B. Yang, Y. Dong, Y. Shen, A. Hou, G. Quan et al., Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact. Mater. 6, 2400–2411 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.014
- Y. Huang, T. Peng, W. Hu, X. Gao, Y. Chen et al., Fully armed photodynamic therapy with spear and shear for topical deep hypertrophic scar treatment. J. Control. Release 343, 408–419 (2022). https://doi.org/10.1016/j.jconrel.2022.01.043
- S. Lin, G. Quan, A. Hou, P. Yang, T. Peng et al., Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control. Release 306, 69–82 (2019). https://doi.org/10.1016/j.jconrel.2019.05.038
- T. Wu, X. Hou, J. Li, H. Ruan, L. Pei et al., Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano 15, 20087–20104 (2021). https://doi.org/10.1021/acsnano.1c07829
- C. Wang, Y. Zeng, K.-F. Chen, J. Lin, Q. Yuan et al., A self-monitoring microneedle patch for light-controlled synergistic treatment of melanoma. Bioact. Mater. 27, 58–71 (2023). https://doi.org/10.1016/j.bioactmat.2023.03.016
- C. Deng, R. Zhuang, Z. Ying, J. Tu, X. Xu et al., Non-invasive transdermal delivery systems with deep tissue penetrating ability for local ROS-modulating chemotherapy. Adv. Funct. Mater. 32, 2270259 (2022). https://doi.org/10.1002/adfm.202270259
- Y. Hao, Y. Chen, X. He, F. Yang, R. Han et al., Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanop integrated with dissolvable microneedle for skin cancer therapy. Bioact. Mater. 5, 542–552 (2020). https://doi.org/10.1016/j.bioactmat.2020.04.002
- Y. Sun, M. Chen, D. Yang, W. Qin, G. Quan et al., Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 15, 2335–2346 (2022). https://doi.org/10.1007/s12274-021-3817-x
- Y. Li, G. He, L.H. Fu, M.R. Younis, T. He et al., A microneedle patch with self-oxygenation and glutathione depletion for repeatable photodynamic therapy. ACS Nano 16, 17298–17312 (2022). https://doi.org/10.1021/acsnano.2c08098
- X. Zhou, Z. Luo, A. Baidya, H.-J. Kim, C. Wang et al., Biodegradable β-cyclodextrin conjugated gelatin methacryloyl microneedle for delivery of water-insoluble drug. Adv. Healthc. Mater. 9, e2000527 (2020). https://doi.org/10.1002/adhm.202000527
- M. Li, M. Wang, L. Li, L. Zhang, B. Ma et al., A composite peptide-supramolecular microneedle system for melanoma immunotherapy. Nano Res. 16, 5335–5345 (2023). https://doi.org/10.1007/s12274-022-5236-z
- Q. Bian, L. Huang, Y. Xu, R. Wang, Y. Gu et al., A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect. ACS Nano 15, 19468–19479 (2021). https://doi.org/10.1021/acsnano.1c06225
- R. Xu, H. Guo, X. Chen, J. Xu, Y. Gong et al., Smart hydrothermally responsive microneedle for topical tumor treatment. J. Control. Release 358, 566–578 (2023). https://doi.org/10.1016/j.jconrel.2023.05.008
- W. Qin, G. Quan, Y. Sun, M. Chen, P. Yang et al., Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics 10, 8179–8196 (2020). https://doi.org/10.7150/thno.44194
- H. Baldwin, J. Tan, Effects of diet on acne and its response to treatment. Am. J. Clin. Dermatol. 22, 55–65 (2021). https://doi.org/10.1007/s40257-020-00542-y
- M. Tai, C. Zhang, Y. Ma, J. Yang, Z. Mai et al., Acne and its post-inflammatory hyperpigmentation treatment by applying anti-acne dissolving microneedle patches. J. Cosmet. Dermatol. 21, 6913–6919 (2022). https://doi.org/10.1111/jocd.15352
- Y. Zhang, P. Feng, J. Yu, J. Yang, J. Zhao et al., ROS-responsive microneedle patch for acne vulgaris treatment. Adv. Ther. 1, 1800035 (2018). https://doi.org/10.1002/adtp.201800035
- F. Wang, X. Zhang, G. Chen, Y. Zhao, Living bacterial microneedles for fungal infection treatment. Research 2020, 2760594 (2020). https://doi.org/10.34133/2020/2760594
- Y. Gao, W. Zhang, Y.F. Cheng, Y. Cao, Z. Xu et al., Intradermal administration of green synthesized nanosilver (NS) through film-coated PEGDA microneedles for potential antibacterial applications. Biomater. Sci. 9, 2244–2254 (2021). https://doi.org/10.1039/d0bm02136a
- B. Wang, W. Zhang, Q. Pan, J. Tao, S. Li et al., Hyaluronic acid-based CuS nanoenzyme biodegradable microneedles for treating deep cutaneous fungal infection without drug resistance. Nano Lett. 23, 1327–1336 (2023). https://doi.org/10.1021/acs.nanolett.2c04539
- K. Peng, L.K. Vora, I.A. Tekko, A.D. Permana, J. Domínguez-Robles et al., Dissolving microneedle patches loaded with amphotericin B microps for localised and sustained intradermal delivery: potential for enhanced treatment of cutaneous fungal infections. J. Control. Release 339, 361–380 (2021). https://doi.org/10.1016/j.jconrel.2021.10.001
- Q. Zhang, Z. Zhang, X. Zou, Z. Liu, Q. Li et al., Nitric oxide-releasing poly(ionic liquid)-based microneedle for subcutaneous fungal infection treatment. Biomater. Sci. 11, 3114–3127 (2023). https://doi.org/10.1039/d2bm02096c
- R. Luo, D. Xian, F. Li, G. Zhou, L. Jiang et al., Epsilon-poly-l-lysine microneedle patch loaded with amorphous doxycycline nanops for synergistic treatment of skin infection. Int. J. Biol. Macromol. 266, 131383 (2024). https://doi.org/10.1016/j.ijbiomac.2024.131383
- J. Ziesmer, J.V. Larsson, G.A. Sotiriou, Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant Staphylococcus aureus. Chem. Eng. J. 462, 142127 (2023). https://doi.org/10.1016/j.cej.2023.142127
- J. Shan, X. Wu, J. Che, J. Gan, Y. Zhao, Reactive microneedle patches with antibacterial and dead bacteria-trapping abilities for skin infection treatment. Adv. Sci. 11, e2309622 (2024). https://doi.org/10.1002/advs.202309622
- S. Sillankorva, L. Pires, L.M. Pastrana, M. Bañobre-López, Antibiofilm efficacy of the Pseudomonas aeruginosa pbunavirus vB_PaeM-SMS29 loaded onto dissolving polyvinyl alcohol microneedles. Viruses 14, 964 (2022). https://doi.org/10.3390/v14050964
- X. Li, W. Du, W. Xu, G. Ling, P. Zhang, Dissolving microneedles based on ZnO nanops and an ionic liquid as synergistic antibacterial agents. J. Mater. Chem. B 11, 4354–4364 (2023). https://doi.org/10.1039/d3tb00127j
