Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges
Corresponding Author: Shangfeng Du
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 148
Abstract
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport. They have been expected to be a future power source for portable electronic devices. The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application, which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes. Here, we provide a comprehensive review of the progress around this technology, in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale, to catalyst design at the nanoscale, electrode structure at the micro scale and design at the millimeter scale, and finally to device fabrication at the meter scale. The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted. Finally, perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology.
Highlights:
1 Comprehensive review of the progress in direct formic acid fuel cells from catalytic mechanisms to catalyst design, and to the electrode/device fabrication.
2 The gap between highly active formic acid oxidation catalysts and unsatisfactory device performance is highlighted.
3 Perspectives for catalyst and electrode design are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Li Y, Yan Y, Du S. (2022), Liquid fueled fuel cells. Comprehensive Renewable Energy. Elsevier, pp 399–419 https://doi.org/10.1016/b978-0-12-819727-1.00110-2
- A.S. Aric, V. Baglio, V. Antonucci, Direct Methanol Fuel Cells: History, Status and Perspectives, in Electrocatalysis of Direct Methanol Fuel Cells, Wiley-VCH Verlag GmbH & Co KGaA. (Weinheim, Germany, 2009), pp.1–78
- W.R. Grove, On the gas voltaic battery.—voltaic action of phosphorus, sulphur and hydrocarbons. Phil. Trans. R. Soc. 135, 351–361 (1845). https://doi.org/10.1098/rstl.1845.0016
- W.R. Grove, On voltaic series and the combination of gases by platinum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 14, 127–130 (1839). https://doi.org/10.1080/14786443908649684
- G.L. Soloveichik, Liquid fuel cells. Beilstein. J. Nanotechnol. 5, 1399–1418 (2014). https://doi.org/10.3762/bjnano.5.153
- Y. Paik, S.S. Kim, O.H. Han, Methanol behavior in direct methanol fuel cells. Angew. Chem. Int. Ed. 47, 94–96 (2008). https://doi.org/10.1002/anie.200703190
- S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem. 461, 14–31 (1999). https://doi.org/10.1016/s0022-0728(98)00197-1
- X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu et al., Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 4, 2736 (2011). https://doi.org/10.1039/c1ee01307f
- J. Ge, H. Liu, Experimental studies of a direct methanol fuel cell. J. Power Sources 142, 56–69 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.022
- M.S. Alias, S.K. Kamarudin, A.M. Zainoodin, M.S. Masdar, Active direct methanol fuel cell: an overview. Int. J. Hydrog. Energy 45, 19620–19641 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.202
- M.W. Breiter, Anodic oxidation of formic acid on platinum—I. Adsorption of formic acid, oxygen, and hydrogen in perchloric acid solutions. Electrochim. Acta 8, 447–456 (1963). https://doi.org/10.1016/0013-4686(63)85002-1
- M.W. Breiter, Anodic oxidation of formic acid on platinum—II. Interpretation of potentiostatic current/potential curves. Reaction mechanism in perchloric acid solutions. Electrochim. Acta 8, 457–470 (1963). https://doi.org/10.1016/0013-4686(63)85003-3
- Z. Li, X. Jiang, X. Wang, J. Hu, Y. Liu et al., Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B Environ. 277, 119135 (2020). https://doi.org/10.1016/j.apcatb.2020.119135
- Y. Hu, P. Wu, Y. Yin, H. Zhang, C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B Environ. 111, 208–217 (2012). https://doi.org/10.1016/j.apcatb.2011.10.001
- A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 38, 445–457 (1997). https://doi.org/10.1016/S0920-5861(97)00054-0
- S.M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu et al., Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv. Funct. Mater. 20, 3742–3746 (2010). https://doi.org/10.1002/adfm.201001035
- H. Huang, S. Yang, R. Vajtai, X. Wang, P.M. Ajayan, Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 26, 5160–5165 (2014). https://doi.org/10.1002/adma.201401877
- G.A. Olah, Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. 44, 2636–2639 (2005). https://doi.org/10.1002/anie.200462121
- Y. Zuo, W. Sheng, W. Tao, Z. Li, Direct methanol fuel cells system–a review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Sci. Technol. 114, 29–41 (2022). https://doi.org/10.1016/j.jmst.2021.10.031
- U.B. Demirci, Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J. Power Sources 169, 239–246 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.050
- F. Barbir, Fuel cell basic chemistry and thermodynamics, in PEM Fuel Cells. (Elsevier, 2013), pp.17–32. https://doi.org/10.1016/B978-0-12-387710-9.00002-3
- P. Hong, S. Liao, J. Zeng, X. Huang, Design, fabrication and performance evaluation of a miniature air breathing direct formic acid fuel cell based on printed circuit board technology. J. Power Sources 195, 7332–7337 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.024
- M. Choi, C.-Y. Ahn, H. Lee, J.K. Kim, S.-H. Oh et al., Bi-modified Pt supported on carbon black as electro-oxidation catalyst for 300 W formic acid fuel cell stack. Appl. Catal. B Environ. 253, 187–195 (2019). https://doi.org/10.1016/j.apcatb.2019.04.059
- Z.A. Che Ramli, J. Pasupuleti, T.S. Tengku Saharuddin, Y.N. Yusoff, W.N.R.W. Isahak et al., Electrocatalytic activities of platinum and palladium catalysts for enhancement of direct formic acid fuel cells: an updated progress. Alex. Eng. J. 76, 701–733 (2023). https://doi.org/10.1016/j.aej.2023.06.069
- R. Bhaskaran, B.G. Abraham, R. Chetty, Recent advances in electrocatalysts, mechanism, and cell architecture for direct formic acid fuel cells. Wiley Interdiscip. Rev. Energy Environ. 11, e419 (2022). https://doi.org/10.1002/wene.419
- J. Li, A milestone in single-atom catalysis for direct formic acid fuel cell. Natl. Sci. Rev. 7, 1762 (2020). https://doi.org/10.1093/nsr/nwaa228
- H. Cheng, J. Wang, C. Wu, Z. Liu, Electrocatalysts for formic acid-powered PEM fuel cells: challenges and prospects. Energy Mater. Adv. 4, 0067 (2023). https://doi.org/10.34133/energymatadv.0067
- E. Mülle, S. Tanaka, Über die pulsierende elektrolytische Oxydation der Ameisensäure. Z. Für Elektrochem. Und Angew. Phys. Chem. 34, 256–264 (1928). https://doi.org/10.1002/bbpc.19280340510
- R.P. Buck, L.R. Griffith, Voltammetric and chronopotentiometric study of the anodic oxidation of methanol, formaldehyde, and formic acid. J. Electrochem. Soc. 109, 1005 (1962). https://doi.org/10.1149/1.2425226
- M. Weber, J.-T. Wang, S. Wasmus, R.F. Savinell, Formic acid oxidation in a polymer electrolyte fuel cell: a real-time mass-spectrometry study. J. Electrochem. Soc. 143, L158–L160 (1996). https://doi.org/10.1149/1.1836961
- C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski et al., Direct formic acid fuel cells. J. Power Sources 111, 83–89 (2002). https://doi.org/10.1016/S0378-7753(02)00271-9
- A. Capon, R. Parson, The oxidation of formic acid at noble metal electrodes. J. Electroanal. Chem. Interfacial Electrochem. 44, 1–7 (1973). https://doi.org/10.1016/s0022-0728(73)80508-x
- C. Rice, Catalysts for direct formic acid fuel cells. J. Power Sources 115, 229–235 (2003). https://doi.org/10.1016/s0378-7753(03)00026-0
- J.-H. Choi, K.-J. Jeong, Y. Dong, J. Han, T.-H. Lim et al., Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 163, 71–75 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.072
- S. Ha, R. Larsen, R.I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J. Power Sources 144, 28–34 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.031
- J.B. Xu, T.S. Zhao, Z.X. Liang, Carbon supported platinum–gold alloy catalyst for direct formic acid fuel cells. J. Power Sources 185, 857–861 (2008). https://doi.org/10.1016/j.jpowsour.2008.09.039
- A. Capon, R. Parsons, The oxidation of formic acid on noble metal electrodes. J. Electroanal. Chem. Interfacial Electrochem. 44, 239–254 (1973). https://doi.org/10.1016/s0022-0728(73)80250-5
- S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Direct formic acid fuel cells with 600 mA cm–2 at 0.4 V and 22 °C. Fuel Cells 4, 337–343 (2004). https://doi.org/10.1002/fuce.200400052
- C.M. Miesse, W.S. Jung, K.-J. Jeong, J.K. Lee, J. Lee et al., Direct formic acid fuel cell portable power system for the operation of a laptop computer. J. Power Sources 162, 532–540 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.013
- M. Eikerling, A. Kornyshev, A. Kucernak, Driving the hydrogen economy. Phys. World 20, 32–36 (2007). https://doi.org/10.1088/2058-7058/20/7/31
- B. Beden, A. Bewick, C. Lamy, A comparative study of formic acid adsorption on a platinum electrode by both electrochemical and emirs techniques. J. Electroanal. Chem. Interfacial Electrochem. 150, 505–511 (1983). https://doi.org/10.1016/S0022-0728(83)80230-7
- A. Capon, R. Parsons, The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 45, 205–231 (1973). https://doi.org/10.1016/S0022-0728(73)80158-5
- R.R. Adžić, A.V. Tripković, W.E. O’Grady, Structural effects in electrocatalysis. Nature 296, 137–138 (1982). https://doi.org/10.1038/296137a0
- M. Osawa, K.-I. Komatsu, G. Samjeské, T. Uchida, T. Ikeshoji et al., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew. Chem. Int. Ed. 50, 1159–1163 (2011). https://doi.org/10.1002/anie.201004782
- A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanops: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. (2002). https://doi.org/10.1039/b203392e
- A. Cuesta, G. Cabello, M. Osawa, C. Gutiérrez, Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal. 2, 728–738 (2012). https://doi.org/10.1021/cs200661z
- A. Cuesta, G. Cabello, C. Gutiérrez, M. Osawa, Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes. Phys. Chem. Chem. Phys. 13, 20091–20095 (2011). https://doi.org/10.1039/C1CP22498K
- J. Joo, T. Uchida, A. Cuesta, M.T.M. Koper, M. Osawa, The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: a mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochim. Acta 129, 127–136 (2014). https://doi.org/10.1016/j.electacta.2014.02.040
- J. Joo, T. Uchida, A. Cuesta, M.T.M. Koper, M. Osawa, Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum. J. Am. Chem. Soc. 135, 9991–9994 (2013). https://doi.org/10.1021/ja403578s
- A. Ferre-Vilaplana, J.V. Perales-Rondón, C. Buso-Rogero, J.M. Feliu, E. Herrero, Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces. J. Mater. Chem. A 5, 21773–21784 (2017). https://doi.org/10.1039/C7TA07116G
- A. Betts, V. Briega-Martos, A. Cuesta, E. Herrero, Adsorbed formate is the last common intermediate in the dual-path mechanism of the electrooxidation of formic acid. ACS Catal. 10, 8120–8130 (2020). https://doi.org/10.1021/acscatal.0c00791
- J. Xu, D. Yuan, F. Yang, D. Mei, Z. Zhang et al., On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Phys. Chem. Chem. Phys. 15, 4367–4376 (2013). https://doi.org/10.1039/C3CP44074E
- K.A. Schwarz, R. Sundararaman, T.P. Moffat, T.C. Allison, Formic acid oxidation on platinum: a simple mechanistic study. Phys. Chem. Chem. Phys. 17, 20805–20813 (2015). https://doi.org/10.1039/C5CP03045E
- F. He, K. Li, C. Yin, Y. Wang, M. Jiao et al., A first-principles study on the effect of phosphorus-doped palladium catalyst for formic acid dissociation. Appl. Surf. Sci. 387, 221–227 (2016). https://doi.org/10.1016/j.apsusc.2016.06.117
- Y. Wang, P. Liu, D. Zhang, C. Liu, Theoretical study of the mechanism of formic acid decomposition on the PdAg(111) surface. Int. J. Hydrog. Energy 41, 7342–7351 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.116
- Y. Tong, K. Cai, M. Wolf, R.K. Campen, Probing the electrooxidation of weakly adsorbed formic acid on Pt(100). Catal. Today 260, 66–71 (2016). https://doi.org/10.1016/j.cattod.2015.08.015
- K. Shen, C. Jia, B. Cao, H. Xu, J. Wang et al., Comparison of catalytic activity between Au(110) and Au(111) for the electro-oxidation of methanol and formic acid: experiment and density functional theory calculation. Electrochim. Acta 256, 129–138 (2017). https://doi.org/10.1016/j.electacta.2017.10.026
- R. Zhang, M. Yang, M. Peng, L. Ling, B. Wang, Understanding the role of Pd: Cu ratio, surface and electronic structures in Pd-Cu alloy material applied in direct formic acid fuel cells. Appl. Surf. Sci. 465, 730–739 (2019). https://doi.org/10.1016/j.apsusc.2018.09.196
- C. Akalezi, A.C. Maduabuchi, S. Nwanonenyi, E.E. Oguzie, Optimizing power output in direct formic acid fuel cells using palladium film mediation: experimental and DFT studies. J. Electrochem. Sci. Eng. 14, 547–558 (2024). https://doi.org/10.5599/jese.1955
- C.X. Wen, Y. Ling, Y.Z. Zhang, H. Pan, G.K. Liu et al., In-situ electrochemical surface-enhanced Raman spectroscopy study of formic acid electrooxidation at variable temperatures by high-frequency heating technology. Electrochim. Acta 281, 323–328 (2018). https://doi.org/10.1016/j.electacta.2018.05.167
- M.-K. Zhang, Z. Wei, W. Chen, M.-L. Xu, J. Cai et al., Bell shape vs volcano shape pH dependent kinetics of the electrochemical oxidation of formic acid and formate, intrinsic kinetics or local pH shift? Electrochim. Acta 363, 137160 (2020). https://doi.org/10.1016/j.electacta.2020.137160
- Z. Niu, Y. Wan, X. Li, M. Zhang, B. Liu et al., In-situ regulation of formic acid oxidation via elastic strains. J. Catal. 389, 631–635 (2020). https://doi.org/10.1016/j.jcat.2020.07.004
- A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015). https://doi.org/10.1016/j.jcat.2014.12.033
- S. Hu, L. Scudiero, S. Ha, Electronic effect on oxidation of formic acid on supported Pd–Cu bimetallic surface. Electrochim. Acta 83, 354–358 (2012). https://doi.org/10.1016/j.electacta.2012.06.111
- S. Hu, L. Scudiero, S. Ha, Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem. Commun. 38, 107–109 (2014). https://doi.org/10.1016/j.elecom.2013.11.010
- B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- T. Hofmann, T.H. Yu, M. Folse, L. Weinhardt, M. Bär et al., Using photoelectron spectroscopy and quantum mechanics to determine d-band energies of metals for catalytic applications. J. Phys. Chem. C 116, 24016–24026 (2012). https://doi.org/10.1021/jp303276z
- T. Shen, J. Zhang, K. Chen, S. Deng, D. Wang, Recent progress of palladium-based electrocatalysts for the formic acid oxidation reaction. Energy Fuels 34, 9137–9153 (2020). https://doi.org/10.1021/acs.energyfuels.0c01820
