Quantum Dots Mediated Crystallization Enhancement in Two-Step Processed Perovskite Solar Cells
Corresponding Author: Hsing‑Lin Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 169
Abstract
Hybrid organic–inorganic lead halide perovskites have emerged as a promising material for high-efficiency solar cells, yet challenges related to crystallization and defects limit their performance and stability. This study investigates the use of perovskite quantum dots (QDs) as crystallization seeds to enhance the quality of FAPbI3 perovskite films and improve the performance of perovskite solar cells (PSCs). We demonstrate that CsPbI3 and CsPbBr3 QDs effectively guide the crystallization process, leading to the formation of larger crystals with preferential orientations, particularly the (001) and (002) planes, which are associated with reduced defect densities. This seed-mediated growth strategy resulted in PSCs with power conversion efficiencies (PCEs) of 24.75% and 24.11%, respectively, compared to the baseline efficiency of 22.05% for control devices. Furthermore, devices incorporating QD-treated perovskite films exhibited remarkable stability, maintaining over 80% of their initial PCE after 1000 h of simulated sunlight exposure, a significant improvement over the control. Detailed optoelectronic characterization revealed reduced non-radiative recombination and enhanced charge transport in QD-treated devices. These findings highlight the potential of QDs as a powerful tool to improve perovskite crystallization, facet orientation, and overall device performance, offering a promising route to enhance both efficiency and stability in PSCs.
Highlights:
1 The incorporation of quantum dots (QDs) as crystallization seeds results in the growth of larger perovskite crystals with reduced defect densities and preferential orientations along the (001) and (002) planes, significantly improving the film morphology.
2 The QD-seeded films exhibit reduced non-radiative recombination and enhanced charge transport, as confirmed by steady-state and time-resolved photoluminescence, transient photovoltage measurements, and electrochemical impedance spectroscopy.
3 Devices fabricated with QD-treated films achieve a remarkable power conversion efficiency (PCE) of 24.75% and exhibit exceptional long-term stability under simulated sunlight exposure, retaining 80% of their PCE after 1000 h of continuous illumination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng et al., Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 383, 1198–1204 (2024). https://doi.org/10.1126/science.adk9089
- S. Zhang, J. Wang, N. Kalasariya, P. Dally, C. Deger et al., Mitigating buried-interface energy losses through multifunctional ligands in n–i–p perovskite/silicon tandem solar cells. ACS Energy Lett. 9, 4633–4644 (2024). https://doi.org/10.1021/acsenergylett.4c01841
- M. Wang, Z. Shi, C. Fei, Z.J.D. Deng, G. Yang et al., Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023). https://doi.org/10.1038/s41560-023-01362-0
- W. Zhang, H. Liu, Y. Qu, J. Cui, W. Zhang et al., B-site co-doping coupled with additive passivation pushes the efficiency of Pb-Sn mixed inorganic perovskite solar cells to over 17%. Adv. Mater. 36, e2309193 (2024). https://doi.org/10.1002/adma.202309193
- National Renewable Energy Laboratory (NREL) 2024, https://www.nrel.gov/
- J.-S. Nam, J.-M. Choi, J.W. Lee, J. Han, I. Jeon et al., Decoding polymeric additive-driven self-healing processes in perovskite solar cells from chemical and physical bonding perspectives. Adv. Energy Mater. 14, 2304062 (2024). https://doi.org/10.1002/aenm.202304062
- Y. Zhang, T. Yang, S.-U. Lee, S. Liu, K. Zhao et al., Stabilizing α-phase FAPbI3 perovskite induced by an ordered solvated quasi-crystalline PbI2. ACS Energy Lett. 9, 159–167 (2024). https://doi.org/10.1021/acsenergylett.3c02455
- W. Shao, H. Wang, S. Fu, Y. Ge, H. Guan et al., Tailoring perovskite surface potential and chelation advances efficient solar cells. Adv. Mater. 36, e2310080 (2024). https://doi.org/10.1002/adma.202310080