- Q.K. Anjani, A.K. Pandya, S. Demartis, J. Domínguez-Robles, N. Moreno-Castellanos et al., Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. Int. J. Pharm. 646, 123446 (2023). https://doi.org/10.1016/j.ijpharm.2023.123446
- K. Wang, Q. Ding, M. Qi, W. Zhang, Y. Hou et al., Integrated bilayer microneedle dressing and triboelectric nanogenerator for intelligent management of infected wounds. Adv. Funct. Mater. 34, 2316820 (2024). https://doi.org/10.1002/adfm.202316820
- C.M. Giorgio, S. Caccavale, E. Fulgione, E. Moscarella, G. Babino et al., Efficacy of microneedling and photodynamic therapy in vitiligo. Dermatol. Surg. 45, 1424–1426 (2019). https://doi.org/10.1097/dss.0000000000001816
- S. Batool, L.M. Malik, M. Jahangir, Efficacy of narrowband ultraviolet B phototherapy with needling in patients of vitiligo. J. Pak. Assoc. Dermatol. 25, 177–181 (2016)
- B.C. Ghiya, P. Soni, A. Singrodia, S. Chhabra, R.D. Mehta et al., Comparative evaluation of the therapeutic efficacy of microneedling alone or microneedling combined with topical 5-fluorouracil in localized stable childhood vitiligo. Adv. Hum. Biol. 6, 25 (2016). https://doi.org/10.4103/2321-8568.190142
- H.M. Ebrahim, R. Elkot, W. Albalate, Combined microneedling with tacrolimus vs tacrolimus monotherapy for vitiligo treatment. J. Dermatolog. Treat. 32, 999–1004 (2021). https://doi.org/10.1080/09546634.2020.1716930
- S. Esmat, M.I. Assaf, R. Mohye Eldeen, H.I. Gawdat, D.G. Saadi, Evaluation of needling/microneedling as an adjunct to phototherapy in the treatment of stable acral vitiligo: a comparative clinical and immunohistochemical study. J. Dermatolog. Treat. 33, 2621–2628 (2022). https://doi.org/10.1080/09546634.2022.2062279
- G. Faghihi, S. Nabavinejad, F. Mokhtari, F. Fatemi Naeini, F. Iraji, Microneedling in androgenetic alopecia; comparing two different depths of microneedles. J. Cosmet. Dermatol. 20, 1241–1247 (2021). https://doi.org/10.1111/jocd.13714
- J. Zhang, H. Li, L. Albakr, Y. Zhang, A. Lu et al., Microneedle-enabled therapeutics delivery and biosensing in clinical trials. J. Control. Release 360, 687–704 (2023). https://doi.org/10.1016/j.jconrel.2023.07.023
- E. Sánchez-Meza, J. Ocampo-Candiani, M. Gómez-Flores, M.E. Herz-Ruelas, J. Ocampo-Garza et al., Microneedling plus topical dutasteride solution for androgenetic alopecia: a randomized placebo-controlled study. J. Eur. Acad. Dermatol. Venereol. 36, e806–e808 (2022). https://doi.org/10.1111/jdv.18285
- K.N. Ozcan, S. Sener, N. Altunisik, D. Turkmen, Platelet rich plasma application by dermapen microneedling and intradermal point-by-point injection methods, and their comparison with clinical findings and trichoscan in patients with androgenetic alopecia. Dermatol. Ther. 35, e15182 (2022). https://doi.org/10.1111/dth.15182
- C.-Q. Yu, H. Zhang, M.-E. Guo, X.-K. Li, H.-D. Chen et al., Combination therapy with topical minoxidil and nano-microneedle-assisted fibroblast growth factor for male androgenetic alopecia: a randomized controlled trial in Chinese patients. Chin. Med. J. 134, 851–853 (2020). https://doi.org/10.1097/CM9.0000000000001195
- S.E.M. Ragab, S.O. Nassar, H.A. Morad, D.S. Hegab, Platelet-rich plasma in alopecia areata: intradermal injection versus topical application with transepidermal delivery via either fractional carbon dioxide laser or microneedling. Acta Dermatovenerol. Alp. Pannonica Adriat. 29, 169–173 (2020). https://doi.org/10.15570/actaapa.2020.35
- M.S. Ali, H.S.A. Hafiz, N.A. Ahmed, S.A. Galal, Combined microneedling with topical vitamin D3 or bimatoprost versus microneedling alone in the treatment of alopecia areata: a comparative randomized trial. J. Cosmet. Dermatol. 22, 1286–1296 (2023). https://doi.org/10.1111/jocd.15569
- Y.W. Yew, C.Z.Y. Phuan, X. Zhao, E.S.T. Tan, W.S. Chong et al., Novel transdermal device for delivery of triamcinolone for nail psoriasis treatment. Ann. Acad. Med. Singap. 51, 16–23 (2022). https://doi.org/10.47102/annals-acadmedsg.2021380
- J.H. Lee, Y.S. Jung, G.M. Kim, J.M. Bae, A hyaluronic acid-based microneedle patch to treat psoriatic plaques: a pilot open trial. Br. J. Dermatol. 178, e24–e25 (2018). https://doi.org/10.1111/bjd.15779
- A. Nofal, F. Eldeeb, M. Shalaby, W. Al-Balat, Microneedling combined with pimecrolimus, 5-fluorouracil, and trichloroacetic acid in the treatment of vitiligo: a comparative study. Dermatol. Ther. 35, e15294 (2022). https://doi.org/10.1111/dth.15294
- T. He, L. Gong, Retracted] clinical effect of microneedle injection combined with blood transfusion in the treatment of severe Anemia complicated with vitiligo under regenerative medical technology. BioMed Res. Int. 2022, 7117627 (2022). https://doi.org/10.1155/2022/7117627
- Z.A. Ibrahim, G.F. Hassan, H.Y. Elgendy, H.A. Al-Shenawy, Evaluation of the efficacy of transdermal drug delivery of calcipotriol plus betamethasone versus tacrolimus in the treatment of vitiligo. J. Cosmet. Dermatol. 18, 581–588 (2019). https://doi.org/10.1111/jocd.12704
- J.H. Song, E.J. An, C.Y. Sung, D.H. Jeong, G. Lee et al., A comparative study on a biodegradable hyaluronic acid microneedle patch with a needleless patch for dry skin in atopic dermatitis: a single-blinded, split-body, randomized controlled trial. Arch. Dermatol. Res. 315, 569–581 (2023). https://doi.org/10.1007/s00403-022-02400-9
- B. Ali, N. ElMahdy, N.N. Elfar, Microneedling (Dermapen) and Jessner’s solution peeling in treatment of atrophic acne scars: a comparative randomized clinical study. J. Cosmet. Laser Ther. 21, 357–363 (2019). https://doi.org/10.1080/14764172.2019.1661490
- B.S. Biesman, J.L. Cohen, B.E. DiBernardo, J.J. Emer, R.G. Geronemus et al., Treatment of atrophic facial acne scars with microneedling followed by polymethylmethacrylate-collagen gel dermal filler. Dermatol. Surg. 45, 1570–1579 (2019). https://doi.org/10.1097/DSS.0000000000001872