- T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007). https://doi.org/10.1016/j.electacta.2007.02.041
- S. Hu, F. Che, B. Khorasani, M. Jeon, C.W. Yoon et al., Improving the electrochemical oxidation of formic acid by tuning the electronic properties of Pd-based bimetallic nanops. Appl. Catal. B Environ. 254, 685–692 (2019). https://doi.org/10.1016/j.apcatb.2019.03.072
- T. He, W. Wang, F. Shi, X. Yang, X. Li et al., Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021). https://doi.org/10.1038/s41586-021-03870-z
- S. Hu, F. Munoz, J. Noborikawa, J. Haan, L. Scudiero et al., Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Appl. Catal. B Environ. 180, 758–765 (2016). https://doi.org/10.1016/j.apcatb.2015.07.023
- C.Y. Ahn, J.E. Park, S. Kim, O.H. Kim, W. Hwang et al., Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells. Chem. Rev. 121, 15075–15140 (2021). https://doi.org/10.1021/acs.chemrev.0c01337
- M. Liu, Z. Zhao, X. Duan, Y. Huang, Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 31, 1802234 (2019). https://doi.org/10.1002/adma.201802234
- M. Escudero-Escribano, K.D. Jensen, A.W. Jensen, Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Curr. Opin. Electrochem. 8, 135–146 (2018). https://doi.org/10.1016/j.coelec.2018.04.013
- Y. Chen, Y. Yang, G. Fu, L. Xu, D. Sun et al., Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. J. Mater. Chem. A 6, 10632–10638 (2018). https://doi.org/10.1039/C8TA03322F
- W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang et al., Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 32, 1907879 (2020). https://doi.org/10.1002/adma.201907879
- Z. Chen, J. Zhang, Y. Zhang, Y. Liu, X. Han et al., NiO-induced synthesis of PdNi bimetallic hollow nanocrystals with enhanced electrocatalytic activities toward ethanol and formic acid oxidation. Nano Energy 42, 353–362 (2017). https://doi.org/10.1016/j.nanoen.2017.11.033
- X. Yan, X. Hu, G. Fu, L. Xu, J.-M. Lee et al., Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 14, 1703940 (2018). https://doi.org/10.1002/smll.201703940
- L. Zhang, L.-X. Ding, Y. Luo, Y. Zeng, S. Wang et al., PdO/Pd-CeO2 hollow spheres with fresh Pd surface for enhancing formic acid oxidation. Chem. Eng. J. 347, 193–201 (2018). https://doi.org/10.1016/j.cej.2018.04.082
- X. Zuo, R. Yan, L. Zhao, Y. Long, L. Shi et al., A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. J. Mater. Chem. A 10, 14857–14865 (2022). https://doi.org/10.1039/D2TA02597C
- N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada, Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 110, 12480–12484 (2006). https://doi.org/10.1021/jp0608372
- B. Cai, Y. Ma, S. Wang, N. Yi, Y. Zheng et al., Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic properties towards formic acid oxidation. Nanoscale 11, 18015–18020 (2019). https://doi.org/10.1039/c9nr06344g
- A.B. Yousaf, M. Imran, A. Zeb, X. Xie, K. Liang et al., Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid. Catal. Sci. Technol. 6, 4794–4801 (2016). https://doi.org/10.1039/C5CY02217G
- Y. Shen, Y. Zhou, B. Gong, K. Xiao, L. Wang et al., One-pot synthesis of ultrafine decahedral platinum crystal decorated graphite nanosheets for the electro-oxidation of formic acid. J. Catal. 345, 70–77 (2017). https://doi.org/10.1016/j.jcat.2016.11.024
- X. Jiang, X. Yan, W. Ren, Y. Jia, J. Chen et al., Porous AgPt@Pt nanooctahedra as an efficient catalyst toward formic acid oxidation with predominant dehydrogenation pathway. ACS Appl. Mater. Interfaces 8, 31076–31082 (2016). https://doi.org/10.1021/acsami.6b11895
- W. Ye, S. Chen, M. Ye, C. Ren, J. Ma et al., Pt4PdCu0.4 alloy nanoframes as highly efficient and robust bifunctional electrocatalysts for oxygen reduction reaction and formic acid oxidation. Nano Energy 39, 532–538 (2017). https://doi.org/10.1016/j.nanoen.2017.07.025
- Y. Wang, X. Jiang, G. Fu, Y. Li, Y. Tang et al., Cu5Pt dodecahedra with low-Pt content: facile synthesis and outstanding formic acid electrooxidation. ACS Appl. Mater. Interfaces 11, 34869–34877 (2019). https://doi.org/10.1021/acsami.9b09153
- F. Saleem, B. Ni, Y. Yong, L. Gu, X. Wang, Ultra-small tetrametallic Pt-Pd-Rh-Ag nanoframes with tunable behavior for direct formic acid/methanol oxidation. Small 12, 5261–5268 (2016). https://doi.org/10.1002/smll.201601299
- D. Liu, M. Xie, C. Wang, L. Liao, L. Qiu et al., Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 9, 1590–1599 (2016). https://doi.org/10.1007/s12274-016-1053-6
- S. Du, A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires. J. Power. Sources 195, 289–292 (2010). https://doi.org/10.1016/j.jpowsour.2009.06.091
- E. Fidiani, G. Thirunavukkarasu, Y. Li, Y.-L. Chiu, S. Du, Ultrathin AgPt alloy nanorods as low-cost oxygen reduction reaction electrocatalysts in proton exchange membrane fuel cells. J. Mater. Chem. A 8, 11874–11883 (2020). https://doi.org/10.1039/D0TA02748K
- L. Yang, G. Li, J. Chang, J. Ge, C. Liu et al., Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: coefficient of lattice strain and electrochemical surface area. Appl. Catal. B Environ. 260, 118200 (2020). https://doi.org/10.1016/j.apcatb.2019.118200
- J. Ding, Z. Liu, X. Liu, J. Liu, Y. Deng et al., Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation. Adv. Energy Mater. 9, 1900955 (2019). https://doi.org/10.1002/aenm.201900955
- S. Du, K. Lin, S.K. Malladi, Y. Lu, S. Sun et al., Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Sci. Rep. 4, 6439 (2014). https://doi.org/10.1038/srep06439
- Y. Lu, S. Du, R. Steinberger-Wilckens, One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—a review. Appl. Catal. B Environ. 199, 292–314 (2016). https://doi.org/10.1016/j.apcatb.2016.06.022
- S. Du, Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications. Engineering 7, 33–49 (2021). https://doi.org/10.1016/j.eng.2020.09.014
- C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanolfuelcells. Energy Environ. Sci. 4, 1161–1176 (2011). https://doi.org/10.1039/C0EE00197J
- X. Jiang, G. Fu, X. Wu, Y. Liu, M. Zhang et al., Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 11, 499–510 (2018). https://doi.org/10.1007/s12274-017-1658-4
- F. Li, Y. Ding, X. Xiao, S. Yin, M. Hu et al., From monometallic Au nanowires to trimetallic AuPtRh nanowires: interface control for the formic acid electrooxidation. J. Mater. Chem. A 6, 17164–17170 (2018). https://doi.org/10.1039/C8TA05710A
- H. Xu, B. Yan, S. Li, J. Wang, C. Wang et al., One-pot fabrication of N-doped graphene supported dandelion-like PtRu nanocrystals as efficient and robust electrocatalysts towards formic acid oxidation. J. Colloid Interface Sci. 512, 96–104 (2018). https://doi.org/10.1016/j.jcis.2017.10.049
- Y. Han, Y. Ouyang, Z. Xie, J. Chen, F. Chang et al., Controlled growth of Pt–Au alloy nanowires and their performance for formic acid electrooxidation. J. Mater. Sci. Technol. 32, 639–645 (2016). https://doi.org/10.1016/j.jmst.2016.04.014
- X. Qu, Z. Cao, B. Zhang, X. Tian, F. Zhu et al., One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 52, 4493–4496 (2016). https://doi.org/10.1039/c6cc00184j
- B. Pramanick, T. Kumar, A. Halder, P.F. Siril, Engineering the morphology of palladium nanostructures to tune their electrocatalytic activity in formic acid oxidation reactions. Nanoscale Adv. 2, 5810–5820 (2020). https://doi.org/10.1039/d0na00798f
- L. Huang, J. Yang, M. Wu, Z. Shi, Z. Lin et al., PdAg@Pd core-shell nanotubes: superior catalytic performance towards electrochemical oxidation of formic acid and methanol. J. Power Sources 398, 201–208 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.070
- W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li et al., 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 33, e2100713 (2021). https://doi.org/10.1002/adma.202100713
- N. Yang, Z. Zhang, B. Chen, Y. Huang, J. Chen et al., Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 29, 1700769 (2017). https://doi.org/10.1002/adma.201700769
- L.Y. Zhang, Y. Ouyang, S. Wang, D. Wu, M. Jiang et al., Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 15, e1904245 (2019). https://doi.org/10.1002/smll.201904245
- H. Wang, Y. Li, C. Li, Z. Wang, Y. Xu et al., Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. J. Mater. Chem. A 6, 17514–17518 (2018). https://doi.org/10.1039/C8TA06908E
- J. Lai, W. Niu, S. Li, F. Wu, R. Luque et al., Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 4, 807–812 (2016). https://doi.org/10.1039/C5TA08882H
- F. Li, Q. Xue, G. Ma, S. Li, M. Hu et al., Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. J. Power Sources 450, 227615 (2020). https://doi.org/10.1016/j.jpowsour.2019.227615
- H. Xu, B. Yan, K. Zhang, J. Wang, S. Li et al., N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl. Surf. Sci. 416, 191–199 (2017). https://doi.org/10.1016/j.apsusc.2017.04.160
- H. Shi, F. Liao, W. Zhu, C. Shao, M. Shao, Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation. Int. J. Hydrog. Energy 45, 16071–16079 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.003
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- Q. Yang, L. Shi, B. Yu, J. Xu, C. Wei et al., Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction. J. Mater. Chem. A 7, 18846–18851 (2019). https://doi.org/10.1039/C9TA03945G
- X. Qiu, H. Zhang, P. Wu, F. Zhang, S. Wei et al., One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 27, 1603852 (2017). https://doi.org/10.1002/adfm.201603852
- J. Ding, Z. Liu, X. Liu, B. Liu, J. Liu et al., Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem. Int. Ed. 59, 5092–5101 (2020). https://doi.org/10.1002/anie.201914649
- L.Y. Zhang, F. Wang, S. Wang, H. Huang, X. Meng et al., Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 30, 2003933 (2020). https://doi.org/10.1002/adfm.202003933
- N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007). https://doi.org/10.1126/science.1140484
- A. Klinkova, P. De Luna, E.H. Sargent, E. Kumacheva, P.V. Cherepanov, Enhanced electrocatalytic performance of palladium nanops with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 5, 11582–11585 (2017). https://doi.org/10.1039/C7TA00902J
- M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy et al., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060
- Y. Xu, S. Yu, T. Ren, C. Li, S. Yin et al., A quaternary metal–metalloid–nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 8, 2424–2429 (2020). https://doi.org/10.1039/c9ta11466a
- B. Yang, W. Zhang, S. Hu, C. Liu, X. Wang et al., Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J. Colloid Interface Sci. 600, 503–512 (2021). https://doi.org/10.1016/j.jcis.2021.05.018
- Y. Chen, H.-J. Niu, Y.-G. Feng, J.-H. Wu, A.-J. Wang et al., Three-dimensional hierarchical urchin-like PdCuPt nanoassembles with zigzag branches: a highly efficient and durable electrocatalyst for formic acid oxidation reaction. Appl. Surf. Sci. 510, 145480 (2020). https://doi.org/10.1016/j.apsusc.2020.145480
- M. Wu, F. Dong, Y. Yang, X. Cui, X. Liu et al., Emerging atomically precise metal nanoclusters and ultrasmall nanops for efficient electrochemical energy catalysis: synthesis strategies and surface/interface engineering. Electrochem. Energy Rev. 7, 10 (2024). https://doi.org/10.1007/s41918-024-00217-w
- M. Liu, Z. Liu, M. Xie, Z. Zhang, S. Zhang et al., Ligand-mediated self-terminating growth of single-atom Pt on Au nanocrystals for improved formic acid oxidation activity. Adv. Energy Mater. 12, 2103195 (2022). https://doi.org/10.1002/aenm.202103195
- S. Yang, J. Kim, Y.J. Tak, A. Soon, H. Lee, Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016). https://doi.org/10.1002/anie.201509241
- Y. Hu, C. Chen, T. Shen, X. Guo, C. Yang et al., Hollow carbon nanorod confined single atom Rh for direct formic acid electrooxidation. Adv. Sci. 9, e2205299 (2022). https://doi.org/10.1002/advs.202205299
- Y. Xiong, J. Dong, Z.-Q. Huang, P. Xin, W. Chen et al., Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x
- Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen et al., Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 12, 764–772 (2020). https://doi.org/10.1038/s41557-020-0473-9
- M.N. Krstajić Pajić, S.I. Stevanović, V.V. Radmilović, A. Gavrilović-Wohlmuther, P. Zabinski et al., Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B Environ. 243, 585–593 (2019). https://doi.org/10.1016/j.apcatb.2018.10.064
- H. Fan, M. Cheng, L. Wang, Y. Song, Y. Cui et al., Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 48, 1–9 (2018). https://doi.org/10.1016/j.nanoen.2018.03.018
- J.V. Perales-Rondón, J. Solla-Gullón, E. Herrero, C.M. Sánchez-Sánchez, Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanops. Appl. Catal. B Environ. 201, 48–57 (2017). https://doi.org/10.1016/j.apcatb.2016.08.011
- X. Chen, L.P. Granda-Marulanda, I.T. McCrum, M.T.M. Koper, How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 13, 38 (2022). https://doi.org/10.1038/s41467-021-27793-5
- D. Chen, P. Sun, H. Liu, J. Yang, Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A 5, 4421–4429 (2017). https://doi.org/10.1039/C6TA10476B
- X. Jiang, Y. Liu, J. Wang, Y. Wang, Y. Xiong et al., 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 12, 323–329 (2019). https://doi.org/10.1007/s12274-018-2218-2
- B.E. Conway, H. Angerstein-Kozlowska, G. Czartoryska, “Third body” effect in the auto-inhibition of formic acid oxidation at electrodes. Z. Für Phys. Chem. 112, 195–214 (1978). https://doi.org/10.1524/zpch.1978.112.2.195
- T. Shen, S. Chen, R. Zeng, M. Gong, T. Zhao et al., Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic. ACS Catal. 10, 9977–9985 (2020). https://doi.org/10.1021/acscatal.0c01537
- L. Sui, W. An, Y. Feng, Z. Wang, J. Zhou et al., Bimetallic Pd-based surface alloys promote electrochemical oxidation of formic acid: mechanism, kinetics and descriptor. J. Power. Sources 451, 227830 (2020). https://doi.org/10.1016/j.jpowsour.2020.227830
- W.H. Saputera, J. Scott, N. Ganda, G.K.-C. Low, R. Amal, The role of adsorbed oxygen in formic acid oxidation by Pt/TiO2 facilitated by light pre-treatment. Catal. Sci. Technol. 6, 6679–6687 (2016). https://doi.org/10.1039/C6CY00939E
- I.M. Al-Akraa, Efficient electro-oxidation of formic acid at Pd-MnOx binary nanocatalyst: optimization of deposition strategy. Int. J. Hydrog. Energy 42, 4660–4666 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.090