- J. Wang, M.A. Uddin, B. Chen, X. Ying, Z. Ni et al., Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive. Adv. Energy Mater. 13, 2204115 (2023). https://doi.org/10.1002/aenm.202204115
- Y. Zheng, Y. Li, R. Zhuang, X. Wu, C. Tian et al., Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy Environ. Sci. 17, 1153–1162 (2024). https://doi.org/10.1039/D3EE03435F
- W. Zhang, H. Liu, X. Qi, Y. Yu, Y. Zhou et al., Oxalate pushes efficiency of CsPb0.7Sn0.3IBr2 based all-inorganic perovskite solar cells to over 14%. Adv. Sci. 9, e2106054 (2022). https://doi.org/10.1002/advs.202106054
- Y. Ma, F. Li, J. Gong, L. Wang, X. Tang et al., Bi-molecular kinetic competition for surface passivation in high-performance perovskite solar cells. Energy Environ. Sci. 17, 1570–1579 (2024). https://doi.org/10.1039/D3EE03439A
- J. Xu, P. Shi, K. Zhao, L. Yao, C. Deger et al., Ion-migration inhibitor for spiro-OMeTAD/perovskite contact toward stable perovskite solar cells. ACS Energy Lett. 9, 1073–1081 (2024). https://doi.org/10.1021/acsenergylett.4c00049
- H. Liu, X. Qi, J. Wang, W. Zhang, Y. Xia et al., 1, 8-octanediamine dihydroiodide-mediated grain boundary and interface passivation in two-step-processed perovskite solar cells. Sol. RRL 6, 2100960 (2022). https://doi.org/10.1002/solr.202100960
- N. Ren, P. Wang, J. Jiang, R. Li, W. Han et al., Multifunctional additive CdAc2 for efficient perovskite-based solar cells. Adv. Mater. 35, e2211806 (2023). https://doi.org/10.1002/adma.202211806
- Y. Huang, T. Liu, B. Wang, J. Li, D. Li et al., Antisolvent engineering to optimize grain crystallinity and hole-blocking capability of perovskite films for high-performance photovoltaics. Adv. Mater. 33, e2102816 (2021). https://doi.org/10.1002/adma.202102816
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
- X. Luo, Z. Shen, Y. Shen, Z. Su, X. Gao et al., Effective passivation with self-organized molecules for perovskite photovoltaics. Adv. Mater. 34, e2202100 (2022). https://doi.org/10.1002/adma.202202100
- Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu et al., Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023). https://doi.org/10.1038/s41586-023-06637-w
- H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15, 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
- Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018). https://doi.org/10.1038/s41467-018-04029-7
- W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang et al., The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nat. Energy 6, 624–632 (2021). https://doi.org/10.1038/s41560-021-00830-9
- J. Cao, G. Tang, P. You, T. Wang, F. Zheng et al., Enhanced performance of planar perovskite solar cells induced by van der Waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30, 2002358 (2020). https://doi.org/10.1002/adfm.202002358
- G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31, e1807689 (2019). https://doi.org/10.1002/adma.201807689
- C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
- J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
- Y. Chen, Y. Zhao, Incorporating quantum dots for high efficiency and stable perovskite photovoltaics. J. Mater. Chem. A 8, 25017–25027 (2020). https://doi.org/10.1039/d0ta09096d
- L. Hu, L. Duan, Y. Yao, W. Chen, Z. Zhou et al., Quantum dot passivation of halide perovskite films with reduced defects, suppressed phase segregation, and enhanced stability. Adv. Sci. 9, e2102258 (2022). https://doi.org/10.1002/advs.202102258
- X. Zhuang, R. Sun, D. Zhou, S. Liu, Y. Wu et al., Synergistic effects of multifunctional lanthanides doped CsPbBrCl2 quantum dots for efficient and stable MAPbI3 perovskite solar cells. Adv. Funct. Mater. 32, 2110346 (2022). https://doi.org/10.1002/adfm.202110346
- W. Chi, S.K. Banerjee, Application of perovskite quantum dots as an absorber in perovskite solar cells. Angew. Chem. Int. Ed. 61, e202112412 (2022). https://doi.org/10.1002/anie.202112412
- S.M. Lee, C.J. Moon, H. Lim, Y. Lee, M.Y. Choi et al., Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: splitting of the photoluminescence peaks of CsPbBr3 and CsPb(Br/I)3 quantum dots at low temperature. J. Phys. Chem. C 121, 26054–26062 (2017). https://doi.org/10.1021/acs.jpcc.7b06301