- B. Solanki, V. Relhan, B. Sahoo, R. Sarkar, P. Choudhary, Microneedling in combination with 15% trichloroacetic acid peel versus 25% pyruvic acid peel in the treatment of acne scars. Dermatol. Surg. 49, 155–160 (2023). https://doi.org/10.1097/DSS.0000000000003670
- J.H. Hyeong, J.W. Jung, S.B. Seo, H.S. Kim, K.H. Kim, Intradermal injection of poly-d, l-lactic acid using microneedle fractional radiofrequency for acne scars: an open-label prospective trial. Dermatol. Surg. 48, 1306–1311 (2022). https://doi.org/10.1097/DSS.0000000000003627
- N.F. Agamia, O. Sorror, M. Alrashidy, A.A. Tawfik, A. Badawi, Clinical and histopathological comparison of microneedling combined with platelets rich plasma versus fractional erbium-doped yttrium aluminum garnet (Er: YAG) laser 2940 nm in treatment of atrophic post traumatic scar: a randomized controlled study. J. Dermatolog. Treat. 32, 965–972 (2021). https://doi.org/10.1080/09546634.2020.1729334
- S. Li, X. Wang, Z. Yan, T. Wang, Z. Chen et al., Microneedle patches with antimicrobial and immunomodulating properties for infected wound healing. Adv. Sci. 10, e2300576 (2023). https://doi.org/10.1002/advs.202300576
- Z. Gao, T. Sheng, W. Zhang, H. Feng, J. Yu et al., Microneedle-mediated cell therapy. Adv. Sci. 11, e2304124 (2024). https://doi.org/10.1002/advs.202304124
- J.H. Cary, B.S. Li, H.I. Maibach, Dermatotoxicology of microneedles (MNs) in man. Biomed. Microdevices 21, 66 (2019). https://doi.org/10.1007/s10544-019-0371-3
- P. Makvandi, M. Kirkby, A.R.J. Hutton, M. Shabani, C.K.Y. Yiu et al., Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 13, 93 (2021). https://doi.org/10.1007/s40820-021-00611-9
- R.F. Donnelly, A. David Woolfson, Patient safety and beyond: what should we expect from microneedle arrays in the transdermal delivery arena? Ther. Deliv. 5, 653–662 (2014). https://doi.org/10.4155/tde.14.29
- C. Wu, Q. Yu, C. Huang, F. Li, L. Zhang et al., Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm. Sin. B 14, 5161–5180 (2024). https://doi.org/10.1016/j.apsb.2024.08.013
- Z. Ling, Y. Zheng, Z. Li, P. Zhao, H. Chang, Self-healing porous microneedles fabricated via cryogenic micromoulding and phase separation for efficient loading and sustained delivery of diverse therapeutics. Small 20, e2307523 (2024). https://doi.org/10.1002/smll.202307523
- M. Liu, J. Jiang, Y. Wang, H. Liu, Y. Lu et al., Smart drug delivery and responsive microneedles for wound healing. Mater. Today Bio 29, 101321 (2024). https://doi.org/10.1016/j.mtbio.2024.101321
- M.A. Luzuriaga, D.R. Berry, J.C. Reagan, R.A. Smaldone, J.J. Gassensmith, Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 18, 1223–1230 (2018). https://doi.org/10.1039/C8LC00098K
- L. Xie, H. Zeng, J. Sun, W. Qian, Engineering microneedles for therapy and diagnosis: a survey. Micromachines 11, 271 (2020). https://doi.org/10.3390/mi11030271
- R. Amarnani, P. Shende, Microneedles in diagnostic, treatment and theranostics: an advancement in minimally-invasive delivery system. Biomed. Microdevices 24, 4 (2021). https://doi.org/10.1007/s10544-021-00604-w
- Y. Qin, F. Cui, Y. Lu, P. Yang, W. Gou et al., Toward precision medicine: End-to-end design and construction of integrated microneedle-based theranostic systems. J. Control. Release 377, 354–375 (2025). https://doi.org/10.1016/j.jconrel.2024.11.020
- Y.N. Ertas, D. Ertas, A. Erdem, F. Segujja, S. Dulchavsky et al., Diagnostic, therapeutic, and theranostic multifunctional microneedles. Small 20, 2308479 (2024). https://doi.org/10.1002/smll.202308479
References
S. Harel, A.M. Christiano, Genetics of structural hair disorders. J. Investig. Dermatol. 132, E22–E26 (2012). https://doi.org/10.1038/skinbio.2012.7
Y. Yang, B.Z. Chen, X.P. Zhang, H. Zheng, Z. Li et al., Conductive microneedle patch with electricity-triggered drug release performance for atopic dermatitis treatment. ACS Appl. Mater. Interfaces 14, 31645–31654 (2022). https://doi.org/10.1021/acsami.2c05952
D. Datta, D.S. Panchal, V.V.K. Venuganti, Transdermal delivery of vancomycin hydrochloride: influence of chemical and physical permeation enhancers. Int. J. Pharm. 602, 120663 (2021). https://doi.org/10.1016/j.ijpharm.2021.120663
S.F. Cordery, S.M. Husbands, C.P. Bailey, R.H. Guy, M. Begoña Delgado-Charro, Simultaneous transdermal delivery of buprenorphine hydrochloride and naltrexone hydrochloride by iontophoresis. Mol. Pharm. 16, 2808–2816 (2019). https://doi.org/10.1021/acs.molpharmaceut.9b00337
X. Chen, L. Zhu, R. Li, L. Pang, S. Zhu et al., Electroporation-enhanced transdermal drug delivery: effects of logP, pKa, solubility and penetration time. Eur. J. Pharm. Sci. 151, 105410 (2020). https://doi.org/10.1016/j.ejps.2020.105410
A.-P. Tian, Y.-K. Yin, L. Yu, B.-Y. Yang, N. Li et al., Topical delivery of modified Da-Cheng-Qi decoction using low-frequency ultrasound sonophoresis for refractory metastatic malignant bowel obstruction: an open-label single-arm clinical trial. Chin. J. Integr. Med. 26, 382–387 (2020). https://doi.org/10.1007/s11655-019-3041-7
M. Yin, Y. Zeng, H.-Q. Liu, W. Zhang, C. Wang et al., Dissolving microneedle patch integrated with microspheres for long-acting hair regrowth therapy. ACS Appl. Mater. Interfaces 15, 17532–17542 (2023). https://doi.org/10.1021/acsami.2c22814
S. Wang, M. Zhao, Y. Yan, P. Li, W. Huang, Flexible monitoring, diagnosis, and therapy by microneedles with versatile materials and devices toward multifunction scope. Research 6, 0128 (2023). https://doi.org/10.34133/research.0128
Y.-C. Kim, J.-H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
A. Yuan, Y. Gu, Q. Bian, R. Wang, Y. Xu et al., Conditioned media-integrated microneedles for hair regeneration through perifollicular angiogenesis. J. Control. Release 350, 204–214 (2022). https://doi.org/10.1016/j.jconrel.2022.08.007
D. Wu, X. Shou, Y. Yu, X. Wang, G. Chen et al., Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 32, 2205847 (2022). https://doi.org/10.1002/adfm.202205847