- A.M. Mohammad, I.M. Al-Akraa, M.S. El-Deab, Superior electrocatalysis of formic acid electro-oxidation on a platinum, gold and manganese oxide nanop-based ternary catalyst. Int. J. Hydrog. Energy 43, 139–149 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.016
- P.C. Meléndez-González, J.C. Carrillo-Rodríguez, D. Morales-Acosta, S. Mukherjee, F.J. Rodríguez-Varela, Significant promotion effect of Fe3O4 on the mass catalytic activity of Pd nanocatalyst for the formic acid oxidation reaction. Int. J. Hydrog. Energy 42, 30284–30290 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.172
- H. Ali, F.K. Kanodarwala, I. Majeed, J.A. Stride, M.A. Nadeem, La2O3 promoted Pd/rGO electro-catalysts for formic acid oxidation. ACS Appl. Mater. Interfaces 8, 32581–32590 (2016). https://doi.org/10.1021/acsami.6b09645
- G.H. El-Nowihy, M.S. El-Deab, Boosted electrocatalytic oxidation of formic acid at CoOx/Pd/Au nanop-based ternary catalyst. Int. J. Hydrog. Energy 45, 21297–21307 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.175
- C. Rettenmaier, R.M. Arán-Ais, J. Timoshenko, R. Rizo, H.S. Jeon et al., Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes. ACS Catal. 10, 14540–14551 (2020). https://doi.org/10.1021/acscatal.0c03212
- Y. Xu, M. Wang, S. Yu, T. Ren, K. Ren et al., Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance. Chem. Eng. J. 421, 127751 (2021). https://doi.org/10.1016/j.cej.2020.127751
- T.-J. Wang, Y.-C. Jiang, J.-W. He, F.-M. Li, Y. Ding et al., Porous palladium phosphide nanotubes for formic acid electrooxidation. Carbon Energy 4, 283–293 (2022). https://doi.org/10.1002/cey2.170
- Y. Bao, H. Liu, Z. Liu, F. Wang, L. Feng, Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation. Appl. Catal. B Environ. 274, 119106 (2020). https://doi.org/10.1016/j.apcatb.2020.119106
- Q. Lv, Q. Meng, W. Liu, N. Sun, K. Jiang et al., Pd–PdO interface as active site for HCOOH selective dehydrogenation at ambient condition. J. Phys. Chem. C 122, 2081–2088 (2018). https://doi.org/10.1021/acs.jpcc.7b08105
- L. Feng, J. Chang, K. Jiang, H. Xue, C. Liu et al., Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy 30, 355–361 (2016). https://doi.org/10.1016/j.nanoen.2016.10.023
- Y. Shi, R. Schimmenti, S. Zhu, K. Venkatraman, R. Chen et al., Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 144, 2556–2568 (2022). https://doi.org/10.1021/jacs.1c10199
- H. Cheng, J. Zhou, H. Xie, S. Zhang, J. Zhang et al., Hydrogen intercalation-induced crystallization of ternary PdNiP alloy nanops for direct formic acid fuel cells. Adv. Energy Mater. 13, 2203893 (2023). https://doi.org/10.1002/aenm.202203893
- H. Zhang, K. Lu, B. Li, Y. Liu, Y. Su et al., Microfluidic, one-batch synthesis of Pd nanocrystals on N-doped carbon in surfactant-free deep eutectic solvents for formic acid electrochemical oxidation. ACS Appl. Mater. Interfaces 12, 42704–42710 (2020). https://doi.org/10.1021/acsami.0c10136
- M. Lou, R. Wang, J. Zhang, X. Tang, L. Wang et al., Optimized synthesis of nitrogen and phosphorus dual-doped coal-based carbon fiber supported Pd catalyst with enhanced activities for formic acid electrooxidation. ACS Appl. Mater. Interfaces 11, 6431–6441 (2019). https://doi.org/10.1021/acsami.8b20736
- W. Shen, L. Ge, Y. Sun, F. Liao, L. Xu et al., Rhodium nanops/F-doped graphene composites as multifunctional electrocatalyst superior to Pt/C for hydrogen evolution and formic acid oxidation reaction. ACS Appl. Mater. Interfaces 10, 33153–33161 (2018). https://doi.org/10.1021/acsami.8b09297
- H. Xu, B. Yan, S. Li, J. Wang, C. Wang et al., N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 334, 2638–2646 (2018). https://doi.org/10.1016/j.cej.2017.10.175
- Y. Zhou, X.-C. Hu, Q. Fan, H.-R. Wen, Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 4, 4587–4591 (2016). https://doi.org/10.1039/C5TA09956K
- L. Yang, X. Wang, D. Liu, G. Cui, B. Dou et al., Efficient anchoring of nanoscale Pd on three-dimensional carbon hybrid as highly active and stable catalyst for electro-oxidation of formic acid. Appl. Catal. B Environ. 263, 118304 (2020). https://doi.org/10.1016/j.apcatb.2019.118304
- X. Zhang, J. Zhu, C.S. Tiwary, Z. Ma, H. Huang et al., Palladium nanops supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8, 10858–10865 (2016). https://doi.org/10.1021/acsami.6b01580
- M. Wu, X. Yang, X. Cui, N. Chen, L. Du et al., Engineering Fe-N4 electronic structure with adjacent co-N2C2 and co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15, 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
- R. Feng, D. Li, H. Yang, C. Li, Y. Zhao et al., Epitaxial ultrathin Pt atomic layers on CrN nanop catalysts. Adv. Mater. 36, e2309251 (2024). https://doi.org/10.1002/adma.202309251
- H. Yan, Y. Jiao, A. Wu, C. Tian, L. Wang et al., Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation. J. Mater. Chem. A 6, 7623–7630 (2018). https://doi.org/10.1039/C8TA02488J
- Z. Xi, J. Li, D. Su, M. Muzzio, C. Yu et al., Stabilizing CuPd nanops via CuPd coupling to WO2.72 nanorods in electrochemical oxidation of formic acid. J. Am. Chem. Soc. 139, 15191–15196 (2017). https://doi.org/10.1021/jacs.7b08643
- G.N. Vayssilov, Y. Lykhach, A. Migani, T. Staudt, G.P. Petrova et al., Support nanostructure boosts oxygen transfer to catalytically active platinum nanops. Nat. Mater. 10, 310–315 (2011). https://doi.org/10.1038/nmat2976
- L. Ye, A.H. Mahadi, C. Saengruengrit, J. Qu, F. Xu et al., Ceria nanocrystals supporting Pd for formic acid electrocatalytic oxidation: prominent polar surface metal support interactions. ACS Catal. 9, 5171–5177 (2019). https://doi.org/10.1021/acscatal.9b00421
- S. Ramani, S. Sarkar, V. Vemuri, S.C. Peter, Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanops toward electro-oxidation of formic acid. J. Mater. Chem. A 5, 11572–11576 (2017). https://doi.org/10.1039/C6TA06339J
- Y. Zhou, J. Liu, J. Ye, Z. Zou, J. Ye et al., Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell. Electrochim. Acta 55, 5024–5027 (2010). https://doi.org/10.1016/j.electacta.2010.04.014
- L.Y. Zhang, Y. Ouyang, S. Wang, Y. Gong, M. Jiang et al., Ultrafast synthesis of uniform 4–5 atoms-thin layered Tremella-like Pd nanostructure with extremely large electrochemically active surface area for formic acid oxidation. J. Power Sources 447, 227248 (2020). https://doi.org/10.1016/j.jpowsour.2019.227248
- S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu et al., Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, e1903683 (2019). https://doi.org/10.1002/adma.201903683
- G.A. El-Nagar, K.M. Dawood, M.S. El-Deab, B.E. Al-Andouli, Efficient direct formic acid fuel cell (DFAFC) anode of nano-sized palladium complex: high durability and activity origin. Appl. Catal. B Environ. 213, 118–126 (2017). https://doi.org/10.1016/j.apcatb.2017.05.006
- G.A. El-Nagar, A.F. Darweesh, I. Sadiek, A novel nano-palladium complex anode for formic acid electro-oxidation. Electrochim. Acta 215, 334–338 (2016). https://doi.org/10.1016/j.electacta.2016.08.127
- V. Briega-Martos, J. Solla-Gullón, M.T.M. Koper, E. Herrero, J.M. Feliu, Electrocatalytic enhancement of formic acid oxidation reaction by acetonitrile on well-defined platinum surfaces. Electrochim. Acta 295, 835–845 (2019). https://doi.org/10.1016/j.electacta.2018.11.016
- C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15(1), 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
- A. Caglar, T. Sahan, M.S. Cogenli, A.B. Yurtcan, N. Aktas et al., A novel central composite design based response surface methodology optimization study for the synthesis of Pd/CNT direct formic acid fuel cell anode catalyst. Int. J. Hydrog. Energy 43, 11002–11011 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.208
- O.F. Er, A. Caglar, B. Ulas, H. Kivrak, A. Kivrak, Novel carbon nanotube supported Co@Ag@Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method. Mater. Chem. Phys. 241, 122422 (2020). https://doi.org/10.1016/j.matchemphys.2019.122422
- B. Ulas, A. Caglar, O. Sahin, H. Kivrak, Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J. Colloid Interface Sci. 532, 47–57 (2018). https://doi.org/10.1016/j.jcis.2018.07.120
- Y. Pan, Y. Zhu, J. Shen, Y. Chen, C. Li, Carbon-loaded ultrafine fully crystalline phase palladium-based nanoalloy PdCoNi/C: facile synthesis and high activity for formic acid oxidation. Nanoscale 11, 17334–17339 (2019). https://doi.org/10.1039/C9NR06671C
- J.K. Yoo, M. Choi, S. Yang, B. Shong, H.-S. Chung et al., Formic acid electrooxidation activity of Pt and Pt/Au catalysts: effects of surface physical properties and irreversible adsorption of Bi. Electrochim. Acta 273, 307–317 (2018). https://doi.org/10.1016/j.electacta.2018.04.071
- H. Kivrak, D. Atbas, O. Alal, M.S. Çögenli, A. Bayrakceken et al., A complementary study on novel PdAuCo catalysts: synthesis, characterization, direct formic acid fuel cell application, and exergy analysis. Int. J. Hydrog. Energy 43, 21886–21898 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.135
- A. Caglar, M.S. Cogenli, A.B. Yurtcan, H. Kivrak, Effective carbon nanotube supported metal (M=Au, Ag Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells. Renew. Energy 150, 78–90 (2020). https://doi.org/10.1016/j.renene.2019.12.104
- S.R. Chowdhury, T. Maiyalagan, Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanops for formic acid electro-oxidation. Int. J. Hydrog. Energy 44, 14808–14819 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.025
- T. Bhowmik, M.K. Kundu, S. Barman, Highly efficient electrocatalytic oxidation of formic acid on palladium nanops-graphitic carbon nitride composite. Int. J. Hydrog. Energy 42, 212–217 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.095
- M. Sadhukhan, M.K. Kundu, T. Bhowmik, S. Barman, Highly dispersed platinum nanops on graphitic carbon nitride: a highly active and durable electrocatalyst for oxidation of methanol, formic acid and formaldehyde. Int. J. Hydrog. Energy 42, 9371–9383 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.097
- N. Jia, Y. Shi, S. Zhang, X. Chen, P. Chen et al., Carbon nanobowls supported ultrafine palladium nanocrystals: a highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrog. Energy 42, 8255–8263 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.136
- T. Szumełda, A. Drelinkiewicz, E. Lalik, R. Kosydar, D. Duraczyńska et al., Carbon-supported Pd100-XAuX alloy nanops for the electrocatalytic oxidation of formic acid: influence of metal ps composition on activity enhancement. Appl. Catal. B Environ. 221, 393–405 (2018). https://doi.org/10.1016/j.apcatb.2017.09.039
- Y. Jin, J. Zhao, F. Li, W. Jia, D. Liang et al., Nitrogen-doped graphene supported palladium-nickel nanops with enhanced catalytic performance for formic acid oxidation. Electrochim. Acta 220, 83–90 (2016). https://doi.org/10.1016/j.electacta.2016.10.087
- X. Liu, Y. Bu, T. Cheng, W. Gao, Q. Jiang, Flower-like carbon supported Pd–Ni bimetal nanops catalyst for formic acid electrooxidation. Electrochim. Acta 324, 134816 (2019). https://doi.org/10.1016/j.electacta.2019.134816
- B. Gralec, A. Lewera, Catalytic activity of unsupported Pd-Pt nanoalloys with low Pt content towards formic acid oxidation. Appl. Catal. B Environ. 192, 304–310 (2016). https://doi.org/10.1016/j.apcatb.2016.03.073
- J. Yang, S. Yang, Y. Chung, Y. Kwon, Carbon supported palladium-copper bimetallic catalysts for promoting electrochemical oxidation of formic acid and its utilization in direct formic acid fuel cells. Korean J. Chem. Eng. 37, 176–183 (2020). https://doi.org/10.1007/s11814-019-0432-6
- M. Lou, R. Wang, L. Yang, D. Jia, Z. Sun et al., Ionic liquid polyoxometalate-enhanced Pd/N, P-codoped coal-based carbon fiber catalysts for formic acid electrooxidation. Appl. Surf. Sci. 516, 146137 (2020). https://doi.org/10.1016/j.apsusc.2020.146137
- S. Yang, J. Yang, Y. Chung, Y. Kwon, PdBi bimetallic catalysts including polyvinylpyrrolidone surfactant inducing excellent formic acid oxidation reaction and direct formic acid fuel cell performance. Int. J. Hydrog. Energy 42, 17211–17220 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.018
- P. Rupa Kasturi, R. Harivignesh, Y.S. Lee, R. Kalai Selvan, Polyol assisted formaldehyde reduction of bi-metallic Pt-Pd supported agro-waste derived carbon spheres as an efficient electrocatalyst for formic acid and ethylene glycol oxidation. J. Colloid Interface Sci. 561, 358–371 (2020). https://doi.org/10.1016/j.jcis.2019.10.121
- Y. Yang, H. Huang, B. Shen, L. Jin, Q. Jiang et al., Anchoring nanosized Pd on three-dimensional boron- and nitrogen-codoped graphene aerogels as a highly active multifunctional electrocatalyst for formic acid and methanol oxidation reactions. Inorg. Chem. Front. 7, 700–708 (2020). https://doi.org/10.1039/C9QI01448A
- H. Huang, Y. Wei, B. Shen, Y. Zhang, H. He et al., Synthesis of multiple-twinned Pd nanops anchored on graphitic carbon nanosheets for use as highly-active multifunctional electrocatalyst in formic acid and methanol oxidation reactions. Adv. Mater. Interfaces 7, 2000142 (2020). https://doi.org/10.1002/admi.202000142
- T. Gunji, S.H. Noh, T. Tanabe, B. Han, C.Y. Nien et al., Enhanced electrocatalytic activity of carbon-supported ordered intermetallic palladium–lead (Pd3Pb) nanops toward electrooxidation of formic acid. Chem. Mater. 29, 2906–2913 (2017). https://doi.org/10.1021/acs.chemmater.6b05191
- Y. Zhou, D. Liu, Z. Liu, L. Feng, J. Yang, Interfacial Pd–O–Ce linkage enhancement boosting formic acid electrooxidation. ACS Appl. Mater. Interfaces 12, 47065–47075 (2020). https://doi.org/10.1021/acsami.0c15074
- F. Wang, H. Xue, Z. Tian, W. Xing, L. Feng, Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction. J. Power Sources 375, 37–42 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.055
- B. Lesiak, A. Malolepszy, M. Mazurkiewicz-Pawlicka, L. Stobinski, L. Kövér et al., A high stability AuPd-ZrO2-multiwall carbon nanotubes supported-catalyst in a formic acid electro-oxidation reaction. Appl. Surf. Sci. 451, 289–297 (2018). https://doi.org/10.1016/j.apsusc.2018.04.233
- W.-L. Qu, Z.-B. Wang, Y. Gao, C. Deng, R.-H. Wang et al., WO3/C supported Pd catalysts for formic acid electro-oxidation activity. Int. J. Hydrog. Energy 43, 407–416 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.046
- M.S. Çögenli, A. Bayrakçeken, Yurtcan Heteroatom doped 3D graphene aerogel supported catalysts for formic acid and methanol oxidation. Int. J. Hydrog. Energy 45, 650–666 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.226
