Indium-MOF as Multifunctional Promoter to Remove Ionic Conductivity and Electrochemical Stability Constraints on Fluoropolymer Electrolytes for All-Solid-State Lithium Metal Battery
Corresponding Author: ZhengMing Sun
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 249
Abstract
Fluoropolymers promise all-solid-state lithium metal batteries (ASLMBs) but suffer from two critical challenges. The first is the trade-off between ionic conductivity (σ) and lithium anode reactions, closely related to high-content residual solvents. The second, usually consciously overlooked, is the fluoropolymer’s inherent instability against alkaline lithium anodes. Here, we propose indium-based metal–organic frameworks (In-MOFs) as a multifunctional promoter to simultaneously address these two challenges, using poly(vinylidene fluoride–hexafluoropropylene) (PVH) as the typical fluoropolymer. In-MOF plays a trio: (1) adsorbing and converting free residual solvents into bonded states to prevent their side reactions with lithium anodes while retaining their advantages on Li+ transport; (2) forming inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growth; (3) reducing PVH crystallinity and promoting Li-salt dissociation. Therefore, the resulting PVH/In-MOF (PVH-IM) showcases excellent electrochemical stability against lithium anodes, delivering a 5550 h cycling at 0.2 mA cm−2 with a remarkable cumulative lithium deposition capacity of 1110 mAh cm−2. It also exhibits an ultrahigh σ of 1.23 × 10−3 S cm−1 at 25 °C. Moreover, all-solid-state LiFePO4|PVH-IM|Li full cells show outstanding rate capability and cyclability (80.0% capacity retention after 280 cycles at 0.5C), demonstrating high potential for practical ASLMBs.
Highlights:
1 Indium-based metal–organic framework (In-MOF) is proposed as a multifunctional promoter to create poly(vinylidene fluoride–hexafluoropropylene) (PVH)/In-MOF (PVH-IM) composite solid polymer electrolyte, synchronously achieving a high ionic conductivity of 1.23 × 10−3 S cm−1 and excellent electrochemical stability against Li anodes.
2 In-MOF not only can adsorb and convert free residual solvents into bonded states to prevent their side reactions with Li anodes, but also induce inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growths.
3 The Li|PVH-IM|Li symmetric cells maintain stable cycling for 5550 h at the current density of 0.2 mA cm−2. In addition, all-solid-state LFP|PVH-IM|Li full cells deliver a significant capacity retention of 80.0% at a rate of 0.5C after 280 cycles at 25 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8(3), 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
- W. Deng, Y. Zhou, N. Hu, S. Ni, W. Zhang et al., Recent advances of high performance SiOx (0https://doi.org/10.1016/j.matre.2024.100270
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- Y. Song, X. Sun, S. Lou, F. Sun, J. Wang, Alleviating range anxiety: solid-state batteries and extreme fast charging. Prog. Mater. Sci. 147, 101339 (2025). https://doi.org/10.1016/j.pmatsci.2024.101339
- X. Hu, Z. Zhang, X. Zhang, Y. Wang, X. Yang et al., External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9(5), 305–320 (2024). https://doi.org/10.1038/s41578-024-00669-y
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- P. Lu, Z. Zhou, Z. Xiao, J. Lu, J. Zhang et al., Materials and chemistry design for low-temperature all-solid-state batteries. Joule 8(3), 635–657 (2024). https://doi.org/10.1016/j.joule.2024.01.027
- K. Yang, L. Zhao, X. An, L. Chen, J. Ma et al., Determining the role of ion transport throughput in solid-state lithium batteries. Angew. Chem. Int. Ed. 62(24), e202302586 (2023). https://doi.org/10.1002/anie.202302586
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- B. Li, C. Wang, R. Yu, J. Han, S. Jiang et al., Recent progress on metal–organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering. Energy Environ. Sci. 17(5), 1854–1884 (2024). https://doi.org/10.1039/D3EE02705H
- S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35(2), e2110423 (2023). https://doi.org/10.1002/adma.202110423
- Y. Huang, G. Rui, Q. Li, E. Allahyarov, R. Li et al., Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12(1), 675 (2021). https://doi.org/10.1038/s41467-020-20662-7
- M.G. Broadhurst, G.T. Davis, Physical basis for piezoelectricity in PVDF. Ferroelectrics 60(1), 3–13 (1984). https://doi.org/10.1080/00150198408017504
- V. Cauda, S. Stassi, K. Bejtka, G. Canavese, Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl. Mater. Interfaces 5(13), 6430–6437 (2013). https://doi.org/10.1021/am4016878
- Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen et al., Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 64, 62–84 (2022). https://doi.org/10.1016/j.jechem.2021.04.007
- Y. Zhang, C. Zhu, S. Bai, J. Mao, F. Cheng, Recent advances and future perspectives of PVDF-based composite polymer electrolytes for lithium metal batteries: a review. Energy Fuels 37(10), 7014–7041 (2023). https://doi.org/10.1021/acs.energyfuels.3c00678
- C.M. Costa, V.F. Cardoso, P. Martins, D.M. Correia, R. Gonçalves et al., Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): Recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications. Chem. Rev. 123(19), 11392–11487 (2023). https://doi.org/10.1021/acs.chemrev.3c00196