J. Zhu, R. Chang, B. Wei, Y. Fu, X. Chen et al., Photothermal nano-vaccine promoting antigen presentation and dendritic cells infiltration for enhanced immunotherapy of melanoma via transdermal microneedles delivery. Research 2022, 9816272 (2022). https://doi.org/10.34133/2022/9816272
Y. Zhang, Y. Xu, H. Kong, J. Zhang, H.F. Chan et al., Microneedle system for tissue engineering and regenerative medicine. Exploration 3, 20210170 (2023). https://doi.org/10.1002/EXP.20210170
C. Flohr, R. Hay, Putting the burden of skin diseases on the global map. Br. J. Dermatol. 184, 189–190 (2021). https://doi.org/10.1111/bjd.19704
D. Seth, K. Cheldize, D. Brown, E.E. Freeman, Global burden of skin disease: inequities and innovations. Curr. Dermatol. Rep. 6, 204–210 (2017). https://doi.org/10.1007/s13671-017-0192-7
P. Abdi, C. Awad, M.R. Anthony, C. Farkouh, B. Kenny et al., Efficacy and safety of combinational therapy using topical minoxidil and microneedling for the treatment of androgenetic alopecia: a systematic review and meta-analysis. Arch. Dermatol. Res. 315, 2775–2785 (2023). https://doi.org/10.1007/s00403-023-02688-1
T. Wan, Q. Pan, Y. Ping, Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci. Adv. 7, eabe2888 (2021). https://doi.org/10.1126/sciadv.abe2888
A. Yuan, F. Xia, Q. Bian, H. Wu, Y. Gu et al., Ceria nanozyme-integrated microneedles reshape the perifollicular microenvironment for androgenetic alopecia treatment. ACS Nano 15, 13759–13769 (2021). https://doi.org/10.1021/acsnano.1c05272
X. Ai, J. Yang, Z. Liu, T. Guo, N. Feng, Recent progress of microneedles in transdermal immunotherapy: a review. Int. J. Pharm. 662, 124481 (2024). https://doi.org/10.1016/j.ijpharm.2024.124481
W. Zhang, Y. Chen, Z. Zhao, H. Zheng, S. Wang et al., Adoptive Treg therapy with metabolic intervention via perforated microneedles ameliorates psoriasis syndrome. Sci. Adv. 9, eadg6007 (2023). https://doi.org/10.1126/sciadv.adg6007
D.C. Yeo, E.R. Balmayor, J.-T. Schantz, C. Xu, Microneedle physical contact as a therapeutic for abnormal scars. Eur. J. Med. Res. 22, 28 (2017). https://doi.org/10.1186/s40001-017-0269-6
C. Tan, D. Yeo Chen Long, T. Cao, V. Tan Wei Ding, R. Srivastava et al., Drug-free microneedles in the treatment of keloids: a single-blinded intraindividual controlled clinical trial. Br. J. Dermatol. 179, 1418–1419 (2018). https://doi.org/10.1111/bjd.17078
Y.-C. Hsu, E. Fuchs, Building and maintaining the skin. Cold Spring Harb. Perspect. Biol. 14, a040840 (2022). https://doi.org/10.1101/cshperspect.a040840
B. Dyring-Andersen, M.B. Løvendorf, F. Coscia, A. Santos, L.B.P. Møller et al., Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 11, 5587 (2020). https://doi.org/10.1038/s41467-020-19383-8
J. Sandby-Møller, T. Poulsen, H.C. Wulf, Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 83, 410–413 (2003). https://doi.org/10.1080/00015550310015419
Y. Lee, K. Hwang, Skin thickness of Korean adults. Surg. Radiol. Anat. 24, 183–189 (2002). https://doi.org/10.1007/s00276-002-0034-5
C. Blanpain, E. Fuchs, Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009). https://doi.org/10.1038/nrm2636
X. Feng, G.-Y. Li, A. Ramier, A.M. Eltony, S.-H. Yun, In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater. 146, 295–305 (2022). https://doi.org/10.1016/j.actbio.2022.04.030
Z. Santos, P. Avci, M.R. Hamblin, Drug discovery for alopecia: gone today, hair tomorrow. Expert Opin. Drug Discov. 10, 269–292 (2015). https://doi.org/10.1517/17460441.2015.1009892
M. Hosseini, K.R. Koehler, A. Shafiee, Biofabrication of human skin with its appendages. Adv. Healthc. Mater. 11, 2201626 (2022). https://doi.org/10.1002/adhm.202201626
M. Hosseini, A. Shafiee, Engineering bioactive scaffolds for skin regeneration. Small 17, 2101384 (2021). https://doi.org/10.1002/smll.202101384
E. Fuchs, V. Horsley, More than one way to skin. Genes Dev. 22, 976–985 (2008). https://doi.org/10.1101/gad.1645908
S. Cao, Y. Wang, M. Wang, X. Yang, Y. Tang et al., Microneedles mediated bioinspired lipid nanocarriers for targeted treatment of alopecia. J. Control. Release 329, 1–15 (2021). https://doi.org/10.1016/j.jconrel.2020.11.038
J. Wang, Z. Lu, R. Cai, H. Zheng, J. Yu et al., Microneedle-based transdermal detection and sensing devices. Lab Chip 23, 869–887 (2023). https://doi.org/10.1039/d2lc00790h
S. Lim, T.Y. Park, E.Y. Jeon, K.I. Joo, H.J. Cha, Double-layered adhesive microneedle bandage based on biofunctionalized mussel protein for cardiac tissue regeneration. Biomaterials 278, 121171 (2021). https://doi.org/10.1016/j.biomaterials.2021.121171
Y. Xiang, J. Lu, C. Mao, Y. Zhu, C. Wang et al., Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci. Adv. 9, eadf0854 (2023). https://doi.org/10.1126/sciadv.adf0854
Y. Zhou, L. Jia, D. Zhou, G. Chen, Q. Fu et al., Advances in microneedles research based on promoting hair regrowth. J. Control. Release 353, 965–974 (2023). https://doi.org/10.1016/j.jconrel.2022.12.040
C.S. Kolli, A.K. Banga, Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 25, 104–113 (2008). https://doi.org/10.1007/s11095-007-9350-0
H.S. Gill, M.R. Prausnitz, Coated microneedles for transdermal delivery. J. Control. Release 117, 227–237 (2007). https://doi.org/10.1016/j.jconrel.2006.10.017
S. Lyu, Z. Dong, X. Xu, H.P. Bei, H.Y. Yuen et al., Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact. Mater. 27, 303–326 (2023). https://doi.org/10.1016/j.bioactmat.2023.04.003
Y. Ren, J. Li, Y. Chen, J. Wang, Y. Chen et al., Customized flexible hollow microneedles for psoriasis treatment with reduced-dose drug. Bioeng. Transl. Med. 8, e10530 (2023). https://doi.org/10.1002/btm2.10530
H. Wang, Y. Fu, J. Mao, H. Jiang, S. Du et al., Strong and tough supramolecular microneedle patches with ultrafast dissolution and rapid-onset capabilities. Adv. Mater. 34, 2207832 (2022). https://doi.org/10.1002/adma.202207832
X. Hu, H. Zhang, Z. Wang, C.Y.A. Shiu, Z. Gu, Microneedle array patches integrated with nanops for therapy and diagnosis. Small Struct. 2, 2000097 (2021). https://doi.org/10.1002/sstr.202000097