- L.Y. Zhang, Z.L. Zhao, W. Yuan, C.M. Li, Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 8, 1905–1909 (2016). https://doi.org/10.1039/C5NR08512H
- F. Yang, Y. Zhang, P.-F. Liu, Y. Cui, X.-R. Ge et al., Pd–Cu alloy with hierarchical network structure as enhanced electrocatalysts for formic acid oxidation. Int. J. Hydrog. Energy 41, 6773–6780 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.145
- K. Miao, Y. Luo, J. Zou, J. Yang, F. Zhang et al., PdRu alloy nanops of solid solution in atomic scale: outperformance towards formic acid electro-oxidation in acidic medium. Electrochim. Acta 251, 588–594 (2017). https://doi.org/10.1016/j.electacta.2017.08.167
- Z. Xi, D.P. Erdosy, A. Mendoza-Garcia, P.N. Duchesne, J. Li et al., Pd nanops coupled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 17, 2727–2731 (2017). https://doi.org/10.1021/acs.nanolett.7b00870
- V. Mazumder, S. Sun, Oleylamine-mediated synthesis of Pd nanops for catalytic formic acid oxidation. J. Am. Chem. Soc. 131, 4588–4589 (2009). https://doi.org/10.1021/ja9004915
- J. Pei, J. Mao, X. Liang, Z. Zhuang, C. Chen et al., Ultrathin Pt–Zn nanowires: high-performance catalysts for electrooxidation of methanol and formic acid. ACS Sustain. Chem. Eng. 6, 77–81 (2018). https://doi.org/10.1021/acssuschemeng.7b03234
- Y. Ma, T. Li, H. Chen, X. Chen, S. Deng et al., A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation. J. Energy Chem. 26, 1238–1244 (2017). https://doi.org/10.1016/j.jechem.2017.10.024
- D. Chen, L. Xu, H. Liu, J. Yang, Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy Environ. 4, 254–263 (2019). https://doi.org/10.1016/j.gee.2018.09.002
- X. Hu, J. Zou, H. Gao, X. Kang, Trimetallic Ru@AuPt core-shell nanostructures: the effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation. J. Colloid Interface Sci. 570, 72–79 (2020). https://doi.org/10.1016/j.jcis.2020.02.111
- T. Huang, S.K. Moon, J.-M. Lee, Polymer-assisted formation of 3D Pd nanoassemblies: highly active catalysts for formic acid electrooxidation. Sustain. Energy Fuels 1, 450–457 (2017). https://doi.org/10.1039/C7SE00031F
- L. Zhang, S.-I. Choi, J. Tao, H.-C. Peng, S. Xie et al., Pd–Cu bimetallic tripods: a mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 24, 7520–7529 (2014). https://doi.org/10.1002/adfm.201402350
- F.-C. Chang, Y.-C. Li, R.-J. Wu, C.-H. Chen, Pt–Pd floating nanoarrays templated on pluronic F127 micelles as effective surface-enhanced Raman scattering sensors. ACS Appl. Nano Mater. 2, 2515–2524 (2019). https://doi.org/10.1021/acsanm.9b00434
- L. Wang, Y. Yamauchi, Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanops consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 132, 13636–13638 (2010). https://doi.org/10.1021/ja105640p
- S. Liu, Z. Wang, H. Zhang, S. Yin, Y. Xu et al., B-Doped PdRu nanopillar assemblies for enhanced formic acid oxidation electrocatalysis. Nanoscale 12, 19159–19164 (2020). https://doi.org/10.1039/d0nr05464j
- Y. Peng, L. Li, R. Tao, L. Tan, M. Qiu et al., One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 11, 3222–3232 (2018). https://doi.org/10.1007/s12274-017-1851-5
- P. Kankla, J. Limtrakul, M.L.H. Green, N. Chanlek, P. Luksirikul, Electrooxidation of formic acid enhanced by surfactant-free palladium nanocubes on surface modified graphene catalyst. Appl. Surf. Sci. 471, 176–184 (2019). https://doi.org/10.1016/j.apsusc.2018.12.001
- X. Xiao, H. Jeong, J. Song, J.-P. Ahn, J. Kim et al., Facile synthesis of Pd@Pt core–shell nanocubes with low Pt content via direct seed-mediated growth and their enhanced activity for formic acid oxidation. Chem. Commun. 55, 11952–11955 (2019). https://doi.org/10.1039/C9CC05915F
- D.-N. Li, A.-J. Wang, J. Wei, Q.-L. Zhang, J.-J. Feng, Facile synthesis of flower-like Au@AuPd nanocrystals with highly electrocatalytic activity for formic acid oxidation and hydrogen evolution reactions. Int. J. Hydrog. Energy 42, 19894–19902 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.186
- M. Tang, W. Chen, S. Luo, X. Wu, X. Fan et al., Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. J. Mater. Chem. A 9, 9602–9608 (2021). https://doi.org/10.1039/D1TA01123E
- Y. Feng, Q. Shao, Y. Ji, X. Cui, Y. Li et al., Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 4, 8817 (2018). https://doi.org/10.1126/sciadv.aap8817
- H. Xu, K. Zhang, B. Yan, J. Wang, C. Wang et al., Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation. J. Power Sources 356, 27–35 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.070
- X. Zhang, H. Fan, J. Zheng, S. Duan, Y. Huang et al., Pd–Zn nanocrystals for highly efficient formic acid oxidation. Catal. Sci. Technol. 8, 4757–4765 (2018). https://doi.org/10.1039/C8CY01503A
- Z. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li et al., Facile fabrication of stable PdCu clusters uniformly decorated on graphene as an efficient electrocatalyst for formic acid oxidation. Int. J. Hydrog. Energy 44, 2731–2740 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.004
- L. Chen, J. Zhu, C. Xuan, W. Xiao, K. Xia et al., Effects of crystal phase and composition on structurally ordered Pt–Co–Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 6, 5848–5855 (2018). https://doi.org/10.1039/C7TA11051K
- T. Shen, S. Chen, C. Zhang, Y. Hu, E. Ma et al., Engineering Ir atomic configuration for switching the pathway of formic acid electrooxidation reaction. Adv. Funct. Mater. 32, 2107672 (2022). https://doi.org/10.1002/adfm.202107672
- T. Shen, Y. Lu, M. Gong, T. Zhao, Y. Hu et al., Optimizing formic acid electro-oxidation performance by restricting the continuous Pd sites in Pd–Sn nanocatalysts. ACS Sustain. Chem. Eng. 8, 12239–12247 (2020). https://doi.org/10.1021/acssuschemeng.0c03881
- M. Kiani, J. Zhang, Y. Luo, Y. Chen, J. Chen et al., Facile synthesis and enhanced catalytic activity of electrochemically dealloyed platinum–nickel nanops towards formic acid electro-oxidation. J. Energy Chem. 35, 9–16 (2019). https://doi.org/10.1016/j.jechem.2018.10.011
- Y. Bao, M. Zha, P. Sun, G. Hu, L. Feng, PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 59, 748–754 (2021). https://doi.org/10.1016/j.jechem.2020.12.007
- L.Y. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li et al., Palladium-cobalt nanodots anchored on graphene: in situ synthesis, and application as an anode catalyst for direct formic acid fuel cells. Appl. Surf. Sci. 469, 305–311 (2019). https://doi.org/10.1016/j.apsusc.2018.11.034
- X. Ning, X. Zhou, J. Luo, L. Ma, X. Xu et al., Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: effect of carbon support and synthesis method on the metal-support interaction. Electrochim. Acta 319, 129–137 (2019). https://doi.org/10.1016/j.electacta.2019.06.147
- S. Xu, J. Zhang, J. Wang, L. Lv, Y. Sun et al., The electrooxidation of formic acid catalyzed by Pd–Ga nanoalloys. Catal. Sci. Technol. 9, 1255–1259 (2019). https://doi.org/10.1039/C8CY02356E
- J.-M. Zhang, R.-X. Wang, R.-J. Nong, Y. Li, X.-J. Zhang et al., Hydrogen co-reduction synthesis of PdPtNi alloy nanops on carbon nanotubes as enhanced catalyst for formic acid electrooxidation. Int. J. Hydrog. Energy 42, 7226–7234 (2017). https://doi.org/10.1016/j.ijhydene.2016.05.198
- J. Shan, T. Zeng, W. Wu, Y. Tan, N. Cheng et al., Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation. Nanoscale 12, 12891–12897 (2020). https://doi.org/10.1039/d0nr00307g
- A.K. Taylor, D.S. Perez, X. Zhang, B.K. Pilapil, M.H. Engelhard et al., Block copolymer templated synthesis of PtIr bimetallic nanocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 5, 21514–21527 (2017). https://doi.org/10.1039/c7ta06458f
- X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen et al., Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011). https://doi.org/10.1038/nnano.2010.235
- M. Farsadrooh, J. Torrero, L. Pascual, M.A. Peña, M. Retuerto et al., Two-dimensional Pd-nanosheets as efficient electrocatalysts for ethanol electrooxidation. Evidences of the CC scission at low potentials. Appl. Catal. B Environ. 237, 866–875 (2018). https://doi.org/10.1016/j.apcatb.2018.06.051
- M.Z. Yazdan-Abad, M. Noroozifar, N. Alfi, Investigation on the electrocatalytic activity and stability of three-dimensional and two-dimensional palladium nanostructures for ethanol and formic acid oxidation. J. Colloid Interface Sci. 532, 485–490 (2018). https://doi.org/10.1016/j.jcis.2018.08.003
- H. Saravani, M. Farsadrooh, M.S. Mollashahi, M. Hajnajafi, A.S. Douk, Two-dimensional engineering of Pd nanosheets as advanced electrocatalysts toward formic acid oxidation. Int. J. Hydrog. Energy 45, 21232–21240 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.072
- H.M. An, Z.L. Zhao, L.Y. Zhang, Y. Chen, Y.Y. Chang et al., Ir-alloyed ultrathin ternary PdIrCu nanosheet-constructed flower with greatly enhanced catalytic performance toward formic acid electrooxidation. ACS Appl. Mater. Interfaces 10, 41293–41298 (2018). https://doi.org/10.1021/acsami.8b13361
- Q. Zhao, C. Ge, Y. Cai, Q. Qiao, X. Jia, Silsesquioxane stabilized platinum-palladium alloy nanops with morphology evolution and enhanced electrocatalytic oxidation of formic acid. J. Colloid Interface Sci. 514, 425–432 (2018). https://doi.org/10.1016/j.jcis.2017.12.053
- H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46, 1783–1794 (2013). https://doi.org/10.1021/ar300209w
- Y. Li, Y. Yan, Y. He, S. Du, Catalyst electrodes with PtCu nanowire arrays in situ grown on gas diffusion layers for direct formic acid fuel cells. ACS Appl. Mater. Interfaces 14, 11457–11464 (2022). https://doi.org/10.1021/acsami.1c24010
- E. Fidiani, G. Thirunavukkarasu, Y. Li, Y.-L. Chiu, S. Du, Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Mater. Chem. A 9, 5578–5587 (2021). https://doi.org/10.1039/D0TA08551K
- S.H. Sun, D.Q. Yang, D. Villers, G.X. Zhang, E. Sacher et al., Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 20, 571–574 (2008). https://doi.org/10.1002/adma.200701408
- C. Zhu, D. Liu, Z. Chen, L. Li, T. You, Superior catalytic activity of Pt/carbon nanohorns nanocomposites toward methanol and formic acid oxidation reactions. J. Colloid Interface Sci. 511, 77–83 (2018). https://doi.org/10.1016/j.jcis.2017.09.109
- L.Y. Zhang, Z. Liu, Graphene decorated with Pd4Ir nanocrystals: ultrasound-assisted synthesis, and application as a catalyst for oxidation of formic acid. J. Colloid Interface Sci. 505, 783–788 (2017). https://doi.org/10.1016/j.jcis.2017.06.084
- F.-M. Li, Y.-Q. Kang, H.-M. Liu, Y.-N. Zhai, M.-C. Hu et al., Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction. J. Colloid Interface Sci. 514, 299–305 (2018). https://doi.org/10.1016/j.jcis.2017.12.043
- P.S. Cappellari, A.M. Baena-Moncada, R. Coneo-Rodríguez, M.S. Moreno, C.A. Barbero et al., Catalytic enhancement of formic acid electro-oxidation through surface modifications with gold on supported Pt nanops. Int. J. Hydrog. Energy 44, 1967–1972 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.138
- J. Li, X. Liang, L. Cai, S. Huang, C. Zhao, Modification of palladium nanocrystals with single atom platinum via an electrochemical self-catalysis strategy for efficient formic acid electrooxidation. ACS Appl. Mater. Interfaces 14, 8001–8009 (2022). https://doi.org/10.1021/acsami.1c23228
- Y. Li, Y. Yan, M.-S. Yao, F. Wang, Y. Li et al., Porous electrodes from self-assembled 3D jointed Pd polyhedra for direct formic acid fuel cells. Chem. Eng. J. 462, 142244 (2023). https://doi.org/10.1016/j.cej.2023.142244
- Y. Gong, X. Liu, Y. Gong, D. Wu, B. Xu et al., Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation. J. Colloid Interface Sci. 530, 189–195 (2018). https://doi.org/10.1016/j.jcis.2018.06.074
- L.Y. Zhang, Y. Gong, D. Wu, G. Wu, B. Xu et al., Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. J. Colloid Interface Sci. 537, 366–374 (2019). https://doi.org/10.1016/j.jcis.2018.11.038
- T. Yuan, H.-Y. Chen, X. Ma, J.-J. Feng, P.-X. Yuan et al., Simple synthesis of self-supported hierarchical AuPd alloyed nanowire networks for boosting electrocatalytic activity toward formic acid oxidation. J. Colloid Interface Sci. 513, 324–330 (2018). https://doi.org/10.1016/j.jcis.2017.11.012
- X.-F. Zhang, Y. Chen, L. Zhang, A.-J. Wang, L.-J. Wu et al., Poly-l-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution. J. Colloid Interface Sci. 516, 325–331 (2018). https://doi.org/10.1016/j.jcis.2018.01.046
- W. Zhang, Q. Yao, X. Wu, Y. Fu, K. Deng et al., Intimately coupled hybrid of graphitic carbon nitride nanoflakelets with reduced graphene oxide for supporting Pd nanops: a stable nanocatalyst with high catalytic activity towards formic acid and methanol electrooxidation. Electrochim. Acta 200, 131–141 (2016). https://doi.org/10.1016/j.electacta.2016.03.169
- H. Wang, H. Chen, H.-Q. Wang, C.-R. Ou, R. Li et al., Synthesis of ultrafine low loading Pd–Cu alloy catalysts supported on graphene with excellent electrocatalytic performance for formic acid oxidation. Int. J. Hydrog. Energy 45, 10735–10744 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.019
- F. Liu, Z. Zhu, J. Fan, Q. Li, Y. Min et al., Ternary PdMoP nanops anchored on boron–nitrogen functionalized CNTs for high-efficiency formic acid electrooxidation. ACS Sustain. Chem. Eng. 8, 17587–17596 (2020). https://doi.org/10.1021/acssuschemeng.0c07370
- G. Cabello, R.A. Davoglio, F.W. Hartl, J.F. Marco, E.C. Pereira et al., Microwave-assisted synthesis of Pt-Au nanops with enhanced electrocatalytic activity for the oxidation of formic acid. Electrochim. Acta 224, 56–63 (2017). https://doi.org/10.1016/j.electacta.2016.12.022
- Z. Li, J. Song, D.-C. Lee, A. Abdelhafiz, Z. Xiao et al., Mono-disperse PdO nanops prepared via microwave-assisted thermo-hydrolyzation with unexpectedly high activity for formic acid oxidation. Electrochim. Acta 329, 135166 (2020). https://doi.org/10.1016/j.electacta.2019.135166
- G. Luo, A. Chen, M. Zhu, K. Zhao, X. Zhang et al., Improving the electrocatalytic performance of Pd for formic acid electrooxidation by introducing tourmaline. Electrochim. Acta 360, 137023 (2020). https://doi.org/10.1016/j.electacta.2020.137023
- H. Jiang, L. Liu, K. Zhao, Z. Liu, X. Zhang et al., Effect of pyridinic- and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation. Electrochim. Acta 337, 135758 (2020). https://doi.org/10.1016/j.electacta.2020.135758
