Host–Guest Inversion Engineering Induced Superionic Composite Solid Electrolytes for High-Rate Solid-State Alkali Metal Batteries
Corresponding Author: Zheng Ming Sun
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 190
Abstract
Composite solid electrolytes (CSEs) are promising for solid-state Li metal batteries but suffer from inferior room-temperature ionic conductivity due to sluggish ion transport and high cost due to expensive active ceramic fillers. Here, a host–guest inversion engineering strategy is proposed to develop superionic CSEs using cost-effective SiO2 nanoparticles as passive ceramic hosts and poly(vinylidene fluoride-hexafluoropropylene) (PVH) microspheres as polymer guests, forming an unprecedented “polymer guest-in-ceramic host” (i.e., PVH-in-SiO2) architecture differing from the traditional “ceramic guest-in-polymer host”. The PVH-in-SiO2 exhibits excellent Li-salt dissociation, achieving high-concentration free Li+. Owing to the low diffusion energy barriers and high diffusion coefficient, the free Li+ is thermodynamically and kinetically favorable to migrate to and transport at the SiO2/PVH interfaces. Consequently, the PVH-in-SiO2 delivers an exceptional ionic conductivity of 1.32 × 10−3 S cm−1 at 25 °C (vs. typically 10−5–10−4 S cm−1 using high-cost active ceramics), achieved under an ultralow residual solvent content of 2.9 wt% (vs. 8–15 wt% in other CSEs). Additionally, PVH-in-SiO2 is electrochemically stable with Li anode and various cathodes. Therefore, the PVH-in-SiO2 demonstrates excellent high-rate cyclability in LiFePO4|Li full cells (92.9% capacity-retention at 3C after 300 cycles under 25 °C) and outstanding stability with high-mass-loading LiFePO4 (9.2 mg cm−1) and high-voltage NCM622 (147.1 mAh g−1). Furthermore, we verify the versatility of the host–guest inversion engineering strategy by fabricating Na-ion and K-ion-based PVH-in-SiO2 CSEs with similarly excellent promotions in ionic conductivity. Our strategy offers a simple, low-cost approach to fabricating superionic CSEs for large-scale application of solid-state Li metal batteries and beyond.
Highlights:
1 Host–guest inversion engineering is proposed to create poly(vinylidene fluoride-hexafluoropropylene) (PVH)-in-SiO2 composite solid electrolytes with an original “polymer guest-in-ceramic host” architecture, exhibiting optimized interfacial contacts and comprehensive properties.
2 The PVH-in-SiO2 exhibits an overwhelming ionic conductivity of 1.32 × 10−3 S cm−1 at 25 °C, with an ultralow residual solvent content of 2.9 wt%. In addition, the LiFePO4|PVH-in-SiO2|Li full cells deliver a significant capacity retention of 92.9% at an ultrahigh rate of 3C after 300 cycles at 25 °C.
3 The host–guest inversion engineering is a versatile strategy, as proved by preparing Na+ and K+-based PVH-in-SiO2 composite solid electrolytes, delivering excellent ionic conductivity of 10−4 S cm−1 at 25 °C (vs. 10−6–10−5 S cm−1 of previous reports).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
- X. Hu, Z. Zhang, X. Zhang, Y. Wang, X. Yang et al., External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9, 305–320 (2024). https://doi.org/10.1038/s41578-024-00669-y
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17, 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- D. Wu, L. Chen, H. Li, F. Wu, Solid-state lithium batteries-from fundamental research to industrial progress. Prog. Mater. Sci. 139, 101182 (2023). https://doi.org/10.1016/j.pmatsci.2023.101182
- C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16, 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- Y. Liu, J. Wang, Y. Shao, R. Deng, J. Zhu et al., Recent advances in scalable synthesis and performance of Janus polymer/inorganic nanocomposites. Prog. Mater. Sci. 124, 100888 (2022). https://doi.org/10.1016/j.pmatsci.2021.100888
- L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- S. Pazhaniswamy, S.A. Joshi, H. Hou, A.K. Parameswaran, S. Agarwal, Hybrid polymer electrolyte encased cathode ps interface-based core–shell structure for high-performance room temperature all-solid-state batteries. Adv. Energy Mater. 13, 2202981 (2023). https://doi.org/10.1002/aenm.202202981