D. Yang, M. Chen, Y. Sun, Y. Jin, C. Lu et al., Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 121, 119–133 (2021). https://doi.org/10.1016/j.actbio.2020.12.004
Y. Shi, J. Zhao, H. Li, M. Yu, W. Zhang et al., A drug-free, hair follicle cycling regulatable, separable, antibacterial microneedle patch for hair regeneration therapy. Adv. Healthc. Mater. 11, e2200908 (2022). https://doi.org/10.1002/adhm.202200908
X.-Q. Pu, X.-J. Ju, W.-Y. Liu, Y.-Q. Liu, X.-J. Li et al., Stimulus-responsive nanop-integrated dissolving microneedles for synergetic chemo-photothermal therapy of superficial skin tumors. Ind. Eng. Chem. Res. 61, 7982–7995 (2022). https://doi.org/10.1021/acs.iecr.2c00831
Q. Jing, H. Ruan, J. Li, Z. Wang, L. Pei et al., Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials 278, 121142 (2021). https://doi.org/10.1016/j.biomaterials.2021.121142
S. Chong, C. Wei, L. Feng, R. Guo, Silk fibroin-based hydrogel microneedles deliver α-MSH to promote melanosome delivery for vitiligo treatment. ACS Biomater. Sci. Eng. 9, 3368–3378 (2023). https://doi.org/10.1021/acsbiomaterials.3c00284
R. Wang, T. Zhong, Q. Bian, S. Zhang, X. Ma et al., PROTAC degraders of androgen receptor-integrated dissolving microneedles for androgenetic alopecia and recrudescence treatment via single topical administration. Small Methods 7, e2201293 (2023). https://doi.org/10.1002/smtd.202201293
M.J. Kim, K.Y. Seong, D.S. Kim, J.S. Jeong, S.Y. Kim et al., Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater. 143, 189–202 (2022). https://doi.org/10.1016/j.actbio.2022.02.011
S.W. Lee, M. Juhasz, P. Mobasher, C. Ekelem, N.A. Mesinkovska, A systematic review of topical finasteride in the treatment of androgenetic alopecia in men and women. J. Drugs Dermatol. 17, 457–463 (2018)
A.G. Messenger, J. Rundegren, Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150, 186–194 (2004). https://doi.org/10.1111/j.1365-2133.2004.05785.x
L. Wen, Z. Fan, W. Huang, Y. Miao, J. Zhang et al., Retinoic acid drives hair follicle stem cell activation via Wnt/β-catenin signalling in androgenetic alopecia. J. Eur. Acad. Dermatol. Venereol. 39, 189–201 (2025). https://doi.org/10.1111/jdv.20000
Y.-H. Li, K. Zhang, K. Yang, J.-X. Ye, Y.-Z. Xing et al., Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J. Investig. Dermatol. 133, 42–48 (2013). https://doi.org/10.1038/jid.2012.235
P. Mill, R. Mo, H. Fu, M. Grachtchouk, P.C.W. Kim et al., Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev. 17, 282–294 (2003). https://doi.org/10.1101/gad.1038103
S. Fakhraei Lahiji, S.H. Seo, S. Kim, M. Dangol, J. Shim et al., Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials 167, 69–79 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.019
H. Zhang, N.-X. Zhu, K. Huang, B.-Z. Cai, Y. Zeng et al., iTRAQ-based quantitative proteomic comparison of early- and late-passage human dermal papilla cell secretome in relation to inducing hair follicle regeneration. PLoS ONE 11, e0167474 (2016). https://doi.org/10.1371/journal.pone.0167474
D. Enshell-Seijffers, C. Lindon, M. Kashiwagi, B.A. Morgan, β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18, 633–642 (2010). https://doi.org/10.1016/j.devcel.2010.01.016
Y. Sun, L. Yang, L. Du, Y. Zhou, K. Xu et al., Duo-role platelet-rich plasma: temperature-induced fibrin gel and growth factors’ reservoir for microneedles to promote hair regrowth. J. Adv. Res. 55, 89–102 (2024). https://doi.org/10.1016/j.jare.2023.02.014
C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
G. Yang, Q. Chen, D. Wen, Z. Chen, J. Wang et al., A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 13, 4354–4360 (2019). https://doi.org/10.1021/acsnano.8b09573
Z. Zhao, H. Wang, L. Yao, X. Zhang, Q. Yu et al., Efficient local delivery of FK506 using blocking patches in psoriasis. J. Colloid Interface Sci. 630, 676–687 (2023). https://doi.org/10.1016/j.jcis.2022.09.146
L. Xi, Z. Lin, F. Qiu, S. Chen, P. Li et al., Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm. Sin. B 12, 339–352 (2022). https://doi.org/10.1016/j.apsb.2021.07.019
S.S. Yerneni, E.P. Yalcintas, J.D. Smith, S. Averick, P.G. Campbell et al., Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays. Acta Biomater. 149, 198–212 (2022). https://doi.org/10.1016/j.actbio.2022.06.046
J. Ohn, M. Jang, B.M. Kang, H. Yang, J.T. Hong et al., Dissolving candlelit microneedle for chronic inflammatory skin diseases. Adv. Sci. 8, 2004873 (2021). https://doi.org/10.1002/advs.202004873
L. Nussbaum, Y.L. Chen, G.S. Ogg, Role of regulatory T cells in psoriasis pathogenesis and treatment. Br. J. Dermatol. 184, 14–24 (2021). https://doi.org/10.1111/bjd.19380
L. Xu, Z. Shao, X. Fang, Z. Xin, S. Zhao et al., Exploring precision treatments in immune-mediated inflammatory diseases: harnessing the infinite potential of nucleic acid delivery. Exploration (2024). https://doi.org/10.1002/EXP.20230165
D. Bi, F. Qu, W. Xiao, J. Wu, P. Liu et al., Reactive oxygen species-responsive gel-based microneedle patches for prolonged and intelligent psoriasis management. ACS Nano 17, 4346–4357 (2023). https://doi.org/10.1021/acsnano.2c08979
L. Qian, F. Jin, Z. Wei, T. Li, Z. Sun et al., Wearable, self-powered, drug-loaded electronic microneedles for accelerated tissue repair of inflammatory skin disorders. Adv. Funct. Mater. 33, 2209407 (2023). https://doi.org/10.1002/adfm.202209407
H. Du, P. Liu, J. Zhu, J. Lan, Y. Li et al., Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl. Mater. Interfaces 11, 43588–43598 (2019). https://doi.org/10.1021/acsami.9b15668
H. Wang, Y. Fu, P. Liu, F. Qu, S. Du et al., Supramolecular dissolving microneedle patch loading hydrophobic glucocorticoid for effective psoriasis treatment. ACS Appl. Mater. Interfaces 15, 15162–15171 (2023). https://doi.org/10.1021/acsami.3c00058
H. Du, J. Yang, M. Li, Y. Xia, Y. Li et al., Microneedle-assisted percutaneous delivery of methotrexate-loaded nanops enabling sustained anti-inflammatory effects in psoriasis therapy. J. Mater. Chem. B 12, 2618–2627 (2024). https://doi.org/10.1039/D3TB02643D