- K.C. Poon, B. Khezri, Y. Li, R.D. Webster, H. Su et al., A highly active Pd-P nanop electrocatalyst for enhanced formic acid oxidation synthesized via stepwise electroless deposition. Chem. Commun. 52, 3556–3559 (2016). https://doi.org/10.1039/c5cc08669h
- F. Wu, J. Lai, L. Zhang, W. Niu, B. Lou et al., Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation. Nanoscale 10, 9369–9375 (2018). https://doi.org/10.1039/c8nr00385h
- X. Liang, B. Liu, J. Zhang, S. Lu, Z. Zhuang, Ternary Pd-Ni-P hybrid electrocatalysts derived from Pd-Ni core-shell nanops with enhanced formic acid oxidation activity. Chem. Commun. 52, 11143–11146 (2016). https://doi.org/10.1039/c6cc04382h
- M.D. Johan Ooi, A. Abdul Aziz, Seed-mediated grown platinum nanocrystal: a correlation between seed volume and catalytic performance of formic acid and ethanol oxidation. Int. J. Hydrog. Energy 42, 9063–9068 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.032
- S. Patra,
References
Li Y, Yan Y, Du S. (2022), Liquid fueled fuel cells. Comprehensive Renewable Energy. Elsevier, pp 399–419 https://doi.org/10.1016/b978-0-12-819727-1.00110-2
A.S. Aric, V. Baglio, V. Antonucci, Direct Methanol Fuel Cells: History, Status and Perspectives, in Electrocatalysis of Direct Methanol Fuel Cells, Wiley-VCH Verlag GmbH & Co KGaA. (Weinheim, Germany, 2009), pp.1–78
W.R. Grove, On the gas voltaic battery.—voltaic action of phosphorus, sulphur and hydrocarbons. Phil. Trans. R. Soc. 135, 351–361 (1845). https://doi.org/10.1098/rstl.1845.0016
W.R. Grove, On voltaic series and the combination of gases by platinum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 14, 127–130 (1839). https://doi.org/10.1080/14786443908649684
G.L. Soloveichik, Liquid fuel cells. Beilstein. J. Nanotechnol. 5, 1399–1418 (2014). https://doi.org/10.3762/bjnano.5.153
Y. Paik, S.S. Kim, O.H. Han, Methanol behavior in direct methanol fuel cells. Angew. Chem. Int. Ed. 47, 94–96 (2008). https://doi.org/10.1002/anie.200703190
S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem. 461, 14–31 (1999). https://doi.org/10.1016/s0022-0728(98)00197-1
X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu et al., Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 4, 2736 (2011). https://doi.org/10.1039/c1ee01307f
J. Ge, H. Liu, Experimental studies of a direct methanol fuel cell. J. Power Sources 142, 56–69 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.022
M.S. Alias, S.K. Kamarudin, A.M. Zainoodin, M.S. Masdar, Active direct methanol fuel cell: an overview. Int. J. Hydrog. Energy 45, 19620–19641 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.202
M.W. Breiter, Anodic oxidation of formic acid on platinum—I. Adsorption of formic acid, oxygen, and hydrogen in perchloric acid solutions. Electrochim. Acta 8, 447–456 (1963). https://doi.org/10.1016/0013-4686(63)85002-1
M.W. Breiter, Anodic oxidation of formic acid on platinum—II. Interpretation of potentiostatic current/potential curves. Reaction mechanism in perchloric acid solutions. Electrochim. Acta 8, 457–470 (1963). https://doi.org/10.1016/0013-4686(63)85003-3
Z. Li, X. Jiang, X. Wang, J. Hu, Y. Liu et al., Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B Environ. 277, 119135 (2020). https://doi.org/10.1016/j.apcatb.2020.119135
Y. Hu, P. Wu, Y. Yin, H. Zhang, C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B Environ. 111, 208–217 (2012). https://doi.org/10.1016/j.apcatb.2011.10.001
A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 38, 445–457 (1997). https://doi.org/10.1016/S0920-5861(97)00054-0
S.M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu et al., Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv. Funct. Mater. 20, 3742–3746 (2010). https://doi.org/10.1002/adfm.201001035
H. Huang, S. Yang, R. Vajtai, X. Wang, P.M. Ajayan, Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 26, 5160–5165 (2014). https://doi.org/10.1002/adma.201401877
G.A. Olah, Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. 44, 2636–2639 (2005). https://doi.org/10.1002/anie.200462121
Y. Zuo, W. Sheng, W. Tao, Z. Li, Direct methanol fuel cells system–a review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Sci. Technol. 114, 29–41 (2022). https://doi.org/10.1016/j.jmst.2021.10.031
U.B. Demirci, Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J. Power Sources 169, 239–246 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.050
F. Barbir, Fuel cell basic chemistry and thermodynamics, in PEM Fuel Cells. (Elsevier, 2013), pp.17–32. https://doi.org/10.1016/B978-0-12-387710-9.00002-3
P. Hong, S. Liao, J. Zeng, X. Huang, Design, fabrication and performance evaluation of a miniature air breathing direct formic acid fuel cell based on printed circuit board technology. J. Power Sources 195, 7332–7337 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.024
M. Choi, C.-Y. Ahn, H. Lee, J.K. Kim, S.-H. Oh et al., Bi-modified Pt supported on carbon black as electro-oxidation catalyst for 300 W formic acid fuel cell stack. Appl. Catal. B Environ. 253, 187–195 (2019). https://doi.org/10.1016/j.apcatb.2019.04.059
Z.A. Che Ramli, J. Pasupuleti, T.S. Tengku Saharuddin, Y.N. Yusoff, W.N.R.W. Isahak et al., Electrocatalytic activities of platinum and palladium catalysts for enhancement of direct formic acid fuel cells: an updated progress. Alex. Eng. J. 76, 701–733 (2023). https://doi.org/10.1016/j.aej.2023.06.069
R. Bhaskaran, B.G. Abraham, R. Chetty, Recent advances in electrocatalysts, mechanism, and cell architecture for direct formic acid fuel cells. Wiley Interdiscip. Rev. Energy Environ. 11, e419 (2022). https://doi.org/10.1002/wene.419
J. Li, A milestone in single-atom catalysis for direct formic acid fuel cell. Natl. Sci. Rev. 7, 1762 (2020). https://doi.org/10.1093/nsr/nwaa228
H. Cheng, J. Wang, C. Wu, Z. Liu, Electrocatalysts for formic acid-powered PEM fuel cells: challenges and prospects. Energy Mater. Adv. 4, 0067 (2023). https://doi.org/10.34133/energymatadv.0067
E. Mülle, S. Tanaka, Über die pulsierende elektrolytische Oxydation der Ameisensäure. Z. Für Elektrochem. Und Angew. Phys. Chem. 34, 256–264 (1928). https://doi.org/10.1002/bbpc.19280340510
R.P. Buck, L.R. Griffith, Voltammetric and chronopotentiometric study of the anodic oxidation of methanol, formaldehyde, and formic acid. J. Electrochem. Soc. 109, 1005 (1962). https://doi.org/10.1149/1.2425226
M. Weber, J.-T. Wang, S. Wasmus, R.F. Savinell, Formic acid oxidation in a polymer electrolyte fuel cell: a real-time mass-spectrometry study. J. Electrochem. Soc. 143, L158–L160 (1996). https://doi.org/10.1149/1.1836961
C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski et al., Direct formic acid fuel cells. J. Power Sources 111, 83–89 (2002). https://doi.org/10.1016/S0378-7753(02)00271-9
A. Capon, R. Parson, The oxidation of formic acid at noble metal electrodes. J. Electroanal. Chem. Interfacial Electrochem. 44, 1–7 (1973). https://doi.org/10.1016/s0022-0728(73)80508-x
C. Rice, Catalysts for direct formic acid fuel cells. J. Power Sources 115, 229–235 (2003). https://doi.org/10.1016/s0378-7753(03)00026-0
J.-H. Choi, K.-J. Jeong, Y. Dong, J. Han, T.-H. Lim et al., Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 163, 71–75 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.072
S. Ha, R. Larsen, R.I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J. Power Sources 144, 28–34 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.031
J.B. Xu, T.S. Zhao, Z.X. Liang, Carbon supported platinum–gold alloy catalyst for direct formic acid fuel cells. J. Power Sources 185, 857–861 (2008). https://doi.org/10.1016/j.jpowsour.2008.09.039
A. Capon, R. Parsons, The oxidation of formic acid on noble metal electrodes. J. Electroanal. Chem. Interfacial Electrochem. 44, 239–254 (1973). https://doi.org/10.1016/s0022-0728(73)80250-5
S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Direct formic acid fuel cells with 600 mA cm–2 at 0.4 V and 22 °C. Fuel Cells 4, 337–343 (2004). https://doi.org/10.1002/fuce.200400052
C.M. Miesse, W.S. Jung, K.-J. Jeong, J.K. Lee, J. Lee et al., Direct formic acid fuel cell portable power system for the operation of a laptop computer. J. Power Sources 162, 532–540 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.013
M. Eikerling, A. Kornyshev, A. Kucernak, Driving the hydrogen economy. Phys. World 20, 32–36 (2007). https://doi.org/10.1088/2058-7058/20/7/31
B. Beden, A. Bewick, C. Lamy, A comparative study of formic acid adsorption on a platinum electrode by both electrochemical and emirs techniques. J. Electroanal. Chem. Interfacial Electrochem. 150, 505–511 (1983). https://doi.org/10.1016/S0022-0728(83)80230-7
A. Capon, R. Parsons, The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 45, 205–231 (1973). https://doi.org/10.1016/S0022-0728(73)80158-5
R.R. Adžić, A.V. Tripković, W.E. O’Grady, Structural effects in electrocatalysis. Nature 296, 137–138 (1982). https://doi.org/10.1038/296137a0
M. Osawa, K.-I. Komatsu, G. Samjeské, T. Uchida, T. Ikeshoji et al., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew. Chem. Int. Ed. 50, 1159–1163 (2011). https://doi.org/10.1002/anie.201004782
A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanops: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. (2002). https://doi.org/10.1039/b203392e
A. Cuesta, G. Cabello, M. Osawa, C. Gutiérrez, Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal. 2, 728–738 (2012). https://doi.org/10.1021/cs200661z
A. Cuesta, G. Cabello, C. Gutiérrez, M. Osawa, Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes. Phys. Chem. Chem. Phys. 13, 20091–20095 (2011). https://doi.org/10.1039/C1CP22498K
J. Joo, T. Uchida, A. Cuesta, M.T.M. Koper, M. Osawa, The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: a mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochim. Acta 129, 127–136 (2014). https://doi.org/10.1016/j.electacta.2014.02.040
J. Joo, T. Uchida, A. Cuesta, M.T.M. Koper, M. Osawa, Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum. J. Am. Chem. Soc. 135, 9991–9994 (2013). https://doi.org/10.1021/ja403578s
A. Ferre-Vilaplana, J.V. Perales-Rondón, C. Buso-Rogero, J.M. Feliu, E. Herrero, Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces. J. Mater. Chem. A 5, 21773–21784 (2017). https://doi.org/10.1039/C7TA07116G
A. Betts, V. Briega-Martos, A. Cuesta, E. Herrero, Adsorbed formate is the last common intermediate in the dual-path mechanism of the electrooxidation of formic acid. ACS Catal. 10, 8120–8130 (2020). https://doi.org/10.1021/acscatal.0c00791
J. Xu, D. Yuan, F. Yang, D. Mei, Z. Zhang et al., On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Phys. Chem. Chem. Phys. 15, 4367–4376 (2013). https://doi.org/10.1039/C3CP44074E
K.A. Schwarz, R. Sundararaman, T.P. Moffat, T.C. Allison, Formic acid oxidation on platinum: a simple mechanistic study. Phys. Chem. Chem. Phys. 17, 20805–20813 (2015). https://doi.org/10.1039/C5CP03045E
F. He, K. Li, C. Yin, Y. Wang, M. Jiao et al., A first-principles study on the effect of phosphorus-doped palladium catalyst for formic acid dissociation. Appl. Surf. Sci. 387, 221–227 (2016). https://doi.org/10.1016/j.apsusc.2016.06.117
Y. Wang, P. Liu, D. Zhang, C. Liu, Theoretical study of the mechanism of formic acid decomposition on the PdAg(111) surface. Int. J. Hydrog. Energy 41, 7342–7351 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.116
Y. Tong, K. Cai, M. Wolf, R.K. Campen, Probing the electrooxidation of weakly adsorbed formic acid on Pt(100). Catal. Today 260, 66–71 (2016). https://doi.org/10.1016/j.cattod.2015.08.015
K. Shen, C. Jia, B. Cao, H. Xu, J. Wang et al., Comparison of catalytic activity between Au(110) and Au(111) for the electro-oxidation of methanol and formic acid: experiment and density functional theory calculation. Electrochim. Acta 256, 129–138 (2017). https://doi.org/10.1016/j.electacta.2017.10.026
R. Zhang, M. Yang, M. Peng, L. Ling, B. Wang, Understanding the role of Pd: Cu ratio, surface and electronic structures in Pd-Cu alloy material applied in direct formic acid fuel cells. Appl. Surf. Sci. 465, 730–739 (2019). https://doi.org/10.1016/j.apsusc.2018.09.196
C. Akalezi, A.C. Maduabuchi, S. Nwanonenyi, E.E. Oguzie, Optimizing power output in direct formic acid fuel cells using palladium film mediation: experimental and DFT studies. J. Electrochem. Sci. Eng. 14, 547–558 (2024). https://doi.org/10.5599/jese.1955
C.X. Wen, Y. Ling, Y.Z. Zhang, H. Pan, G.K. Liu et al., In-situ electrochemical surface-enhanced Raman spectroscopy study of formic acid electrooxidation at variable temperatures by high-frequency heating technology. Electrochim. Acta 281, 323–328 (2018). https://doi.org/10.1016/j.electacta.2018.05.167
M.-K. Zhang, Z. Wei, W. Chen, M.-L. Xu, J. Cai et al., Bell shape vs volcano shape pH dependent kinetics of the electrochemical oxidation of formic acid and formate, intrinsic kinetics or local pH shift? Electrochim. Acta 363, 137160 (2020). https://doi.org/10.1016/j.electacta.2020.137160
Z. Niu, Y. Wan, X. Li, M. Zhang, B. Liu et al., In-situ regulation of formic acid oxidation via elastic strains. J. Catal. 389, 631–635 (2020). https://doi.org/10.1016/j.jcat.2020.07.004
A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015). https://doi.org/10.1016/j.jcat.2014.12.033
S. Hu, L. Scudiero, S. Ha, Electronic effect on oxidation of formic acid on supported Pd–Cu bimetallic surface. Electrochim. Acta 83, 354–358 (2012). https://doi.org/10.1016/j.electacta.2012.06.111
S. Hu, L. Scudiero, S. Ha, Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem. Commun. 38, 107–109 (2014). https://doi.org/10.1016/j.elecom.2013.11.010
B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j
T. Hofmann, T.H. Yu, M. Folse, L. Weinhardt, M. Bär et al., Using photoelectron spectroscopy and quantum mechanics to determine d-band energies of metals for catalytic applications. J. Phys. Chem. C 116, 24016–24026 (2012). https://doi.org/10.1021/jp303276z
T. Shen, J. Zhang, K. Chen, S. Deng, D. Wang, Recent progress of palladium-based electrocatalysts for the formic acid oxidation reaction. Energy Fuels 34, 9137–9153 (2020). https://doi.org/10.1021/acs.energyfuels.0c01820
T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007). https://doi.org/10.1016/j.electacta.2007.02.041
S. Hu, F. Che, B. Khorasani, M. Jeon, C.W. Yoon et al., Improving the electrochemical oxidation of formic acid by tuning the electronic properties of Pd-based bimetallic nanops. Appl. Catal. B Environ. 254, 685–692 (2019). https://doi.org/10.1016/j.apcatb.2019.03.072