- S. Liu, Y. Zhao, X. Li, J. Yu, J. Yan et al., Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv. Mater. 33, e2008084 (2021). https://doi.org/10.1002/adma.202008084
- C. Bao, C. Zheng, M. Wu, Y. Zhang, J. Jin et al., 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204028 (2023). https://doi.org/10.1002/aenm.202204028
- J. Zheng, M. Tang, Y.-Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
- C. Bao, C. Zheng, J. Zhang, Y. Zhang, Z. You et al., A high performance fireproof quasi-solid-state electrolyte enabled by multi-phase synergistic mechanism. Energy Storage Mater. 68, 103362 (2024). https://doi.org/10.1016/j.ensm.2024.103362
- Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523
- Y. Su, X. Zhang, C. Du, Y. Luo, J. Chen et al., An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 18, e2202069 (2022). https://doi.org/10.1002/smll.202202069
- L. Pan, S. Sun, G. Yu, X.X. Liu, S. Feng et al., Stabilizing solid electrolyte/Li interface via polymer-in-salt artificial protection layer for high-rate and stable lithium metal batteries. Chem. Eng. J. 449, 137682 (2022). https://doi.org/10.1016/j.cej.2022.137682
- W. Zha, W. Li, Y. Ruan, J. Wang, Z. Wen, In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 36, 171–178 (2021). https://doi.org/10.1016/j.ensm.2020.12.028
- J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
- O. Sheng, C. Jin, T. Yang, Z. Ju, J. Luo et al., Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries. Energy Environ. Sci. 16, 2804–2824 (2023). https://doi.org/10.1039/D3EE01173A
- X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15, 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- J. Schnell, F. Tietz, C. Singer, A. Hofer, N. Billot et al., Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019). https://doi.org/10.1039/C8EE02692K
- K. Yang, L. Zhao, X. An, L. Chen, J. Ma et al., Determining the role of ion transport throughput in solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202302586 (2023). https://doi.org/10.1002/anie.202302586
- W. Yu, N. Deng, D. Shi, L. Gao, B. Cheng et al., One-dimensional oxide nanostructures possessing reactive surface defects enabled a lithium-rich region and high-voltage stability for all-solid-state composite electrolytes. ACS Nano 17, 22872–22884 (2023). https://doi.org/10.1021/acsnano.3c07754
- S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023). https://doi.org/10.1002/adma.202110423
- X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36, e2311195 (2024). https://doi.org/10.1002/adma.202311195
- F. Tao, X. Wang, S. Jin, L. Tian, Z. Liu et al., A composite of hierarchical porous MOFs and halloysite nanotubes as single-ion-conducting electrolyte toward high-performance solid-state lithium-ion batteries. Adv. Mater. 35, e2300687 (2023). https://doi.org/10.1002/adma.202300687
- S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13, 2302711 (2023). https://doi.org/10.1002/aenm.202302711
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
- L. Zhu, J. Chen, Y. Wang, W. Feng, Y. Zhu et al., Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes. J. Am. Chem. Soc. 146, 6591–6603 (2024). https://doi.org/10.1021/jacs.3c11988
- H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019). https://doi.org/10.1002/aenm.201804004
- Z. Li, F. Liu, S. Chen, F. Zhai, Y. Li et al., Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries. Nano Energy 82, 105698 (2021). https://doi.org/10.1016/j.nanoen.2020.105698
- Z. Zhang, S. Zhang, S. Geng, S. Zhou, Z. Hu et al., Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries. Energy Storage Mater. 51, 19–28 (2022). https://doi.org/10.1016/j.ensm.2022.06.025
- Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
- J. Yu, G. Zhou, Y. Li, Y. Wang, D. Chen et al., Improving room-temperature Li-metal battery performance by in situ creation of fast Li+ transport pathways in a polymer-ceramic electrolyte. Small 19, e2302691 (2023). https://doi.org/10.1002/smll.202302691
- S. Zhou, S. Zhong, Y. Dong, Z. Liu, L. Dong et al., Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries. Adv. Funct. Mater. 33, 2214432 (2023). https://doi.org/10.1002/adfm.202214432