M. Jang, B.M. Kang, H. Yang, J. Ohn, O. Kwon et al., High-dose steroid dissolving microneedle for relieving atopic dermatitis. Adv. Healthc. Mater. 10, e2001691 (2021). https://doi.org/10.1002/adhm.202001691
L. Song, J. Chi, Z. Li, Y. Tao, Y. Sun et al., An inflammation-responsive double-layer microneedle patch for recurrent atopic dermatitis therapy. Int. J. Pharm. 643, 123215 (2023). https://doi.org/10.1016/j.ijpharm.2023.123215
Y.-L. Chen, C.-C. Chang, Y.-C. Lin, M.-C. Chen, Double-layered PLGA/HA microneedle systems as a long-acting formulation of polyphenols for effective and long-term management of atopic dermatitis. Biomater. Sci. 11, 4995–5011 (2023). https://doi.org/10.1039/d3bm00182b
Y.-H. Chiu, Y.-W. Wu, J.-I. Hung, M.-C. Chen, Epigallocatechin gallate/L-ascorbic acid-loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater. 130, 223–233 (2021). https://doi.org/10.1016/j.actbio.2021.05.032
M.-C. Chen, C.-S. Chen, Y.-W. Wu, Y.-Y. Yang, Poly-γ-glutamate microneedles as transdermal immunomodulators for ameliorating atopic dermatitis-like skin lesions in Nc/Nga mice. Acta Biomater. 114, 183–192 (2020). https://doi.org/10.1016/j.actbio.2020.07.029
E.M. Attwa, S.A. Khashaba, N.A. Ezzat, Evaluation of the additional effect of topical 5-fluorouracil to needling in the treatment of localized vitiligo. J. Cosmet. Dermatol. 19, 1473–1478 (2020). https://doi.org/10.1111/jocd.13152
J. Liang, Y. Yu, C. Li, Q. Li, P. Chen et al., Tofacitinib combined with melanocyte protector α-MSH to treat vitiligo through dextran based hydrogel microneedles. Carbohydr. Polym. 305, 120549 (2023). https://doi.org/10.1016/j.carbpol.2023.120549
A. Salloum, N. Bazzi, D. Maalouf, M. Habre, Microneedling in vitiligo: a systematic review. Dermatol. Ther. 33, e14297 (2020). https://doi.org/10.1111/dth.14297
B. Zhao, W. Guo, X. Zhou, Y. Xue, T. Wang et al., Ferroptosis-mediated synergistic therapy of hypertrophic scarring based on metal–organic framework microneedle patch. Adv. Funct. Mater. 33, 2300575 (2023). https://doi.org/10.1002/adfm.202300575
F.S. Frech, L. Hernandez, R. Urbonas, G.A. Zaken, I. Dreyfuss et al., Hypertrophic scars and keloids: advances in treatment and review of established therapies. Am. J. Clin. Dermatol. 24, 225–245 (2023). https://doi.org/10.1007/s40257-022-00744-6
Q. Zhang, L. Shi, H. He, X. Liu, Y. Huang et al., Down-regulating scar formation by microneedles directly via a mechanical communication pathway. ACS Nano 16, 10163–10178 (2022). https://doi.org/10.1021/acsnano.1c11016
B. Yang, Y. Dong, Y. Shen, A. Hou, G. Quan et al., Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact. Mater. 6, 2400–2411 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.014
Y. Huang, T. Peng, W. Hu, X. Gao, Y. Chen et al., Fully armed photodynamic therapy with spear and shear for topical deep hypertrophic scar treatment. J. Control. Release 343, 408–419 (2022). https://doi.org/10.1016/j.jconrel.2022.01.043
S. Lin, G. Quan, A. Hou, P. Yang, T. Peng et al., Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control. Release 306, 69–82 (2019). https://doi.org/10.1016/j.jconrel.2019.05.038
T. Wu, X. Hou, J. Li, H. Ruan, L. Pei et al., Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano 15, 20087–20104 (2021). https://doi.org/10.1021/acsnano.1c07829
C. Wang, Y. Zeng, K.-F. Chen, J. Lin, Q. Yuan et al., A self-monitoring microneedle patch for light-controlled synergistic treatment of melanoma. Bioact. Mater. 27, 58–71 (2023). https://doi.org/10.1016/j.bioactmat.2023.03.016
C. Deng, R. Zhuang, Z. Ying, J. Tu, X. Xu et al., Non-invasive transdermal delivery systems with deep tissue penetrating ability for local ROS-modulating chemotherapy. Adv. Funct. Mater. 32, 2270259 (2022). https://doi.org/10.1002/adfm.202270259
Y. Hao, Y. Chen, X. He, F. Yang, R. Han et al., Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanop integrated with dissolvable microneedle for skin cancer therapy. Bioact. Mater. 5, 542–552 (2020). https://doi.org/10.1016/j.bioactmat.2020.04.002
Y. Sun, M. Chen, D. Yang, W. Qin, G. Quan et al., Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 15, 2335–2346 (2022). https://doi.org/10.1007/s12274-021-3817-x
Y. Li, G. He, L.H. Fu, M.R. Younis, T. He et al., A microneedle patch with self-oxygenation and glutathione depletion for repeatable photodynamic therapy. ACS Nano 16, 17298–17312 (2022). https://doi.org/10.1021/acsnano.2c08098
X. Zhou, Z. Luo, A. Baidya, H.-J. Kim, C. Wang et al., Biodegradable β-cyclodextrin conjugated gelatin methacryloyl microneedle for delivery of water-insoluble drug. Adv. Healthc. Mater. 9, e2000527 (2020). https://doi.org/10.1002/adhm.202000527
M. Li, M. Wang, L. Li, L. Zhang, B. Ma et al., A composite peptide-supramolecular microneedle system for melanoma immunotherapy. Nano Res. 16, 5335–5345 (2023). https://doi.org/10.1007/s12274-022-5236-z
Q. Bian, L. Huang, Y. Xu, R. Wang, Y. Gu et al., A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect. ACS Nano 15, 19468–19479 (2021). https://doi.org/10.1021/acsnano.1c06225
R. Xu, H. Guo, X. Chen, J. Xu, Y. Gong et al., Smart hydrothermally responsive microneedle for topical tumor treatment. J. Control. Release 358, 566–578 (2023). https://doi.org/10.1016/j.jconrel.2023.05.008
W. Qin, G. Quan, Y. Sun, M. Chen, P. Yang et al., Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics 10, 8179–8196 (2020). https://doi.org/10.7150/thno.44194
H. Baldwin, J. Tan, Effects of diet on acne and its response to treatment. Am. J. Clin. Dermatol. 22, 55–65 (2021). https://doi.org/10.1007/s40257-020-00542-y
M. Tai, C. Zhang, Y. Ma, J. Yang, Z. Mai et al., Acne and its post-inflammatory hyperpigmentation treatment by applying anti-acne dissolving microneedle patches. J. Cosmet. Dermatol. 21, 6913–6919 (2022). https://doi.org/10.1111/jocd.15352