- H. Liu, Z. Lu, W. Zhang, J. Wang, Z. Lu et al., Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv. Sci. 9, e2203640 (2022). https://doi.org/10.1002/advs.202203640
- H. Wang, F. Ye, J. Liang, Y. Liu, X. Hu et al., Pre-annealing treatment for high-efficiency perovskite solar cells via sequential deposition. Joule 6, 2869–2884 (2022). https://doi.org/10.1016/j.joule.2022.10.001
- J. He, W. Sheng, J. Yang, Y. Zhong, Y. Su et al., Omnidirectional diffusion of organic amine salts assisted by ordered arrays in porous lead iodide for two-step deposited large-area perovskite solar cells. Energy Environ. Sci. 16, 629–640 (2023). https://doi.org/10.1039/D2EE03418B
- O. Er-raji, M.A.A. Mahmoud, O. Fischer, A.J. Ramadan, D. Bogachuk et al., Tailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cells. Joule 8, 2811–2833 (2024). https://doi.org/10.1016/j.joule.2024.06.018
- H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24%. Adv. Mater. 34, e2204366 (2022). https://doi.org/10.1002/adma.202204366
- H. Liu, Y. Gao, F. Xu, X. Zhang, A. Ullah et al., Enhanced thermal and photostability of perovskite solar cells by a multifunctional Eu (III) trifluoromethanesulfonate additive. Adv. Funct. Mater. 34, 2315843 (2024). https://doi.org/10.1002/adfm.202315843
- H. Liu, J. Wang, Y. Qu, H. Zhou, Y. Xia et al., Defect management and ion infiltration barrier enable high-performance perovskite solar cells. ACS Energy Lett. 9, 2790–2799 (2024). https://doi.org/10.1021/acsenergylett.4c00059
- Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
- L. Yuan, W. Zhu, Y. Zhang, Y. Li, C.C.S. Chan et al., A conformally bonded molecular interface retarded iodine migration for durable perovskite solar cells. Energy Environ. Sci. 16, 1597–1609 (2023). https://doi.org/10.1039/d2ee03565k
- M. Lorenzoni, F. Pérez‐Murano, Conductive atomic force microscopy for nanolithography based on local anodic oxidation, in Conductive atomic force microscopy: applications in nanomaterials. ed. by M. Lanza (Wiley, Hoboken, 2017). https://doi.org/10.1002/9783527699773.ch9
- Z.-R. Lan, Y.-D. Wang, J.-Y. Shao, D.-X. Ma, Z. Liu et al., Surface passivation with diaminopropane dihydroiodide for p-i-n perovskite solar cells with over 25% efficiency. Adv. Funct. Mater. 34, 2312426 (2024). https://doi.org/10.1002/adfm.202312426
- J. Zhuang, P. Mao, Y. Luan, N. Chen, X. Cao et al., Rubidium fluoride modified SnO2 for planar n-i-p perovskite solar cells. Adv. Funct. Mater. 31, 2010385 (2021). https://doi.org/10.1002/adfm.202010385
- X. Qi, C. Song, W. Zhang, Y. Shi, Y. Gao et al., Bidirectional targeted therapy enables efficient, stable, and eco-friendly perovskite solar cells. Adv. Funct. Mater. 33, 2214714 (2023). https://doi.org/10.1002/adfm.202214714
- U. Gunes, E.B. Celik, C.C. Akgul, M. Koc, M. Ameri et al., A thienothiophene-based cation treatment allows semitransparent perovskite solar cells with improved efficiency and stability. Adv. Funct. Mater. 31, 2170314 (2021). https://doi.org/10.1002/adfm.202170314
- C. Deng, J. Wu, Y. Yang, Y. Du, R. Li et al., Modulating residual lead iodide via functionalized buried interface for efficient and stable perovskite solar cells. ACS Energy Lett. 8, 666–676 (2023). https://doi.org/10.1021/acsenergylett.2c02378
References
J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng et al., Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 383, 1198–1204 (2024). https://doi.org/10.1126/science.adk9089
S. Zhang, J. Wang, N. Kalasariya, P. Dally, C. Deger et al., Mitigating buried-interface energy losses through multifunctional ligands in n–i–p perovskite/silicon tandem solar cells. ACS Energy Lett. 9, 4633–4644 (2024). https://doi.org/10.1021/acsenergylett.4c01841
M. Wang, Z. Shi, C. Fei, Z.J.D. Deng, G. Yang et al., Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023). https://doi.org/10.1038/s41560-023-01362-0
W. Zhang, H. Liu, Y. Qu, J. Cui, W. Zhang et al., B-site co-doping coupled with additive passivation pushes the efficiency of Pb-Sn mixed inorganic perovskite solar cells to over 17%. Adv. Mater. 36, e2309193 (2024). https://doi.org/10.1002/adma.202309193