T. He, W. Wang, F. Shi, X. Yang, X. Li et al., Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021). https://doi.org/10.1038/s41586-021-03870-z
S. Hu, F. Munoz, J. Noborikawa, J. Haan, L. Scudiero et al., Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Appl. Catal. B Environ. 180, 758–765 (2016). https://doi.org/10.1016/j.apcatb.2015.07.023
C.Y. Ahn, J.E. Park, S. Kim, O.H. Kim, W. Hwang et al., Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells. Chem. Rev. 121, 15075–15140 (2021). https://doi.org/10.1021/acs.chemrev.0c01337
M. Liu, Z. Zhao, X. Duan, Y. Huang, Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 31, 1802234 (2019). https://doi.org/10.1002/adma.201802234
M. Escudero-Escribano, K.D. Jensen, A.W. Jensen, Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Curr. Opin. Electrochem. 8, 135–146 (2018). https://doi.org/10.1016/j.coelec.2018.04.013
Y. Chen, Y. Yang, G. Fu, L. Xu, D. Sun et al., Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. J. Mater. Chem. A 6, 10632–10638 (2018). https://doi.org/10.1039/C8TA03322F
W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang et al., Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 32, 1907879 (2020). https://doi.org/10.1002/adma.201907879
Z. Chen, J. Zhang, Y. Zhang, Y. Liu, X. Han et al., NiO-induced synthesis of PdNi bimetallic hollow nanocrystals with enhanced electrocatalytic activities toward ethanol and formic acid oxidation. Nano Energy 42, 353–362 (2017). https://doi.org/10.1016/j.nanoen.2017.11.033
X. Yan, X. Hu, G. Fu, L. Xu, J.-M. Lee et al., Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 14, 1703940 (2018). https://doi.org/10.1002/smll.201703940
L. Zhang, L.-X. Ding, Y. Luo, Y. Zeng, S. Wang et al., PdO/Pd-CeO2 hollow spheres with fresh Pd surface for enhancing formic acid oxidation. Chem. Eng. J. 347, 193–201 (2018). https://doi.org/10.1016/j.cej.2018.04.082
X. Zuo, R. Yan, L. Zhao, Y. Long, L. Shi et al., A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. J. Mater. Chem. A 10, 14857–14865 (2022). https://doi.org/10.1039/D2TA02597C
N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada, Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 110, 12480–12484 (2006). https://doi.org/10.1021/jp0608372
B. Cai, Y. Ma, S. Wang, N. Yi, Y. Zheng et al., Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic properties towards formic acid oxidation. Nanoscale 11, 18015–18020 (2019). https://doi.org/10.1039/c9nr06344g
A.B. Yousaf, M. Imran, A. Zeb, X. Xie, K. Liang et al., Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid. Catal. Sci. Technol. 6, 4794–4801 (2016). https://doi.org/10.1039/C5CY02217G
Y. Shen, Y. Zhou, B. Gong, K. Xiao, L. Wang et al., One-pot synthesis of ultrafine decahedral platinum crystal decorated graphite nanosheets for the electro-oxidation of formic acid. J. Catal. 345, 70–77 (2017). https://doi.org/10.1016/j.jcat.2016.11.024
X. Jiang, X. Yan, W. Ren, Y. Jia, J. Chen et al., Porous AgPt@Pt nanooctahedra as an efficient catalyst toward formic acid oxidation with predominant dehydrogenation pathway. ACS Appl. Mater. Interfaces 8, 31076–31082 (2016). https://doi.org/10.1021/acsami.6b11895
W. Ye, S. Chen, M. Ye, C. Ren, J. Ma et al., Pt4PdCu0.4 alloy nanoframes as highly efficient and robust bifunctional electrocatalysts for oxygen reduction reaction and formic acid oxidation. Nano Energy 39, 532–538 (2017). https://doi.org/10.1016/j.nanoen.2017.07.025
Y. Wang, X. Jiang, G. Fu, Y. Li, Y. Tang et al., Cu5Pt dodecahedra with low-Pt content: facile synthesis and outstanding formic acid electrooxidation. ACS Appl. Mater. Interfaces 11, 34869–34877 (2019). https://doi.org/10.1021/acsami.9b09153
F. Saleem, B. Ni, Y. Yong, L. Gu, X. Wang, Ultra-small tetrametallic Pt-Pd-Rh-Ag nanoframes with tunable behavior for direct formic acid/methanol oxidation. Small 12, 5261–5268 (2016). https://doi.org/10.1002/smll.201601299
D. Liu, M. Xie, C. Wang, L. Liao, L. Qiu et al., Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 9, 1590–1599 (2016). https://doi.org/10.1007/s12274-016-1053-6
S. Du, A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires. J. Power. Sources 195, 289–292 (2010). https://doi.org/10.1016/j.jpowsour.2009.06.091
E. Fidiani, G. Thirunavukkarasu, Y. Li, Y.-L. Chiu, S. Du, Ultrathin AgPt alloy nanorods as low-cost oxygen reduction reaction electrocatalysts in proton exchange membrane fuel cells. J. Mater. Chem. A 8, 11874–11883 (2020). https://doi.org/10.1039/D0TA02748K
L. Yang, G. Li, J. Chang, J. Ge, C. Liu et al., Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: coefficient of lattice strain and electrochemical surface area. Appl. Catal. B Environ. 260, 118200 (2020). https://doi.org/10.1016/j.apcatb.2019.118200
J. Ding, Z. Liu, X. Liu, J. Liu, Y. Deng et al., Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation. Adv. Energy Mater. 9, 1900955 (2019). https://doi.org/10.1002/aenm.201900955
S. Du, K. Lin, S.K. Malladi, Y. Lu, S. Sun et al., Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Sci. Rep. 4, 6439 (2014). https://doi.org/10.1038/srep06439
Y. Lu, S. Du, R. Steinberger-Wilckens, One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—a review. Appl. Catal. B Environ. 199, 292–314 (2016). https://doi.org/10.1016/j.apcatb.2016.06.022
S. Du, Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications. Engineering 7, 33–49 (2021). https://doi.org/10.1016/j.eng.2020.09.014
C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanolfuelcells. Energy Environ. Sci. 4, 1161–1176 (2011). https://doi.org/10.1039/C0EE00197J
X. Jiang, G. Fu, X. Wu, Y. Liu, M. Zhang et al., Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 11, 499–510 (2018). https://doi.org/10.1007/s12274-017-1658-4
F. Li, Y. Ding, X. Xiao, S. Yin, M. Hu et al., From monometallic Au nanowires to trimetallic AuPtRh nanowires: interface control for the formic acid electrooxidation. J. Mater. Chem. A 6, 17164–17170 (2018). https://doi.org/10.1039/C8TA05710A
H. Xu, B. Yan, S. Li, J. Wang, C. Wang et al., One-pot fabrication of N-doped graphene supported dandelion-like PtRu nanocrystals as efficient and robust electrocatalysts towards formic acid oxidation. J. Colloid Interface Sci. 512, 96–104 (2018). https://doi.org/10.1016/j.jcis.2017.10.049
Y. Han, Y. Ouyang, Z. Xie, J. Chen, F. Chang et al., Controlled growth of Pt–Au alloy nanowires and their performance for formic acid electrooxidation. J. Mater. Sci. Technol. 32, 639–645 (2016). https://doi.org/10.1016/j.jmst.2016.04.014
X. Qu, Z. Cao, B. Zhang, X. Tian, F. Zhu et al., One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 52, 4493–4496 (2016). https://doi.org/10.1039/c6cc00184j
B. Pramanick, T. Kumar, A. Halder, P.F. Siril, Engineering the morphology of palladium nanostructures to tune their electrocatalytic activity in formic acid oxidation reactions. Nanoscale Adv. 2, 5810–5820 (2020). https://doi.org/10.1039/d0na00798f
L. Huang, J. Yang, M. Wu, Z. Shi, Z. Lin et al., PdAg@Pd core-shell nanotubes: superior catalytic performance towards electrochemical oxidation of formic acid and methanol. J. Power Sources 398, 201–208 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.070
W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li et al., 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 33, e2100713 (2021). https://doi.org/10.1002/adma.202100713
N. Yang, Z. Zhang, B. Chen, Y. Huang, J. Chen et al., Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 29, 1700769 (2017). https://doi.org/10.1002/adma.201700769
L.Y. Zhang, Y. Ouyang, S. Wang, D. Wu, M. Jiang et al., Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 15, e1904245 (2019). https://doi.org/10.1002/smll.201904245
H. Wang, Y. Li, C. Li, Z. Wang, Y. Xu et al., Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. J. Mater. Chem. A 6, 17514–17518 (2018). https://doi.org/10.1039/C8TA06908E
J. Lai, W. Niu, S. Li, F. Wu, R. Luque et al., Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 4, 807–812 (2016). https://doi.org/10.1039/C5TA08882H
F. Li, Q. Xue, G. Ma, S. Li, M. Hu et al., Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. J. Power Sources 450, 227615 (2020). https://doi.org/10.1016/j.jpowsour.2019.227615
H. Xu, B. Yan, K. Zhang, J. Wang, S. Li et al., N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl. Surf. Sci. 416, 191–199 (2017). https://doi.org/10.1016/j.apsusc.2017.04.160
H. Shi, F. Liao, W. Zhu, C. Shao, M. Shao, Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation. Int. J. Hydrog. Energy 45, 16071–16079 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.003
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
Q. Yang, L. Shi, B. Yu, J. Xu, C. Wei et al., Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction. J. Mater. Chem. A 7, 18846–18851 (2019). https://doi.org/10.1039/C9TA03945G
X. Qiu, H. Zhang, P. Wu, F. Zhang, S. Wei et al., One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 27, 1603852 (2017). https://doi.org/10.1002/adfm.201603852
J. Ding, Z. Liu, X. Liu, B. Liu, J. Liu et al., Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem. Int. Ed. 59, 5092–5101 (2020). https://doi.org/10.1002/anie.201914649
L.Y. Zhang, F. Wang, S. Wang, H. Huang, X. Meng et al., Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 30, 2003933 (2020). https://doi.org/10.1002/adfm.202003933
N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007). https://doi.org/10.1126/science.1140484
A. Klinkova, P. De Luna, E.H. Sargent, E. Kumacheva, P.V. Cherepanov, Enhanced electrocatalytic performance of palladium nanops with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 5, 11582–11585 (2017). https://doi.org/10.1039/C7TA00902J
M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy et al., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060
Y. Xu, S. Yu, T. Ren, C. Li, S. Yin et al., A quaternary metal–metalloid–nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 8, 2424–2429 (2020). https://doi.org/10.1039/c9ta11466a
B. Yang, W. Zhang, S. Hu, C. Liu, X. Wang et al., Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J. Colloid Interface Sci. 600, 503–512 (2021). https://doi.org/10.1016/j.jcis.2021.05.018
Y. Chen, H.-J. Niu, Y.-G. Feng, J.-H. Wu, A.-J. Wang et al., Three-dimensional hierarchical urchin-like PdCuPt nanoassembles with zigzag branches: a highly efficient and durable electrocatalyst for formic acid oxidation reaction. Appl. Surf. Sci. 510, 145480 (2020). https://doi.org/10.1016/j.apsusc.2020.145480
M. Wu, F. Dong, Y. Yang, X. Cui, X. Liu et al., Emerging atomically precise metal nanoclusters and ultrasmall nanops for efficient electrochemical energy catalysis: synthesis strategies and surface/interface engineering. Electrochem. Energy Rev. 7, 10 (2024). https://doi.org/10.1007/s41918-024-00217-w
M. Liu, Z. Liu, M. Xie, Z. Zhang, S. Zhang et al., Ligand-mediated self-terminating growth of single-atom Pt on Au nanocrystals for improved formic acid oxidation activity. Adv. Energy Mater. 12, 2103195 (2022). https://doi.org/10.1002/aenm.202103195
S. Yang, J. Kim, Y.J. Tak, A. Soon, H. Lee, Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016). https://doi.org/10.1002/anie.201509241
Y. Hu, C. Chen, T. Shen, X. Guo, C. Yang et al., Hollow carbon nanorod confined single atom Rh for direct formic acid electrooxidation. Adv. Sci. 9, e2205299 (2022). https://doi.org/10.1002/advs.202205299
Y. Xiong, J. Dong, Z.-Q. Huang, P. Xin, W. Chen et al., Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x
Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen et al., Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 12, 764–772 (2020). https://doi.org/10.1038/s41557-020-0473-9
M.N. Krstajić Pajić, S.I. Stevanović, V.V. Radmilović, A. Gavrilović-Wohlmuther, P. Zabinski et al., Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B Environ. 243, 585–593 (2019). https://doi.org/10.1016/j.apcatb.2018.10.064
H. Fan, M. Cheng, L. Wang, Y. Song, Y. Cui et al., Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 48, 1–9 (2018). https://doi.org/10.1016/j.nanoen.2018.03.018
J.V. Perales-Rondón, J. Solla-Gullón, E. Herrero, C.M. Sánchez-Sánchez, Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanops. Appl. Catal. B Environ. 201, 48–57 (2017). https://doi.org/10.1016/j.apcatb.2016.08.011
X. Chen, L.P. Granda-Marulanda, I.T. McCrum, M.T.M. Koper, How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 13, 38 (2022). https://doi.org/10.1038/s41467-021-27793-5
D. Chen, P. Sun, H. Liu, J. Yang, Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A 5, 4421–4429 (2017). https://doi.org/10.1039/C6TA10476B
X. Jiang, Y. Liu, J. Wang, Y. Wang, Y. Xiong et al., 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 12, 323–329 (2019). https://doi.org/10.1007/s12274-018-2218-2
B.E. Conway, H. Angerstein-Kozlowska, G. Czartoryska, “Third body” effect in the auto-inhibition of formic acid oxidation at electrodes. Z. Für Phys. Chem. 112, 195–214 (1978). https://doi.org/10.1524/zpch.1978.112.2.195
T. Shen, S. Chen, R. Zeng, M. Gong, T. Zhao et al., Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic. ACS Catal. 10, 9977–9985 (2020). https://doi.org/10.1021/acscatal.0c01537
L. Sui, W. An, Y. Feng, Z. Wang, J. Zhou et al., Bimetallic Pd-based surface alloys promote electrochemical oxidation of formic acid: mechanism, kinetics and descriptor. J. Power. Sources 451, 227830 (2020). https://doi.org/10.1016/j.jpowsour.2020.227830
W.H. Saputera, J. Scott, N. Ganda, G.K.-C. Low, R. Amal, The role of adsorbed oxygen in formic acid oxidation by Pt/TiO2 facilitated by light pre-treatment. Catal. Sci. Technol. 6, 6679–6687 (2016). https://doi.org/10.1039/C6CY00939E
I.M. Al-Akraa, Efficient electro-oxidation of formic acid at Pd-MnOx binary nanocatalyst: optimization of deposition strategy. Int. J. Hydrog. Energy 42, 4660–4666 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.090
A.M. Mohammad, I.M. Al-Akraa, M.S. El-Deab, Superior electrocatalysis of formic acid electro-oxidation on a platinum, gold and manganese oxide nanop-based ternary catalyst. Int. J. Hydrog. Energy 43, 139–149 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.016
P.C. Meléndez-González, J.C. Carrillo-Rodríguez, D. Morales-Acosta, S. Mukherjee, F.J. Rodríguez-Varela, Significant promotion effect of Fe3O4 on the mass catalytic activity of Pd nanocatalyst for the formic acid oxidation reaction. Int. J. Hydrog. Energy 42, 30284–30290 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.172