Y. Zhang, P. Feng, J. Yu, J. Yang, J. Zhao et al., ROS-responsive microneedle patch for acne vulgaris treatment. Adv. Ther. 1, 1800035 (2018). https://doi.org/10.1002/adtp.201800035
F. Wang, X. Zhang, G. Chen, Y. Zhao, Living bacterial microneedles for fungal infection treatment. Research 2020, 2760594 (2020). https://doi.org/10.34133/2020/2760594
Y. Gao, W. Zhang, Y.F. Cheng, Y. Cao, Z. Xu et al., Intradermal administration of green synthesized nanosilver (NS) through film-coated PEGDA microneedles for potential antibacterial applications. Biomater. Sci. 9, 2244–2254 (2021). https://doi.org/10.1039/d0bm02136a
B. Wang, W. Zhang, Q. Pan, J. Tao, S. Li et al., Hyaluronic acid-based CuS nanoenzyme biodegradable microneedles for treating deep cutaneous fungal infection without drug resistance. Nano Lett. 23, 1327–1336 (2023). https://doi.org/10.1021/acs.nanolett.2c04539
K. Peng, L.K. Vora, I.A. Tekko, A.D. Permana, J. Domínguez-Robles et al., Dissolving microneedle patches loaded with amphotericin B microps for localised and sustained intradermal delivery: potential for enhanced treatment of cutaneous fungal infections. J. Control. Release 339, 361–380 (2021). https://doi.org/10.1016/j.jconrel.2021.10.001
Q. Zhang, Z. Zhang, X. Zou, Z. Liu, Q. Li et al., Nitric oxide-releasing poly(ionic liquid)-based microneedle for subcutaneous fungal infection treatment. Biomater. Sci. 11, 3114–3127 (2023). https://doi.org/10.1039/d2bm02096c
R. Luo, D. Xian, F. Li, G. Zhou, L. Jiang et al., Epsilon-poly-l-lysine microneedle patch loaded with amorphous doxycycline nanops for synergistic treatment of skin infection. Int. J. Biol. Macromol. 266, 131383 (2024). https://doi.org/10.1016/j.ijbiomac.2024.131383
J. Ziesmer, J.V. Larsson, G.A. Sotiriou, Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant Staphylococcus aureus. Chem. Eng. J. 462, 142127 (2023). https://doi.org/10.1016/j.cej.2023.142127
J. Shan, X. Wu, J. Che, J. Gan, Y. Zhao, Reactive microneedle patches with antibacterial and dead bacteria-trapping abilities for skin infection treatment. Adv. Sci. 11, e2309622 (2024). https://doi.org/10.1002/advs.202309622
S. Sillankorva, L. Pires, L.M. Pastrana, M. Bañobre-López, Antibiofilm efficacy of the Pseudomonas aeruginosa pbunavirus vB_PaeM-SMS29 loaded onto dissolving polyvinyl alcohol microneedles. Viruses 14, 964 (2022). https://doi.org/10.3390/v14050964
X. Li, W. Du, W. Xu, G. Ling, P. Zhang, Dissolving microneedles based on ZnO nanops and an ionic liquid as synergistic antibacterial agents. J. Mater. Chem. B 11, 4354–4364 (2023). https://doi.org/10.1039/d3tb00127j
Q.K. Anjani, A.K. Pandya, S. Demartis, J. Domínguez-Robles, N. Moreno-Castellanos et al., Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. Int. J. Pharm. 646, 123446 (2023). https://doi.org/10.1016/j.ijpharm.2023.123446
K. Wang, Q. Ding, M. Qi, W. Zhang, Y. Hou et al., Integrated bilayer microneedle dressing and triboelectric nanogenerator for intelligent management of infected wounds. Adv. Funct. Mater. 34, 2316820 (2024). https://doi.org/10.1002/adfm.202316820
C.M. Giorgio, S. Caccavale, E. Fulgione, E. Moscarella, G. Babino et al., Efficacy of microneedling and photodynamic therapy in vitiligo. Dermatol. Surg. 45, 1424–1426 (2019). https://doi.org/10.1097/dss.0000000000001816
S. Batool, L.M. Malik, M. Jahangir, Efficacy of narrowband ultraviolet B phototherapy with needling in patients of vitiligo. J. Pak. Assoc. Dermatol. 25, 177–181 (2016)
B.C. Ghiya, P. Soni, A. Singrodia, S. Chhabra, R.D. Mehta et al., Comparative evaluation of the therapeutic efficacy of microneedling alone or microneedling combined with topical 5-fluorouracil in localized stable childhood vitiligo. Adv. Hum. Biol. 6, 25 (2016). https://doi.org/10.4103/2321-8568.190142
H.M. Ebrahim, R. Elkot, W. Albalate, Combined microneedling with tacrolimus vs tacrolimus monotherapy for vitiligo treatment. J. Dermatolog. Treat. 32, 999–1004 (2021). https://doi.org/10.1080/09546634.2020.1716930
S. Esmat, M.I. Assaf, R. Mohye Eldeen, H.I. Gawdat, D.G. Saadi, Evaluation of needling/microneedling as an adjunct to phototherapy in the treatment of stable acral vitiligo: a comparative clinical and immunohistochemical study. J. Dermatolog. Treat. 33, 2621–2628 (2022). https://doi.org/10.1080/09546634.2022.2062279
G. Faghihi, S. Nabavinejad, F. Mokhtari, F. Fatemi Naeini, F. Iraji, Microneedling in androgenetic alopecia; comparing two different depths of microneedles. J. Cosmet. Dermatol. 20, 1241–1247 (2021). https://doi.org/10.1111/jocd.13714
J. Zhang, H. Li, L. Albakr, Y. Zhang, A. Lu et al., Microneedle-enabled therapeutics delivery and biosensing in clinical trials. J. Control. Release 360, 687–704 (2023). https://doi.org/10.1016/j.jconrel.2023.07.023
E. Sánchez-Meza, J. Ocampo-Candiani, M. Gómez-Flores, M.E. Herz-Ruelas, J. Ocampo-Garza et al., Microneedling plus topical dutasteride solution for androgenetic alopecia: a randomized placebo-controlled study. J. Eur. Acad. Dermatol. Venereol. 36, e806–e808 (2022). https://doi.org/10.1111/jdv.18285
K.N. Ozcan, S. Sener, N. Altunisik, D. Turkmen, Platelet rich plasma application by dermapen microneedling and intradermal point-by-point injection methods, and their comparison with clinical findings and trichoscan in patients with androgenetic alopecia. Dermatol. Ther. 35, e15182 (2022). https://doi.org/10.1111/dth.15182
C.-Q. Yu, H. Zhang, M.-E. Guo, X.-K. Li, H.-D. Chen et al., Combination therapy with topical minoxidil and nano-microneedle-assisted fibroblast growth factor for male androgenetic alopecia: a randomized controlled trial in Chinese patients. Chin. Med. J. 134, 851–853 (2020). https://doi.org/10.1097/CM9.0000000000001195
S.E.M. Ragab, S.O. Nassar, H.A. Morad, D.S. Hegab, Platelet-rich plasma in alopecia areata: intradermal injection versus topical application with transepidermal delivery via either fractional carbon dioxide laser or microneedling. Acta Dermatovenerol. Alp. Pannonica Adriat. 29, 169–173 (2020). https://doi.org/10.15570/actaapa.2020.35