- X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, e1806082 (2019). https://doi.org/10.1002/adma.201806082
- W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60, 12931–12940 (2021). https://doi.org/10.1002/anie.202101537
- H. Sun, X. Xie, Q. Huang, Z. Wang, K. Chen et al., Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. 60, 18335–18343 (2021). https://doi.org/10.1002/anie.202107667
- J. Mi, J. Ma, L. Chen, C. Lai, K. Yang et al., Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022). https://doi.org/10.1016/j.ensm.2022.02.048
- Y.-F. Huang, T. Gu, G. Rui, P. Shi, W. Fu et al., A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14, 6021–6029 (2021). https://doi.org/10.1039/D1EE02663A
- C. Dai, M. Weng, B. Cai, J. Liu, S. Guo et al., Ion-conductive crystals of poly(vinylidene fluoride) enable the fabrication of fast-charging solid-state lithium metal batteries. Energy Environ. Sci. 17, 8243–8253 (2024). https://doi.org/10.1039/d4ee03467h
- W. Yang, Y. Liu, X. Sun, Z. He, P. He et al., Solvation-tailored PVDF-based solid-state electrolyte for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63, e202401428 (2024). https://doi.org/10.1002/anie.202401428
- H. Cheng, D. Li, B. Xu, Y. Wei, H. Wang et al., Amorphous silicon nitride induced high dielectric constant toward long-life solid lithium metal battery. Energy Storage Mater. 53, 305–314 (2022). https://doi.org/10.1016/j.ensm.2022.09.003
- B.-H. Kang, S.-F. Li, J. Yang, Z.-M. Li, Y.-F. Huang, Uniform lithium plating for dendrite-free lithium metal batteries: role of dipolar channels in poly(vinylidene fluoride) and PbZrxTi1-xO3 interface. ACS Nano 17, 14114–14122 (2023). https://doi.org/10.1021/acsnano.3c04684
- Z. Luo, W. Li, C. Guo, Y. Song, M. Zhou et al., Two-dimensional silica enhanced solid polymer electrolyte for lithium metal batteries. Particuology 85, 146–154 (2024). https://doi.org/10.1016/j.partic.2023.04.002
- K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8 Co0.1 Mn0.1 O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021). https://doi.org/10.1002/anie.202110917
- L. Wu, F. Pei, D. Cheng, Y. Zhang, H. Cheng et al., Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 34, 2310084 (2024). https://doi.org/10.1002/adfm.202310084
- T. Deng, L. Cao, X. He, A.-M. Li, D. Li et al., In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7, 3052–3068 (2021). https://doi.org/10.1016/j.chempr.2021.06.019
- H. Wang, H. Cheng, D. Li, F. Li, Y. Wei et al., Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries. Adv. Energy Mater. 13, 2204425 (2023). https://doi.org/10.1002/aenm.202204425
- P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18, 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
- W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
- N. Meng, Y. Ye, Z. Yang, H. Li, F. Lian, Developing single-ion conductive polymer electrolytes for high-energy-density solid state batteries. Adv. Funct. Mater. 33, 2305072 (2023). https://doi.org/10.1002/adfm.202305072
- Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001). https://doi.org/10.1038/35087538
- X. Huang, S. Huang, T. Wang, L. Zhong, D. Han et al., Polyether-b-amide based solid electrolytes with well-adhered interface and fast kinetics for ultralow temperature solid-state lithium metal batteries. Adv. Funct. Mater. 33, 2300683 (2023). https://doi.org/10.1002/adfm.202300683
- M. Li, H. An, Y. Song, Q. Liu, J. Wang et al., Ion-dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J. Am. Chem. Soc. 145, 25632–25642 (2023). https://doi.org/10.1021/jacs.3c07482
- J. Chen, X. Deng, Y. Gao, Y. Zhao, X. Kong et al., Multiple dynamic bonds-driven integrated cathode/polymer electrolyte for stable all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 62, e202307255 (2023). https://doi.org/10.1002/anie.202307255
- X. Xie, Z. Wang, S. He, K. Chen, Q. Huang et al., Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. 62, e202218229 (2023). https://doi.org/10.1002/anie.202218229