National Renewable Energy Laboratory (NREL) 2024, https://www.nrel.gov/
J.-S. Nam, J.-M. Choi, J.W. Lee, J. Han, I. Jeon et al., Decoding polymeric additive-driven self-healing processes in perovskite solar cells from chemical and physical bonding perspectives. Adv. Energy Mater. 14, 2304062 (2024). https://doi.org/10.1002/aenm.202304062
Y. Zhang, T. Yang, S.-U. Lee, S. Liu, K. Zhao et al., Stabilizing α-phase FAPbI3 perovskite induced by an ordered solvated quasi-crystalline PbI2. ACS Energy Lett. 9, 159–167 (2024). https://doi.org/10.1021/acsenergylett.3c02455
W. Shao, H. Wang, S. Fu, Y. Ge, H. Guan et al., Tailoring perovskite surface potential and chelation advances efficient solar cells. Adv. Mater. 36, e2310080 (2024). https://doi.org/10.1002/adma.202310080
J. Wang, M.A. Uddin, B. Chen, X. Ying, Z. Ni et al., Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive. Adv. Energy Mater. 13, 2204115 (2023). https://doi.org/10.1002/aenm.202204115
Y. Zheng, Y. Li, R. Zhuang, X. Wu, C. Tian et al., Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy Environ. Sci. 17, 1153–1162 (2024). https://doi.org/10.1039/D3EE03435F
W. Zhang, H. Liu, X. Qi, Y. Yu, Y. Zhou et al., Oxalate pushes efficiency of CsPb0.7Sn0.3IBr2 based all-inorganic perovskite solar cells to over 14%. Adv. Sci. 9, e2106054 (2022). https://doi.org/10.1002/advs.202106054
Y. Ma, F. Li, J. Gong, L. Wang, X. Tang et al., Bi-molecular kinetic competition for surface passivation in high-performance perovskite solar cells. Energy Environ. Sci. 17, 1570–1579 (2024). https://doi.org/10.1039/D3EE03439A
J. Xu, P. Shi, K. Zhao, L. Yao, C. Deger et al., Ion-migration inhibitor for spiro-OMeTAD/perovskite contact toward stable perovskite solar cells. ACS Energy Lett. 9, 1073–1081 (2024). https://doi.org/10.1021/acsenergylett.4c00049
H. Liu, X. Qi, J. Wang, W. Zhang, Y. Xia et al., 1, 8-octanediamine dihydroiodide-mediated grain boundary and interface passivation in two-step-processed perovskite solar cells. Sol. RRL 6, 2100960 (2022). https://doi.org/10.1002/solr.202100960
N. Ren, P. Wang, J. Jiang, R. Li, W. Han et al., Multifunctional additive CdAc2 for efficient perovskite-based solar cells. Adv. Mater. 35, e2211806 (2023). https://doi.org/10.1002/adma.202211806
Y. Huang, T. Liu, B. Wang, J. Li, D. Li et al., Antisolvent engineering to optimize grain crystallinity and hole-blocking capability of perovskite films for high-performance photovoltaics. Adv. Mater. 33, e2102816 (2021). https://doi.org/10.1002/adma.202102816
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
X. Luo, Z. Shen, Y. Shen, Z. Su, X. Gao et al., Effective passivation with self-organized molecules for perovskite photovoltaics. Adv. Mater. 34, e2202100 (2022). https://doi.org/10.1002/adma.202202100
Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu et al., Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023). https://doi.org/10.1038/s41586-023-06637-w
H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15, 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018). https://doi.org/10.1038/s41467-018-04029-7
W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang et al., The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nat. Energy 6, 624–632 (2021). https://doi.org/10.1038/s41560-021-00830-9
J. Cao, G. Tang, P. You, T. Wang, F. Zheng et al., Enhanced performance of planar perovskite solar cells induced by van der Waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30, 2002358 (2020). https://doi.org/10.1002/adfm.202002358
G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31, e1807689 (2019). https://doi.org/10.1002/adma.201807689
C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
Y. Chen, Y. Zhao, Incorporating quantum dots for high efficiency and stable perovskite photovoltaics. J. Mater. Chem. A 8, 25017–25027 (2020). https://doi.org/10.1039/d0ta09096d