M.S. Ali, H.S.A. Hafiz, N.A. Ahmed, S.A. Galal, Combined microneedling with topical vitamin D3 or bimatoprost versus microneedling alone in the treatment of alopecia areata: a comparative randomized trial. J. Cosmet. Dermatol. 22, 1286–1296 (2023). https://doi.org/10.1111/jocd.15569
Y.W. Yew, C.Z.Y. Phuan, X. Zhao, E.S.T. Tan, W.S. Chong et al., Novel transdermal device for delivery of triamcinolone for nail psoriasis treatment. Ann. Acad. Med. Singap. 51, 16–23 (2022). https://doi.org/10.47102/annals-acadmedsg.2021380
J.H. Lee, Y.S. Jung, G.M. Kim, J.M. Bae, A hyaluronic acid-based microneedle patch to treat psoriatic plaques: a pilot open trial. Br. J. Dermatol. 178, e24–e25 (2018). https://doi.org/10.1111/bjd.15779
A. Nofal, F. Eldeeb, M. Shalaby, W. Al-Balat, Microneedling combined with pimecrolimus, 5-fluorouracil, and trichloroacetic acid in the treatment of vitiligo: a comparative study. Dermatol. Ther. 35, e15294 (2022). https://doi.org/10.1111/dth.15294
T. He, L. Gong, Retracted] clinical effect of microneedle injection combined with blood transfusion in the treatment of severe Anemia complicated with vitiligo under regenerative medical technology. BioMed Res. Int. 2022, 7117627 (2022). https://doi.org/10.1155/2022/7117627
Z.A. Ibrahim, G.F. Hassan, H.Y. Elgendy, H.A. Al-Shenawy, Evaluation of the efficacy of transdermal drug delivery of calcipotriol plus betamethasone versus tacrolimus in the treatment of vitiligo. J. Cosmet. Dermatol. 18, 581–588 (2019). https://doi.org/10.1111/jocd.12704
J.H. Song, E.J. An, C.Y. Sung, D.H. Jeong, G. Lee et al., A comparative study on a biodegradable hyaluronic acid microneedle patch with a needleless patch for dry skin in atopic dermatitis: a single-blinded, split-body, randomized controlled trial. Arch. Dermatol. Res. 315, 569–581 (2023). https://doi.org/10.1007/s00403-022-02400-9
B. Ali, N. ElMahdy, N.N. Elfar, Microneedling (Dermapen) and Jessner’s solution peeling in treatment of atrophic acne scars: a comparative randomized clinical study. J. Cosmet. Laser Ther. 21, 357–363 (2019). https://doi.org/10.1080/14764172.2019.1661490
B.S. Biesman, J.L. Cohen, B.E. DiBernardo, J.J. Emer, R.G. Geronemus et al., Treatment of atrophic facial acne scars with microneedling followed by polymethylmethacrylate-collagen gel dermal filler. Dermatol. Surg. 45, 1570–1579 (2019). https://doi.org/10.1097/DSS.0000000000001872
B. Solanki, V. Relhan, B. Sahoo, R. Sarkar, P. Choudhary, Microneedling in combination with 15% trichloroacetic acid peel versus 25% pyruvic acid peel in the treatment of acne scars. Dermatol. Surg. 49, 155–160 (2023). https://doi.org/10.1097/DSS.0000000000003670
J.H. Hyeong, J.W. Jung, S.B. Seo, H.S. Kim, K.H. Kim, Intradermal injection of poly-d, l-lactic acid using microneedle fractional radiofrequency for acne scars: an open-label prospective trial. Dermatol. Surg. 48, 1306–1311 (2022). https://doi.org/10.1097/DSS.0000000000003627
N.F. Agamia, O. Sorror, M. Alrashidy, A.A. Tawfik, A. Badawi, Clinical and histopathological comparison of microneedling combined with platelets rich plasma versus fractional erbium-doped yttrium aluminum garnet (Er: YAG) laser 2940 nm in treatment of atrophic post traumatic scar: a randomized controlled study. J. Dermatolog. Treat. 32, 965–972 (2021). https://doi.org/10.1080/09546634.2020.1729334
S. Li, X. Wang, Z. Yan, T. Wang, Z. Chen et al., Microneedle patches with antimicrobial and immunomodulating properties for infected wound healing. Adv. Sci. 10, e2300576 (2023). https://doi.org/10.1002/advs.202300576
Z. Gao, T. Sheng, W. Zhang, H. Feng, J. Yu et al., Microneedle-mediated cell therapy. Adv. Sci. 11, e2304124 (2024). https://doi.org/10.1002/advs.202304124
J.H. Cary, B.S. Li, H.I. Maibach, Dermatotoxicology of microneedles (MNs) in man. Biomed. Microdevices 21, 66 (2019). https://doi.org/10.1007/s10544-019-0371-3
P. Makvandi, M. Kirkby, A.R.J. Hutton, M. Shabani, C.K.Y. Yiu et al., Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 13, 93 (2021). https://doi.org/10.1007/s40820-021-00611-9
R.F. Donnelly, A. David Woolfson, Patient safety and beyond: what should we expect from microneedle arrays in the transdermal delivery arena? Ther. Deliv. 5, 653–662 (2014). https://doi.org/10.4155/tde.14.29
C. Wu, Q. Yu, C. Huang, F. Li, L. Zhang et al., Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm. Sin. B 14, 5161–5180 (2024). https://doi.org/10.1016/j.apsb.2024.08.013
Z. Ling, Y. Zheng, Z. Li, P. Zhao, H. Chang, Self-healing porous microneedles fabricated via cryogenic micromoulding and phase separation for efficient loading and sustained delivery of diverse therapeutics. Small 20, e2307523 (2024). https://doi.org/10.1002/smll.202307523
M. Liu, J. Jiang, Y. Wang, H. Liu, Y. Lu et al., Smart drug delivery and responsive microneedles for wound healing. Mater. Today Bio 29, 101321 (2024). https://doi.org/10.1016/j.mtbio.2024.101321
M.A. Luzuriaga, D.R. Berry, J.C. Reagan, R.A. Smaldone, J.J. Gassensmith, Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 18, 1223–1230 (2018). https://doi.org/10.1039/C8LC00098K
L. Xie, H. Zeng, J. Sun, W. Qian, Engineering microneedles for therapy and diagnosis: a survey. Micromachines 11, 271 (2020). https://doi.org/10.3390/mi11030271
R. Amarnani, P. Shende, Microneedles in diagnostic, treatment and theranostics: an advancement in minimally-invasive delivery system. Biomed. Microdevices 24, 4 (2021). https://doi.org/10.1007/s10544-021-00604-w
Y. Qin, F. Cui, Y. Lu, P. Yang, W. Gou et al., Toward precision medicine: End-to-end design and construction of integrated microneedle-based theranostic systems. J. Control. Release 377, 354–375 (2025). https://doi.org/10.1016/j.jconrel.2024.11.020
Y.N. Ertas, D. Ertas, A. Erdem, F. Segujja, S. Dulchavsky et al., Diagnostic, therapeutic, and theranostic multifunctional microneedles. Small 20, 2308479 (2024). https://doi.org/10.1002/smll.202308479