- Y. Wang, P. Yuan, X.X. Liu, S. Feng, M. Cao et al., Sacrificial NH4HCO3 inhibits fluoropolymer/garnet interfacial reactions toward 1mS cm−1 and 5V-level composite solid electrolyte. Adv. Funct. Mater. 34, 2405060 (2024). https://doi.org/10.1002/adfm.202405060
- Y. Hu, L. Li, H. Tu, X. Yi, J. Wang et al., Janus electrolyte with modified Li+ solvation for high-performance solid-state lithium batteries. Adv. Funct. Mater. 32, 2203336 (2022). https://doi.org/10.1002/adfm.202203336
- M. Zhou, R. Liu, D. Jia, Y. Cui, Q. Liu et al., Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries. Adv. Mater. 33, e2100943 (2021). https://doi.org/10.1002/adma.202100943
- H. Li, Y. Du, Q. Zhang, Y. Zhao, F. Lian, A single-ion conducting network as rationally coordinating polymer electrolyte for solid-state Li metal batteries (adv.energy mater. 13/2022). Adv. Energy Mater. 12, 2270054 (2022). https://doi.org/10.1002/aenm.202270054
- Q. Liu, R. Liu, Y. Cui, M. Zhou, J. Zeng et al., Dendrite-free and long-cycling lithium metal battery enabled by ultrathin, 2D shield-defensive, and single lithium-ion conducting polymeric membrane. Adv. Mater. 34, e2108437 (2022). https://doi.org/10.1002/adma.202108437
- Y. Zhai, W. Hou, M. Tao, Z. Wang, Z. Chen et al., Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv. Mater. 34, 2205560 (2022). https://doi.org/10.1002/adma.202205560
- X. Shan, M. Morey, Z. Li, S. Zhao, S. Song et al., A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries. ACS Energy Lett. 7, 4342–4351 (2022). https://doi.org/10.1021/acsenergylett.2c02349
- X. Zuo, Y. Cheng, L. Xu, R. Chen, F. Liu et al., A novel thioctic acid-functionalized hybrid network for solid-state batteries. Energy Storage Mater. 46, 570–576 (2022). https://doi.org/10.1016/j.ensm.2022.01.045
- L. Qiao, S. Rodriguez Peña, M. Martínez-Ibañez, A. Santiago, I. Aldalur et al., Anion π-π stacking for improved lithium transport in polymer electrolytes. J. Am. Chem. Soc. 144, 9806–9816 (2022). https://doi.org/10.1021/jacs.2c02260
- Z. Tian, L. Hou, D. Feng, Y. Jiao, P. Wu, Modulating the coordination environment of lithium bonds for high performance polymer electrolyte batteries. ACS Nano 17, 3786–3796 (2023). https://doi.org/10.1021/acsnano.2c11734
- X.-X. Wang, L.-N. Song, L.-J. Zheng, D.-H. Guan, C.-L. Miao et al., Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202308837 (2023). https://doi.org/10.1002/anie.202308837
- T. Deng, Q. Han, J. Liu, C. Yang, J. Wang et al., Vertically aligned hollow mesoporous silica rods enabling composite polymer electrolytes with fast ionic conduction for lithium metal batteries. Adv. Funct. Mater. 34, 2311952 (2024). https://doi.org/10.1002/adfm.202311952
- Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian et al., Highly conductive imidazolate covalent organic frameworks with ether chains as solid electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 63, e202402202 (2024). https://doi.org/10.1002/anie.202402202
- X. Zhan, M. Li, X. Zhao, Y. Wang, S. Li et al., Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries. Nat. Commun. 15, 1056 (2024). https://doi.org/10.1038/s41467-024-45372-2
- Y. Dong, P. Wen, H. Shi, Y. Yu, Z.-S. Wu, Solid-state electrolytes for sodium metal batteries: recent status and future opportunities. Adv. Funct. Mater. 34, 2213584 (2024). https://doi.org/10.1002/adfm.202213584
- Z. Cuihong, Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries. Energy Storage Sci. Technol. 13, 3731–3741 (2024). https://doi.org/10.19799/j.cnki.2095-4239.2024.0511
- J. Yin, Y.S. Zhang, H. Liang, W. Zhang, Y. Zhu, Synthesis strategies of hard carbon anodes for sodium-ion batteries. Mater. Rep. Energy 4, 100268 (2024). https://doi.org/10.1016/j.matre.2024.100268
References
Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
X. Hu, Z. Zhang, X. Zhang, Y. Wang, X. Yang et al., External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9, 305–320 (2024). https://doi.org/10.1038/s41578-024-00669-y
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17, 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
D. Wu, L. Chen, H. Li, F. Wu, Solid-state lithium batteries-from fundamental research to industrial progress. Prog. Mater. Sci. 139, 101182 (2023). https://doi.org/10.1016/j.pmatsci.2023.101182