H. Ali, F.K. Kanodarwala, I. Majeed, J.A. Stride, M.A. Nadeem, La2O3 promoted Pd/rGO electro-catalysts for formic acid oxidation. ACS Appl. Mater. Interfaces 8, 32581–32590 (2016). https://doi.org/10.1021/acsami.6b09645
G.H. El-Nowihy, M.S. El-Deab, Boosted electrocatalytic oxidation of formic acid at CoOx/Pd/Au nanop-based ternary catalyst. Int. J. Hydrog. Energy 45, 21297–21307 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.175
C. Rettenmaier, R.M. Arán-Ais, J. Timoshenko, R. Rizo, H.S. Jeon et al., Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes. ACS Catal. 10, 14540–14551 (2020). https://doi.org/10.1021/acscatal.0c03212
Y. Xu, M. Wang, S. Yu, T. Ren, K. Ren et al., Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance. Chem. Eng. J. 421, 127751 (2021). https://doi.org/10.1016/j.cej.2020.127751
T.-J. Wang, Y.-C. Jiang, J.-W. He, F.-M. Li, Y. Ding et al., Porous palladium phosphide nanotubes for formic acid electrooxidation. Carbon Energy 4, 283–293 (2022). https://doi.org/10.1002/cey2.170
Y. Bao, H. Liu, Z. Liu, F. Wang, L. Feng, Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation. Appl. Catal. B Environ. 274, 119106 (2020). https://doi.org/10.1016/j.apcatb.2020.119106
Q. Lv, Q. Meng, W. Liu, N. Sun, K. Jiang et al., Pd–PdO interface as active site for HCOOH selective dehydrogenation at ambient condition. J. Phys. Chem. C 122, 2081–2088 (2018). https://doi.org/10.1021/acs.jpcc.7b08105
L. Feng, J. Chang, K. Jiang, H. Xue, C. Liu et al., Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy 30, 355–361 (2016). https://doi.org/10.1016/j.nanoen.2016.10.023
Y. Shi, R. Schimmenti, S. Zhu, K. Venkatraman, R. Chen et al., Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 144, 2556–2568 (2022). https://doi.org/10.1021/jacs.1c10199
H. Cheng, J. Zhou, H. Xie, S. Zhang, J. Zhang et al., Hydrogen intercalation-induced crystallization of ternary PdNiP alloy nanops for direct formic acid fuel cells. Adv. Energy Mater. 13, 2203893 (2023). https://doi.org/10.1002/aenm.202203893
H. Zhang, K. Lu, B. Li, Y. Liu, Y. Su et al., Microfluidic, one-batch synthesis of Pd nanocrystals on N-doped carbon in surfactant-free deep eutectic solvents for formic acid electrochemical oxidation. ACS Appl. Mater. Interfaces 12, 42704–42710 (2020). https://doi.org/10.1021/acsami.0c10136
M. Lou, R. Wang, J. Zhang, X. Tang, L. Wang et al., Optimized synthesis of nitrogen and phosphorus dual-doped coal-based carbon fiber supported Pd catalyst with enhanced activities for formic acid electrooxidation. ACS Appl. Mater. Interfaces 11, 6431–6441 (2019). https://doi.org/10.1021/acsami.8b20736
W. Shen, L. Ge, Y. Sun, F. Liao, L. Xu et al., Rhodium nanops/F-doped graphene composites as multifunctional electrocatalyst superior to Pt/C for hydrogen evolution and formic acid oxidation reaction. ACS Appl. Mater. Interfaces 10, 33153–33161 (2018). https://doi.org/10.1021/acsami.8b09297
H. Xu, B. Yan, S. Li, J. Wang, C. Wang et al., N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 334, 2638–2646 (2018). https://doi.org/10.1016/j.cej.2017.10.175
Y. Zhou, X.-C. Hu, Q. Fan, H.-R. Wen, Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 4, 4587–4591 (2016). https://doi.org/10.1039/C5TA09956K
L. Yang, X. Wang, D. Liu, G. Cui, B. Dou et al., Efficient anchoring of nanoscale Pd on three-dimensional carbon hybrid as highly active and stable catalyst for electro-oxidation of formic acid. Appl. Catal. B Environ. 263, 118304 (2020). https://doi.org/10.1016/j.apcatb.2019.118304
X. Zhang, J. Zhu, C.S. Tiwary, Z. Ma, H. Huang et al., Palladium nanops supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8, 10858–10865 (2016). https://doi.org/10.1021/acsami.6b01580
M. Wu, X. Yang, X. Cui, N. Chen, L. Du et al., Engineering Fe-N4 electronic structure with adjacent co-N2C2 and co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15, 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
R. Feng, D. Li, H. Yang, C. Li, Y. Zhao et al., Epitaxial ultrathin Pt atomic layers on CrN nanop catalysts. Adv. Mater. 36, e2309251 (2024). https://doi.org/10.1002/adma.202309251
H. Yan, Y. Jiao, A. Wu, C. Tian, L. Wang et al., Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation. J. Mater. Chem. A 6, 7623–7630 (2018). https://doi.org/10.1039/C8TA02488J
Z. Xi, J. Li, D. Su, M. Muzzio, C. Yu et al., Stabilizing CuPd nanops via CuPd coupling to WO2.72 nanorods in electrochemical oxidation of formic acid. J. Am. Chem. Soc. 139, 15191–15196 (2017). https://doi.org/10.1021/jacs.7b08643
G.N. Vayssilov, Y. Lykhach, A. Migani, T. Staudt, G.P. Petrova et al., Support nanostructure boosts oxygen transfer to catalytically active platinum nanops. Nat. Mater. 10, 310–315 (2011). https://doi.org/10.1038/nmat2976
L. Ye, A.H. Mahadi, C. Saengruengrit, J. Qu, F. Xu et al., Ceria nanocrystals supporting Pd for formic acid electrocatalytic oxidation: prominent polar surface metal support interactions. ACS Catal. 9, 5171–5177 (2019). https://doi.org/10.1021/acscatal.9b00421
S. Ramani, S. Sarkar, V. Vemuri, S.C. Peter, Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanops toward electro-oxidation of formic acid. J. Mater. Chem. A 5, 11572–11576 (2017). https://doi.org/10.1039/C6TA06339J
Y. Zhou, J. Liu, J. Ye, Z. Zou, J. Ye et al., Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell. Electrochim. Acta 55, 5024–5027 (2010). https://doi.org/10.1016/j.electacta.2010.04.014
L.Y. Zhang, Y. Ouyang, S. Wang, Y. Gong, M. Jiang et al., Ultrafast synthesis of uniform 4–5 atoms-thin layered Tremella-like Pd nanostructure with extremely large electrochemically active surface area for formic acid oxidation. J. Power Sources 447, 227248 (2020). https://doi.org/10.1016/j.jpowsour.2019.227248
S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu et al., Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, e1903683 (2019). https://doi.org/10.1002/adma.201903683
G.A. El-Nagar, K.M. Dawood, M.S. El-Deab, B.E. Al-Andouli, Efficient direct formic acid fuel cell (DFAFC) anode of nano-sized palladium complex: high durability and activity origin. Appl. Catal. B Environ. 213, 118–126 (2017). https://doi.org/10.1016/j.apcatb.2017.05.006
G.A. El-Nagar, A.F. Darweesh, I. Sadiek, A novel nano-palladium complex anode for formic acid electro-oxidation. Electrochim. Acta 215, 334–338 (2016). https://doi.org/10.1016/j.electacta.2016.08.127
V. Briega-Martos, J. Solla-Gullón, M.T.M. Koper, E. Herrero, J.M. Feliu, Electrocatalytic enhancement of formic acid oxidation reaction by acetonitrile on well-defined platinum surfaces. Electrochim. Acta 295, 835–845 (2019). https://doi.org/10.1016/j.electacta.2018.11.016
C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15(1), 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
A. Caglar, T. Sahan, M.S. Cogenli, A.B. Yurtcan, N. Aktas et al., A novel central composite design based response surface methodology optimization study for the synthesis of Pd/CNT direct formic acid fuel cell anode catalyst. Int. J. Hydrog. Energy 43, 11002–11011 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.208
O.F. Er, A. Caglar, B. Ulas, H. Kivrak, A. Kivrak, Novel carbon nanotube supported Co@Ag@Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method. Mater. Chem. Phys. 241, 122422 (2020). https://doi.org/10.1016/j.matchemphys.2019.122422
B. Ulas, A. Caglar, O. Sahin, H. Kivrak, Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J. Colloid Interface Sci. 532, 47–57 (2018). https://doi.org/10.1016/j.jcis.2018.07.120
Y. Pan, Y. Zhu, J. Shen, Y. Chen, C. Li, Carbon-loaded ultrafine fully crystalline phase palladium-based nanoalloy PdCoNi/C: facile synthesis and high activity for formic acid oxidation. Nanoscale 11, 17334–17339 (2019). https://doi.org/10.1039/C9NR06671C
J.K. Yoo, M. Choi, S. Yang, B. Shong, H.-S. Chung et al., Formic acid electrooxidation activity of Pt and Pt/Au catalysts: effects of surface physical properties and irreversible adsorption of Bi. Electrochim. Acta 273, 307–317 (2018). https://doi.org/10.1016/j.electacta.2018.04.071
H. Kivrak, D. Atbas, O. Alal, M.S. Çögenli, A. Bayrakceken et al., A complementary study on novel PdAuCo catalysts: synthesis, characterization, direct formic acid fuel cell application, and exergy analysis. Int. J. Hydrog. Energy 43, 21886–21898 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.135
A. Caglar, M.S. Cogenli, A.B. Yurtcan, H. Kivrak, Effective carbon nanotube supported metal (M=Au, Ag Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells. Renew. Energy 150, 78–90 (2020). https://doi.org/10.1016/j.renene.2019.12.104
S.R. Chowdhury, T. Maiyalagan, Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanops for formic acid electro-oxidation. Int. J. Hydrog. Energy 44, 14808–14819 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.025
T. Bhowmik, M.K. Kundu, S. Barman, Highly efficient electrocatalytic oxidation of formic acid on palladium nanops-graphitic carbon nitride composite. Int. J. Hydrog. Energy 42, 212–217 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.095
M. Sadhukhan, M.K. Kundu, T. Bhowmik, S. Barman, Highly dispersed platinum nanops on graphitic carbon nitride: a highly active and durable electrocatalyst for oxidation of methanol, formic acid and formaldehyde. Int. J. Hydrog. Energy 42, 9371–9383 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.097
N. Jia, Y. Shi, S. Zhang, X. Chen, P. Chen et al., Carbon nanobowls supported ultrafine palladium nanocrystals: a highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrog. Energy 42, 8255–8263 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.136
T. Szumełda, A. Drelinkiewicz, E. Lalik, R. Kosydar, D. Duraczyńska et al., Carbon-supported Pd100-XAuX alloy nanops for the electrocatalytic oxidation of formic acid: influence of metal ps composition on activity enhancement. Appl. Catal. B Environ. 221, 393–405 (2018). https://doi.org/10.1016/j.apcatb.2017.09.039
Y. Jin, J. Zhao, F. Li, W. Jia, D. Liang et al., Nitrogen-doped graphene supported palladium-nickel nanops with enhanced catalytic performance for formic acid oxidation. Electrochim. Acta 220, 83–90 (2016). https://doi.org/10.1016/j.electacta.2016.10.087
X. Liu, Y. Bu, T. Cheng, W. Gao, Q. Jiang, Flower-like carbon supported Pd–Ni bimetal nanops catalyst for formic acid electrooxidation. Electrochim. Acta 324, 134816 (2019). https://doi.org/10.1016/j.electacta.2019.134816
B. Gralec, A. Lewera, Catalytic activity of unsupported Pd-Pt nanoalloys with low Pt content towards formic acid oxidation. Appl. Catal. B Environ. 192, 304–310 (2016). https://doi.org/10.1016/j.apcatb.2016.03.073
J. Yang, S. Yang, Y. Chung, Y. Kwon, Carbon supported palladium-copper bimetallic catalysts for promoting electrochemical oxidation of formic acid and its utilization in direct formic acid fuel cells. Korean J. Chem. Eng. 37, 176–183 (2020). https://doi.org/10.1007/s11814-019-0432-6
M. Lou, R. Wang, L. Yang, D. Jia, Z. Sun et al., Ionic liquid polyoxometalate-enhanced Pd/N, P-codoped coal-based carbon fiber catalysts for formic acid electrooxidation. Appl. Surf. Sci. 516, 146137 (2020). https://doi.org/10.1016/j.apsusc.2020.146137
S. Yang, J. Yang, Y. Chung, Y. Kwon, PdBi bimetallic catalysts including polyvinylpyrrolidone surfactant inducing excellent formic acid oxidation reaction and direct formic acid fuel cell performance. Int. J. Hydrog. Energy 42, 17211–17220 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.018
P. Rupa Kasturi, R. Harivignesh, Y.S. Lee, R. Kalai Selvan, Polyol assisted formaldehyde reduction of bi-metallic Pt-Pd supported agro-waste derived carbon spheres as an efficient electrocatalyst for formic acid and ethylene glycol oxidation. J. Colloid Interface Sci. 561, 358–371 (2020). https://doi.org/10.1016/j.jcis.2019.10.121
Y. Yang, H. Huang, B. Shen, L. Jin, Q. Jiang et al., Anchoring nanosized Pd on three-dimensional boron- and nitrogen-codoped graphene aerogels as a highly active multifunctional electrocatalyst for formic acid and methanol oxidation reactions. Inorg. Chem. Front. 7, 700–708 (2020). https://doi.org/10.1039/C9QI01448A
H. Huang, Y. Wei, B. Shen, Y. Zhang, H. He et al., Synthesis of multiple-twinned Pd nanops anchored on graphitic carbon nanosheets for use as highly-active multifunctional electrocatalyst in formic acid and methanol oxidation reactions. Adv. Mater. Interfaces 7, 2000142 (2020). https://doi.org/10.1002/admi.202000142
T. Gunji, S.H. Noh, T. Tanabe, B. Han, C.Y. Nien et al., Enhanced electrocatalytic activity of carbon-supported ordered intermetallic palladium–lead (Pd3Pb) nanops toward electrooxidation of formic acid. Chem. Mater. 29, 2906–2913 (2017). https://doi.org/10.1021/acs.chemmater.6b05191
Y. Zhou, D. Liu, Z. Liu, L. Feng, J. Yang, Interfacial Pd–O–Ce linkage enhancement boosting formic acid electrooxidation. ACS Appl. Mater. Interfaces 12, 47065–47075 (2020). https://doi.org/10.1021/acsami.0c15074
F. Wang, H. Xue, Z. Tian, W. Xing, L. Feng, Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction. J. Power Sources 375, 37–42 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.055
B. Lesiak, A. Malolepszy, M. Mazurkiewicz-Pawlicka, L. Stobinski, L. Kövér et al., A high stability AuPd-ZrO2-multiwall carbon nanotubes supported-catalyst in a formic acid electro-oxidation reaction. Appl. Surf. Sci. 451, 289–297 (2018). https://doi.org/10.1016/j.apsusc.2018.04.233
W.-L. Qu, Z.-B. Wang, Y. Gao, C. Deng, R.-H. Wang et al., WO3/C supported Pd catalysts for formic acid electro-oxidation activity. Int. J. Hydrog. Energy 43, 407–416 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.046
M.S. Çögenli, A. Bayrakçeken, Yurtcan Heteroatom doped 3D graphene aerogel supported catalysts for formic acid and methanol oxidation. Int. J. Hydrog. Energy 45, 650–666 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.226
L.Y. Zhang, Z.L. Zhao, W. Yuan, C.M. Li, Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 8, 1905–1909 (2016). https://doi.org/10.1039/C5NR08512H
F. Yang, Y. Zhang, P.-F. Liu, Y. Cui, X.-R. Ge et al., Pd–Cu alloy with hierarchical network structure as enhanced electrocatalysts for formic acid oxidation. Int. J. Hydrog. Energy 41, 6773–6780 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.145
K. Miao, Y. Luo, J. Zou, J. Yang, F. Zhang et al., PdRu alloy nanops of solid solution in atomic scale: outperformance towards formic acid electro-oxidation in acidic medium. Electrochim. Acta 251, 588–594 (2017). https://doi.org/10.1016/j.electacta.2017.08.167