L. Hu, L. Duan, Y. Yao, W. Chen, Z. Zhou et al., Quantum dot passivation of halide perovskite films with reduced defects, suppressed phase segregation, and enhanced stability. Adv. Sci. 9, e2102258 (2022). https://doi.org/10.1002/advs.202102258
X. Zhuang, R. Sun, D. Zhou, S. Liu, Y. Wu et al., Synergistic effects of multifunctional lanthanides doped CsPbBrCl2 quantum dots for efficient and stable MAPbI3 perovskite solar cells. Adv. Funct. Mater. 32, 2110346 (2022). https://doi.org/10.1002/adfm.202110346
W. Chi, S.K. Banerjee, Application of perovskite quantum dots as an absorber in perovskite solar cells. Angew. Chem. Int. Ed. 61, e202112412 (2022). https://doi.org/10.1002/anie.202112412
S.M. Lee, C.J. Moon, H. Lim, Y. Lee, M.Y. Choi et al., Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: splitting of the photoluminescence peaks of CsPbBr3 and CsPb(Br/I)3 quantum dots at low temperature. J. Phys. Chem. C 121, 26054–26062 (2017). https://doi.org/10.1021/acs.jpcc.7b06301
H. Liu, Z. Lu, W. Zhang, J. Wang, Z. Lu et al., Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv. Sci. 9, e2203640 (2022). https://doi.org/10.1002/advs.202203640
H. Wang, F. Ye, J. Liang, Y. Liu, X. Hu et al., Pre-annealing treatment for high-efficiency perovskite solar cells via sequential deposition. Joule 6, 2869–2884 (2022). https://doi.org/10.1016/j.joule.2022.10.001
J. He, W. Sheng, J. Yang, Y. Zhong, Y. Su et al., Omnidirectional diffusion of organic amine salts assisted by ordered arrays in porous lead iodide for two-step deposited large-area perovskite solar cells. Energy Environ. Sci. 16, 629–640 (2023). https://doi.org/10.1039/D2EE03418B
O. Er-raji, M.A.A. Mahmoud, O. Fischer, A.J. Ramadan, D. Bogachuk et al., Tailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cells. Joule 8, 2811–2833 (2024). https://doi.org/10.1016/j.joule.2024.06.018
H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24%. Adv. Mater. 34, e2204366 (2022). https://doi.org/10.1002/adma.202204366
H. Liu, Y. Gao, F. Xu, X. Zhang, A. Ullah et al., Enhanced thermal and photostability of perovskite solar cells by a multifunctional Eu (III) trifluoromethanesulfonate additive. Adv. Funct. Mater. 34, 2315843 (2024). https://doi.org/10.1002/adfm.202315843
H. Liu, J. Wang, Y. Qu, H. Zhou, Y. Xia et al., Defect management and ion infiltration barrier enable high-performance perovskite solar cells. ACS Energy Lett. 9, 2790–2799 (2024). https://doi.org/10.1021/acsenergylett.4c00059
Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
L. Yuan, W. Zhu, Y. Zhang, Y. Li, C.C.S. Chan et al., A conformally bonded molecular interface retarded iodine migration for durable perovskite solar cells. Energy Environ. Sci. 16, 1597–1609 (2023). https://doi.org/10.1039/d2ee03565k
M. Lorenzoni, F. Pérez‐Murano, Conductive atomic force microscopy for nanolithography based on local anodic oxidation, in Conductive atomic force microscopy: applications in nanomaterials. ed. by M. Lanza (Wiley, Hoboken, 2017). https://doi.org/10.1002/9783527699773.ch9
Z.-R. Lan, Y.-D. Wang, J.-Y. Shao, D.-X. Ma, Z. Liu et al., Surface passivation with diaminopropane dihydroiodide for p-i-n perovskite solar cells with over 25% efficiency. Adv. Funct. Mater. 34, 2312426 (2024). https://doi.org/10.1002/adfm.202312426
J. Zhuang, P. Mao, Y. Luan, N. Chen, X. Cao et al., Rubidium fluoride modified SnO2 for planar n-i-p perovskite solar cells. Adv. Funct. Mater. 31, 2010385 (2021). https://doi.org/10.1002/adfm.202010385
X. Qi, C. Song, W. Zhang, Y. Shi, Y. Gao et al., Bidirectional targeted therapy enables efficient, stable, and eco-friendly perovskite solar cells. Adv. Funct. Mater. 33, 2214714 (2023). https://doi.org/10.1002/adfm.202214714
U. Gunes, E.B. Celik, C.C. Akgul, M. Koc, M. Ameri et al., A thienothiophene-based cation treatment allows semitransparent perovskite solar cells with improved efficiency and stability. Adv. Funct. Mater. 31, 2170314 (2021). https://doi.org/10.1002/adfm.202170314
C. Deng, J. Wu, Y. Yang, Y. Du, R. Li et al., Modulating residual lead iodide via functionalized buried interface for efficient and stable perovskite solar cells. ACS Energy Lett. 8, 666–676 (2023). https://doi.org/10.1021/acsenergylett.2c02378