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16, 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
Y. Liu, J. Wang, Y. Shao, R. Deng, J. Zhu et al., Recent advances in scalable synthesis and performance of Janus polymer/inorganic nanocomposites. Prog. Mater. Sci. 124, 100888 (2022). https://doi.org/10.1016/j.pmatsci.2021.100888
L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
S. Pazhaniswamy, S.A. Joshi, H. Hou, A.K. Parameswaran, S. Agarwal, Hybrid polymer electrolyte encased cathode ps interface-based core–shell structure for high-performance room temperature all-solid-state batteries. Adv. Energy Mater. 13, 2202981 (2023). https://doi.org/10.1002/aenm.202202981
S. Liu, Y. Zhao, X. Li, J. Yu, J. Yan et al., Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv. Mater. 33, e2008084 (2021). https://doi.org/10.1002/adma.202008084
C. Bao, C. Zheng, M. Wu, Y. Zhang, J. Jin et al., 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204028 (2023). https://doi.org/10.1002/aenm.202204028
J. Zheng, M. Tang, Y.-Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
C. Bao, C. Zheng, J. Zhang, Y. Zhang, Z. You et al., A high performance fireproof quasi-solid-state electrolyte enabled by multi-phase synergistic mechanism. Energy Storage Mater. 68, 103362 (2024). https://doi.org/10.1016/j.ensm.2024.103362
Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523
Y. Su, X. Zhang, C. Du, Y. Luo, J. Chen et al., An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 18, e2202069 (2022). https://doi.org/10.1002/smll.202202069
L. Pan, S. Sun, G. Yu, X.X. Liu, S. Feng et al., Stabilizing solid electrolyte/Li interface via polymer-in-salt artificial protection layer for high-rate and stable lithium metal batteries. Chem. Eng. J. 449, 137682 (2022). https://doi.org/10.1016/j.cej.2022.137682
W. Zha, W. Li, Y. Ruan, J. Wang, Z. Wen, In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 36, 171–178 (2021). https://doi.org/10.1016/j.ensm.2020.12.028
J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
O. Sheng, C. Jin, T. Yang, Z. Ju, J. Luo et al., Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries. Energy Environ. Sci. 16, 2804–2824 (2023). https://doi.org/10.1039/D3EE01173A
X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15, 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
J. Schnell, F. Tietz, C. Singer, A. Hofer, N. Billot et al., Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019). https://doi.org/10.1039/C8EE02692K
K. Yang, L. Zhao, X. An, L. Chen, J. Ma et al., Determining the role of ion transport throughput in solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202302586 (2023). https://doi.org/10.1002/anie.202302586
W. Yu, N. Deng, D. Shi, L. Gao, B. Cheng et al., One-dimensional oxide nanostructures possessing reactive surface defects enabled a lithium-rich region and high-voltage stability for all-solid-state composite electrolytes. ACS Nano 17, 22872–22884 (2023). https://doi.org/10.1021/acsnano.3c07754
S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023). https://doi.org/10.1002/adma.202110423
X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36, e2311195 (2024). https://doi.org/10.1002/adma.202311195
F. Tao, X. Wang, S. Jin, L. Tian, Z. Liu et al., A composite of hierarchical porous MOFs and halloysite nanotubes as single-ion-conducting electrolyte toward high-performance solid-state lithium-ion batteries. Adv. Mater. 35, e2300687 (2023). https://doi.org/10.1002/adma.202300687
S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13, 2302711 (2023). https://doi.org/10.1002/aenm.202302711
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
L. Zhu, J. Chen, Y. Wang, W. Feng, Y. Zhu et al., Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes. J. Am. Chem. Soc. 146, 6591–6603 (2024). https://doi.org/10.1021/jacs.3c11988
H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019). https://doi.org/10.1002/aenm.201804004
Z. Li, F. Liu, S. Chen, F. Zhai, Y. Li et al., Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries. Nano Energy 82, 105698 (2021). https://doi.org/10.1016/j.nanoen.2020.105698