Z. Xi, D.P. Erdosy, A. Mendoza-Garcia, P.N. Duchesne, J. Li et al., Pd nanops coupled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 17, 2727–2731 (2017). https://doi.org/10.1021/acs.nanolett.7b00870
V. Mazumder, S. Sun, Oleylamine-mediated synthesis of Pd nanops for catalytic formic acid oxidation. J. Am. Chem. Soc. 131, 4588–4589 (2009). https://doi.org/10.1021/ja9004915
J. Pei, J. Mao, X. Liang, Z. Zhuang, C. Chen et al., Ultrathin Pt–Zn nanowires: high-performance catalysts for electrooxidation of methanol and formic acid. ACS Sustain. Chem. Eng. 6, 77–81 (2018). https://doi.org/10.1021/acssuschemeng.7b03234
Y. Ma, T. Li, H. Chen, X. Chen, S. Deng et al., A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation. J. Energy Chem. 26, 1238–1244 (2017). https://doi.org/10.1016/j.jechem.2017.10.024
D. Chen, L. Xu, H. Liu, J. Yang, Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy Environ. 4, 254–263 (2019). https://doi.org/10.1016/j.gee.2018.09.002
X. Hu, J. Zou, H. Gao, X. Kang, Trimetallic Ru@AuPt core-shell nanostructures: the effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation. J. Colloid Interface Sci. 570, 72–79 (2020). https://doi.org/10.1016/j.jcis.2020.02.111
T. Huang, S.K. Moon, J.-M. Lee, Polymer-assisted formation of 3D Pd nanoassemblies: highly active catalysts for formic acid electrooxidation. Sustain. Energy Fuels 1, 450–457 (2017). https://doi.org/10.1039/C7SE00031F
L. Zhang, S.-I. Choi, J. Tao, H.-C. Peng, S. Xie et al., Pd–Cu bimetallic tripods: a mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 24, 7520–7529 (2014). https://doi.org/10.1002/adfm.201402350
F.-C. Chang, Y.-C. Li, R.-J. Wu, C.-H. Chen, Pt–Pd floating nanoarrays templated on pluronic F127 micelles as effective surface-enhanced Raman scattering sensors. ACS Appl. Nano Mater. 2, 2515–2524 (2019). https://doi.org/10.1021/acsanm.9b00434
L. Wang, Y. Yamauchi, Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanops consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 132, 13636–13638 (2010). https://doi.org/10.1021/ja105640p
S. Liu, Z. Wang, H. Zhang, S. Yin, Y. Xu et al., B-Doped PdRu nanopillar assemblies for enhanced formic acid oxidation electrocatalysis. Nanoscale 12, 19159–19164 (2020). https://doi.org/10.1039/d0nr05464j
Y. Peng, L. Li, R. Tao, L. Tan, M. Qiu et al., One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 11, 3222–3232 (2018). https://doi.org/10.1007/s12274-017-1851-5
P. Kankla, J. Limtrakul, M.L.H. Green, N. Chanlek, P. Luksirikul, Electrooxidation of formic acid enhanced by surfactant-free palladium nanocubes on surface modified graphene catalyst. Appl. Surf. Sci. 471, 176–184 (2019). https://doi.org/10.1016/j.apsusc.2018.12.001
X. Xiao, H. Jeong, J. Song, J.-P. Ahn, J. Kim et al., Facile synthesis of Pd@Pt core–shell nanocubes with low Pt content via direct seed-mediated growth and their enhanced activity for formic acid oxidation. Chem. Commun. 55, 11952–11955 (2019). https://doi.org/10.1039/C9CC05915F
D.-N. Li, A.-J. Wang, J. Wei, Q.-L. Zhang, J.-J. Feng, Facile synthesis of flower-like Au@AuPd nanocrystals with highly electrocatalytic activity for formic acid oxidation and hydrogen evolution reactions. Int. J. Hydrog. Energy 42, 19894–19902 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.186
M. Tang, W. Chen, S. Luo, X. Wu, X. Fan et al., Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. J. Mater. Chem. A 9, 9602–9608 (2021). https://doi.org/10.1039/D1TA01123E
Y. Feng, Q. Shao, Y. Ji, X. Cui, Y. Li et al., Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 4, 8817 (2018). https://doi.org/10.1126/sciadv.aap8817
H. Xu, K. Zhang, B. Yan, J. Wang, C. Wang et al., Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation. J. Power Sources 356, 27–35 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.070
X. Zhang, H. Fan, J. Zheng, S. Duan, Y. Huang et al., Pd–Zn nanocrystals for highly efficient formic acid oxidation. Catal. Sci. Technol. 8, 4757–4765 (2018). https://doi.org/10.1039/C8CY01503A
Z. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li et al., Facile fabrication of stable PdCu clusters uniformly decorated on graphene as an efficient electrocatalyst for formic acid oxidation. Int. J. Hydrog. Energy 44, 2731–2740 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.004
L. Chen, J. Zhu, C. Xuan, W. Xiao, K. Xia et al., Effects of crystal phase and composition on structurally ordered Pt–Co–Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 6, 5848–5855 (2018). https://doi.org/10.1039/C7TA11051K
T. Shen, S. Chen, C. Zhang, Y. Hu, E. Ma et al., Engineering Ir atomic configuration for switching the pathway of formic acid electrooxidation reaction. Adv. Funct. Mater. 32, 2107672 (2022). https://doi.org/10.1002/adfm.202107672
T. Shen, Y. Lu, M. Gong, T. Zhao, Y. Hu et al., Optimizing formic acid electro-oxidation performance by restricting the continuous Pd sites in Pd–Sn nanocatalysts. ACS Sustain. Chem. Eng. 8, 12239–12247 (2020). https://doi.org/10.1021/acssuschemeng.0c03881
M. Kiani, J. Zhang, Y. Luo, Y. Chen, J. Chen et al., Facile synthesis and enhanced catalytic activity of electrochemically dealloyed platinum–nickel nanops towards formic acid electro-oxidation. J. Energy Chem. 35, 9–16 (2019). https://doi.org/10.1016/j.jechem.2018.10.011
Y. Bao, M. Zha, P. Sun, G. Hu, L. Feng, PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 59, 748–754 (2021). https://doi.org/10.1016/j.jechem.2020.12.007
L.Y. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li et al., Palladium-cobalt nanodots anchored on graphene: in situ synthesis, and application as an anode catalyst for direct formic acid fuel cells. Appl. Surf. Sci. 469, 305–311 (2019). https://doi.org/10.1016/j.apsusc.2018.11.034
X. Ning, X. Zhou, J. Luo, L. Ma, X. Xu et al., Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: effect of carbon support and synthesis method on the metal-support interaction. Electrochim. Acta 319, 129–137 (2019). https://doi.org/10.1016/j.electacta.2019.06.147
S. Xu, J. Zhang, J. Wang, L. Lv, Y. Sun et al., The electrooxidation of formic acid catalyzed by Pd–Ga nanoalloys. Catal. Sci. Technol. 9, 1255–1259 (2019). https://doi.org/10.1039/C8CY02356E
J.-M. Zhang, R.-X. Wang, R.-J. Nong, Y. Li, X.-J. Zhang et al., Hydrogen co-reduction synthesis of PdPtNi alloy nanops on carbon nanotubes as enhanced catalyst for formic acid electrooxidation. Int. J. Hydrog. Energy 42, 7226–7234 (2017). https://doi.org/10.1016/j.ijhydene.2016.05.198
J. Shan, T. Zeng, W. Wu, Y. Tan, N. Cheng et al., Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation. Nanoscale 12, 12891–12897 (2020). https://doi.org/10.1039/d0nr00307g
A.K. Taylor, D.S. Perez, X. Zhang, B.K. Pilapil, M.H. Engelhard et al., Block copolymer templated synthesis of PtIr bimetallic nanocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 5, 21514–21527 (2017). https://doi.org/10.1039/c7ta06458f
X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen et al., Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011). https://doi.org/10.1038/nnano.2010.235
M. Farsadrooh, J. Torrero, L. Pascual, M.A. Peña, M. Retuerto et al., Two-dimensional Pd-nanosheets as efficient electrocatalysts for ethanol electrooxidation. Evidences of the CC scission at low potentials. Appl. Catal. B Environ. 237, 866–875 (2018). https://doi.org/10.1016/j.apcatb.2018.06.051
M.Z. Yazdan-Abad, M. Noroozifar, N. Alfi, Investigation on the electrocatalytic activity and stability of three-dimensional and two-dimensional palladium nanostructures for ethanol and formic acid oxidation. J. Colloid Interface Sci. 532, 485–490 (2018). https://doi.org/10.1016/j.jcis.2018.08.003
H. Saravani, M. Farsadrooh, M.S. Mollashahi, M. Hajnajafi, A.S. Douk, Two-dimensional engineering of Pd nanosheets as advanced electrocatalysts toward formic acid oxidation. Int. J. Hydrog. Energy 45, 21232–21240 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.072
H.M. An, Z.L. Zhao, L.Y. Zhang, Y. Chen, Y.Y. Chang et al., Ir-alloyed ultrathin ternary PdIrCu nanosheet-constructed flower with greatly enhanced catalytic performance toward formic acid electrooxidation. ACS Appl. Mater. Interfaces 10, 41293–41298 (2018). https://doi.org/10.1021/acsami.8b13361
Q. Zhao, C. Ge, Y. Cai, Q. Qiao, X. Jia, Silsesquioxane stabilized platinum-palladium alloy nanops with morphology evolution and enhanced electrocatalytic oxidation of formic acid. J. Colloid Interface Sci. 514, 425–432 (2018). https://doi.org/10.1016/j.jcis.2017.12.053
H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46, 1783–1794 (2013). https://doi.org/10.1021/ar300209w
Y. Li, Y. Yan, Y. He, S. Du, Catalyst electrodes with PtCu nanowire arrays in situ grown on gas diffusion layers for direct formic acid fuel cells. ACS Appl. Mater. Interfaces 14, 11457–11464 (2022). https://doi.org/10.1021/acsami.1c24010
E. Fidiani, G. Thirunavukkarasu, Y. Li, Y.-L. Chiu, S. Du, Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Mater. Chem. A 9, 5578–5587 (2021). https://doi.org/10.1039/D0TA08551K
S.H. Sun, D.Q. Yang, D. Villers, G.X. Zhang, E. Sacher et al., Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 20, 571–574 (2008). https://doi.org/10.1002/adma.200701408
C. Zhu, D. Liu, Z. Chen, L. Li, T. You, Superior catalytic activity of Pt/carbon nanohorns nanocomposites toward methanol and formic acid oxidation reactions. J. Colloid Interface Sci. 511, 77–83 (2018). https://doi.org/10.1016/j.jcis.2017.09.109
L.Y. Zhang, Z. Liu, Graphene decorated with Pd4Ir nanocrystals: ultrasound-assisted synthesis, and application as a catalyst for oxidation of formic acid. J. Colloid Interface Sci. 505, 783–788 (2017). https://doi.org/10.1016/j.jcis.2017.06.084
F.-M. Li, Y.-Q. Kang, H.-M. Liu, Y.-N. Zhai, M.-C. Hu et al., Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction. J. Colloid Interface Sci. 514, 299–305 (2018). https://doi.org/10.1016/j.jcis.2017.12.043
P.S. Cappellari, A.M. Baena-Moncada, R. Coneo-Rodríguez, M.S. Moreno, C.A. Barbero et al., Catalytic enhancement of formic acid electro-oxidation through surface modifications with gold on supported Pt nanops. Int. J. Hydrog. Energy 44, 1967–1972 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.138
J. Li, X. Liang, L. Cai, S. Huang, C. Zhao, Modification of palladium nanocrystals with single atom platinum via an electrochemical self-catalysis strategy for efficient formic acid electrooxidation. ACS Appl. Mater. Interfaces 14, 8001–8009 (2022). https://doi.org/10.1021/acsami.1c23228
Y. Li, Y. Yan, M.-S. Yao, F. Wang, Y. Li et al., Porous electrodes from self-assembled 3D jointed Pd polyhedra for direct formic acid fuel cells. Chem. Eng. J. 462, 142244 (2023). https://doi.org/10.1016/j.cej.2023.142244
Y. Gong, X. Liu, Y. Gong, D. Wu, B. Xu et al., Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation. J. Colloid Interface Sci. 530, 189–195 (2018). https://doi.org/10.1016/j.jcis.2018.06.074
L.Y. Zhang, Y. Gong, D. Wu, G. Wu, B. Xu et al., Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. J. Colloid Interface Sci. 537, 366–374 (2019). https://doi.org/10.1016/j.jcis.2018.11.038
T. Yuan, H.-Y. Chen, X. Ma, J.-J. Feng, P.-X. Yuan et al., Simple synthesis of self-supported hierarchical AuPd alloyed nanowire networks for boosting electrocatalytic activity toward formic acid oxidation. J. Colloid Interface Sci. 513, 324–330 (2018). https://doi.org/10.1016/j.jcis.2017.11.012
X.-F. Zhang, Y. Chen, L. Zhang, A.-J. Wang, L.-J. Wu et al., Poly-l-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution. J. Colloid Interface Sci. 516, 325–331 (2018). https://doi.org/10.1016/j.jcis.2018.01.046
W. Zhang, Q. Yao, X. Wu, Y. Fu, K. Deng et al., Intimately coupled hybrid of graphitic carbon nitride nanoflakelets with reduced graphene oxide for supporting Pd nanops: a stable nanocatalyst with high catalytic activity towards formic acid and methanol electrooxidation. Electrochim. Acta 200, 131–141 (2016). https://doi.org/10.1016/j.electacta.2016.03.169
H. Wang, H. Chen, H.-Q. Wang, C.-R. Ou, R. Li et al., Synthesis of ultrafine low loading Pd–Cu alloy catalysts supported on graphene with excellent electrocatalytic performance for formic acid oxidation. Int. J. Hydrog. Energy 45, 10735–10744 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.019
F. Liu, Z. Zhu, J. Fan, Q. Li, Y. Min et al., Ternary PdMoP nanops anchored on boron–nitrogen functionalized CNTs for high-efficiency formic acid electrooxidation. ACS Sustain. Chem. Eng. 8, 17587–17596 (2020). https://doi.org/10.1021/acssuschemeng.0c07370
G. Cabello, R.A. Davoglio, F.W. Hartl, J.F. Marco, E.C. Pereira et al., Microwave-assisted synthesis of Pt-Au nanops with enhanced electrocatalytic activity for the oxidation of formic acid. Electrochim. Acta 224, 56–63 (2017). https://doi.org/10.1016/j.electacta.2016.12.022
Z. Li, J. Song, D.-C. Lee, A. Abdelhafiz, Z. Xiao et al., Mono-disperse PdO nanops prepared via microwave-assisted thermo-hydrolyzation with unexpectedly high activity for formic acid oxidation. Electrochim. Acta 329, 135166 (2020). https://doi.org/10.1016/j.electacta.2019.135166
G. Luo, A. Chen, M. Zhu, K. Zhao, X. Zhang et al., Improving the electrocatalytic performance of Pd for formic acid electrooxidation by introducing tourmaline. Electrochim. Acta 360, 137023 (2020). https://doi.org/10.1016/j.electacta.2020.137023
H. Jiang, L. Liu, K. Zhao, Z. Liu, X. Zhang et al., Effect of pyridinic- and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation. Electrochim. Acta 337, 135758 (2020). https://doi.org/10.1016/j.electacta.2020.135758
K.C. Poon, B. Khezri, Y. Li, R.D. Webster, H. Su et al., A highly active Pd-P nanop electrocatalyst for enhanced formic acid oxidation synthesized via stepwise electroless deposition. Chem. Commun. 52, 3556–3559 (2016). https://doi.org/10.1039/c5cc08669h
F. Wu, J. Lai, L. Zhang, W. Niu, B. Lou et al., Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation. Nanoscale 10, 9369–9375 (2018). https://doi.org/10.1039/c8nr00385h
X. Liang, B. Liu, J. Zhang, S. Lu, Z. Zhuang, Ternary Pd-Ni-P hybrid electrocatalysts derived from Pd-Ni core-shell nanops with enhanced formic acid oxidation activity. Chem. Commun. 52, 11143–11146 (2016). https://doi.org/10.1039/c6cc04382h
M.D. Johan Ooi, A. Abdul Aziz, Seed-mediated grown platinum nanocrystal: a correlation between seed volume and catalytic performance of formic acid and ethanol oxidation. Int. J. Hydrog. Energy 42, 9063–9068 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.032
S. Patra,