Z. Zhang, S. Zhang, S. Geng, S. Zhou, Z. Hu et al., Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries. Energy Storage Mater. 51, 19–28 (2022). https://doi.org/10.1016/j.ensm.2022.06.025
Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
J. Yu, G. Zhou, Y. Li, Y. Wang, D. Chen et al., Improving room-temperature Li-metal battery performance by in situ creation of fast Li+ transport pathways in a polymer-ceramic electrolyte. Small 19, e2302691 (2023). https://doi.org/10.1002/smll.202302691
S. Zhou, S. Zhong, Y. Dong, Z. Liu, L. Dong et al., Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries. Adv. Funct. Mater. 33, 2214432 (2023). https://doi.org/10.1002/adfm.202214432
X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, e1806082 (2019). https://doi.org/10.1002/adma.201806082
W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60, 12931–12940 (2021). https://doi.org/10.1002/anie.202101537
H. Sun, X. Xie, Q. Huang, Z. Wang, K. Chen et al., Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. 60, 18335–18343 (2021). https://doi.org/10.1002/anie.202107667
J. Mi, J. Ma, L. Chen, C. Lai, K. Yang et al., Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022). https://doi.org/10.1016/j.ensm.2022.02.048
Y.-F. Huang, T. Gu, G. Rui, P. Shi, W. Fu et al., A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14, 6021–6029 (2021). https://doi.org/10.1039/D1EE02663A
C. Dai, M. Weng, B. Cai, J. Liu, S. Guo et al., Ion-conductive crystals of poly(vinylidene fluoride) enable the fabrication of fast-charging solid-state lithium metal batteries. Energy Environ. Sci. 17, 8243–8253 (2024). https://doi.org/10.1039/d4ee03467h
W. Yang, Y. Liu, X. Sun, Z. He, P. He et al., Solvation-tailored PVDF-based solid-state electrolyte for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63, e202401428 (2024). https://doi.org/10.1002/anie.202401428
H. Cheng, D. Li, B. Xu, Y. Wei, H. Wang et al., Amorphous silicon nitride induced high dielectric constant toward long-life solid lithium metal battery. Energy Storage Mater. 53, 305–314 (2022). https://doi.org/10.1016/j.ensm.2022.09.003
B.-H. Kang, S.-F. Li, J. Yang, Z.-M. Li, Y.-F. Huang, Uniform lithium plating for dendrite-free lithium metal batteries: role of dipolar channels in poly(vinylidene fluoride) and PbZrxTi1-xO3 interface. ACS Nano 17, 14114–14122 (2023). https://doi.org/10.1021/acsnano.3c04684
Z. Luo, W. Li, C. Guo, Y. Song, M. Zhou et al., Two-dimensional silica enhanced solid polymer electrolyte for lithium metal batteries. Particuology 85, 146–154 (2024). https://doi.org/10.1016/j.partic.2023.04.002
K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8 Co0.1 Mn0.1 O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021). https://doi.org/10.1002/anie.202110917
L. Wu, F. Pei, D. Cheng, Y. Zhang, H. Cheng et al., Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 34, 2310084 (2024). https://doi.org/10.1002/adfm.202310084
T. Deng, L. Cao, X. He, A.-M. Li, D. Li et al., In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7, 3052–3068 (2021). https://doi.org/10.1016/j.chempr.2021.06.019
H. Wang, H. Cheng, D. Li, F. Li, Y. Wei et al., Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries. Adv. Energy Mater. 13, 2204425 (2023). https://doi.org/10.1002/aenm.202204425
P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18, 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
N. Meng, Y. Ye, Z. Yang, H. Li, F. Lian, Developing single-ion conductive polymer electrolytes for high-energy-density solid state batteries. Adv. Funct. Mater. 33, 2305072 (2023). https://doi.org/10.1002/adfm.202305072
Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001). https://doi.org/10.1038/35087538
X. Huang, S. Huang, T. Wang, L. Zhong, D. Han et al., Polyether-b-amide based solid electrolytes with well-adhered interface and fast kinetics for ultralow temperature solid-state lithium metal batteries. Adv. Funct. Mater. 33, 2300683 (2023). https://doi.org/10.1002/adfm.202300683
M. Li, H. An, Y. Song, Q. Liu, J. Wang et al., Ion-dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J. Am. Chem. Soc. 145, 25632–25642 (2023). https://doi.org/10.1021/jacs.3c07482
J. Chen, X. Deng, Y. Gao, Y. Zhao, X. Kong et al., Multiple dynamic bonds-driven integrated cathode/polymer electrolyte for stable all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 62, e202307255 (2023). https://doi.org/10.1002/anie.202307255
X. Xie, Z. Wang, S. He, K. Chen, Q. Huang et al., Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. 62, e202218229 (2023). https://doi.org/10.1002/anie.202218229
Y. Wang, P. Yuan, X.X. Liu, S. Feng, M. Cao et al., Sacrificial NH4HCO3 inhibits fluoropolymer/garnet interfacial reactions toward 1mS cm−1 and 5V-level composite solid electrolyte. Adv. Funct. Mater. 34, 2405060 (2024). https://doi.org/10.1002/adfm.202405060
Y. Hu, L. Li, H. Tu, X. Yi, J. Wang et al., Janus electrolyte with modified Li+ solvation for high-performance solid-state lithium batteries. Adv. Funct. Mater. 32, 2203336 (2022). https://doi.org/10.1002/adfm.202203336
M. Zhou, R. Liu, D. Jia, Y. Cui, Q. Liu et al., Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries. Adv. Mater. 33, e2100943 (2021). https://doi.org/10.1002/adma.202100943
H. Li, Y. Du, Q. Zhang, Y. Zhao, F. Lian, A single-ion conducting network as rationally coordinating polymer electrolyte for solid-state Li metal batteries (adv.energy mater. 13/2022). Adv. Energy Mater. 12, 2270054 (2022). https://doi.org/10.1002/aenm.202270054
Q. Liu, R. Liu, Y. Cui, M. Zhou, J. Zeng et al., Dendrite-free and long-cycling lithium metal battery enabled by ultrathin, 2D shield-defensive, and single lithium-ion conducting polymeric membrane. Adv. Mater. 34, e2108437 (2022). https://doi.org/10.1002/adma.202108437
Y. Zhai, W. Hou, M. Tao, Z. Wang, Z. Chen et al., Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv. Mater. 34, 2205560 (2022). https://doi.org/10.1002/adma.202205560
X. Shan, M. Morey, Z. Li, S. Zhao, S. Song et al., A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries. ACS Energy Lett. 7, 4342–4351 (2022). https://doi.org/10.1021/acsenergylett.2c02349
X. Zuo, Y. Cheng, L. Xu, R. Chen, F. Liu et al., A novel thioctic acid-functionalized hybrid network for solid-state batteries. Energy Storage Mater. 46, 570–576 (2022). https://doi.org/10.1016/j.ensm.2022.01.045
L. Qiao, S. Rodriguez Peña, M. Martínez-Ibañez, A. Santiago, I. Aldalur et al., Anion π-π stacking for improved lithium transport in polymer electrolytes. J. Am. Chem. Soc. 144, 9806–9816 (2022). https://doi.org/10.1021/jacs.2c02260
Z. Tian, L. Hou, D. Feng, Y. Jiao, P. Wu, Modulating the coordination environment of lithium bonds for high performance polymer electrolyte batteries. ACS Nano 17, 3786–3796 (2023). https://doi.org/10.1021/acsnano.2c11734
X.-X. Wang, L.-N. Song, L.-J. Zheng, D.-H. Guan, C.-L. Miao et al., Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202308837 (2023). https://doi.org/10.1002/anie.202308837
T. Deng, Q. Han, J. Liu, C. Yang, J. Wang et al., Vertically aligned hollow mesoporous silica rods enabling composite polymer electrolytes with fast ionic conduction for lithium metal batteries. Adv. Funct. Mater. 34, 2311952 (2024). https://doi.org/10.1002/adfm.202311952
Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian et al., Highly conductive imidazolate covalent organic frameworks with ether chains as solid electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 63, e202402202 (2024). https://doi.org/10.1002/anie.202402202
X. Zhan, M. Li, X. Zhao, Y. Wang, S. Li et al., Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries. Nat. Commun. 15, 1056 (2024). https://doi.org/10.1038/s41467-024-45372-2
Y. Dong, P. Wen, H. Shi, Y. Yu, Z.-S. Wu, Solid-state electrolytes for sodium metal batteries: recent status and future opportunities. Adv. Funct. Mater. 34, 2213584 (2024). https://doi.org/10.1002/adfm.202213584
Z. Cuihong, Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries. Energy Storage Sci. Technol. 13, 3731–3741 (2024). https://doi.org/10.19799/j.cnki.2095-4239.2024.0511
J. Yin, Y.S. Zhang, H. Liang, W. Zhang, Y. Zhu, Synthesis strategies of hard carbon anodes for sodium-ion batteries. Mater. Rep. Energy 4, 100268 (2024). https://doi.org/10.1016/j.matre.2024.100268