- S. Zhou, S. Zhong, Y. Dong, Z. Liu, L. Dong et al., Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries. Adv. Funct. Mater. 33(20), 2214432 (2023). https://doi.org/10.1002/adfm.202214432
- X. Zhang, J. Han, X. Niu, C. Xin, C. Xue et al., High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 3(9), 876–883 (2020). https://doi.org/10.1002/batt.202000081
- J. Zhu, S. He, H. Tian, Y. Hu, C. Xin et al., The influences of DMF content in composite polymer electrolytes on Li+-conductivity and interfacial stability with Li-metal. Adv. Funct. Mater. 33(25), 2301165 (2023). https://doi.org/10.1002/adfm.202301165
- Q. Liu, G. Yang, X. Li, S. Zhang, R. Chen et al., Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 51, 443–452 (2022). https://doi.org/10.1016/j.ensm.2022.06.040
- C. Zhou, S. Bag, B. Lv, V. Thangadurai, Understanding the role of solvents on the morphological structure and Li-ion conductivity of poly(vinylidene fluoride)-based polymer electrolytes. J. Electrochem. Soc. 167(7), 070552 (2020). https://doi.org/10.1149/1945-7111/ab7c3a
- P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
- X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36(13), 2311195 (2024). https://doi.org/10.1002/adma.202311195
- Y.-F. Huang, J.-P. Zeng, S.-F. Li, C. Dai, J.-F. Liu et al., Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation. Adv. Energy Mater. 13(15), 2203888 (2023). https://doi.org/10.1002/aenm.202203888
- J. Zhang, Y. Zeng, Q. Li, Z. Tang, D. Sun et al., Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater. 54, 440–449 (2023). https://doi.org/10.1016/j.ensm.2022.10.055
- S. Pazhaniswamy, S.A. Joshi, H. Hou, A.K. Parameswaran, S. Agarwal, Hybrid polymer electrolyte encased cathode ps interface-based core–shell structure for high-performance room temperature all-solid-state batteries. Adv. Energy Mater. 13(1), 2202981 (2023). https://doi.org/10.1002/aenm.202202981
- X. Yi, Y. Guo, S. Chi, S. Pan, C. Geng et al., Surface Li2CO3 mediated phosphorization enables compatible interfaces of composite polymer electrolyte for solid-state lithium batteries. Adv. Funct. Mater. 33(35), 2303574 (2023). https://doi.org/10.1002/adfm.202303574
- S. Ge, J. Wu, R. Wang, L. Zhang, S. Liu et al., Tailoring practical solid electrolyte composites containing ferroelectric ceramic nanofibers and all-trans block copolymers for all-solid-state lithium metal batteries. ACS Nano 18(21), 13818–13828 (2024). https://doi.org/10.1021/acsnano.4c02236
- W. Yang, Y. Liu, X. Sun, Z. He, P. He et al., Solvation-tailored PVDF-based solid-state electrolyte for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202401428 (2024). https://doi.org/10.1002/anie.202401428
- D. Zhang, Y. Liu, S. Yang, J. Zhu, H. Hong et al., Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries. Adv. Mater. 36(28), 2401549 (2024). https://doi.org/10.1002/adma.202401549
- H. Kise, H. Ogata, Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions. J. Polym. Sci. Polym. Chem. Ed. 21(12), 3443–3451 (1983). https://doi.org/10.1002/pol.1983.170211208
- G.J. Ross, J.F. Watts, M.P. Hill, P. Morrissey, Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer 41(5), 1685–1696 (2000). https://doi.org/10.1016/S0032-3861(99)00343-2
- Y. Wang, P. Yuan, X.X. Liu, S. Feng, M. Cao et al., Sacrificial NH4HCO3 inhibits fluoropolymer/garnet interfacial reactions toward 1mS cm−1 and 5V-level composite solid electrolyte. Adv. Funct. Mater. 34(45), 2405060 (2024). https://doi.org/10.1002/adfm.202405060
- Z. Wei, D. Kong, L. Quan, J. He, J. Liu et al., Removing electrochemical constraints on polytetrafluoroethylene as dry-process binder for high-loading graphite anodes. Joule 8(5), 1350–1363 (2024). https://doi.org/10.1016/j.joule.2024.01.028
- W. Liu, X. Huang, G. Li, Z. Wang, H. Huang et al., Electrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteries. J. Power Sources 68(2), 344–347 (1997). https://doi.org/10.1016/S0378-7753(97)02637-2
- S. Choi, T. Kim, H. Ji, H.J. Lee, M. Oh, Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: Logical inference on MOF structure based on growth behavior and morphological feature. J. Am. Chem. Soc. 138(43), 14434–14440 (2016). https://doi.org/10.1021/jacs.6b08821
- Q. Zeng, K. Wang, B. Zou, Large negative linear compressibility in InH(BDC)2 from framework hinging. J. Am. Chem. Soc. 139(44), 15648–15651 (2017). https://doi.org/10.1021/jacs.7b10292
- Q. Yang, N. Deng, Y. Zhao, L. Gao, B. Cheng et al., A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries. Chem. Eng. J. 451, 138532 (2023). https://doi.org/10.1016/j.cej.2022.138532
- D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Revealing the evolution of doping anions and their impact on K-Ion storage: A case study of Se-doped In2S3. Energy Storage Mater. 58, 165–175 (2023). https://doi.org/10.1016/j.ensm.2023.03.021
- H.T.T. Nguyen, D.H. Nguyen, Q.-C. Zhang, V.-C. Nguyen, Y.-L. Lee et al., Facile Li+ transport in interpenetrating O- and F-containing polymer networks for solid-state lithium batteries. Adv. Funct. Mater. 33(12), 2213469 (2023). https://doi.org/10.1002/adfm.202213469
- J.H. Lee, H. Lee, J. Lee, T.W. Kang, J.H. Park et al., Multicomponent covalent organic framework solid electrolyte allowing effective Li-ion dissociation and diffusion for all-solid-state batteries. ACS Nano 17(17), 17372–17382 (2023). https://doi.org/10.1021/acsnano.3c05405
- X. Zhan, M. Li, X. Zhao, Y. Wang, S. Li et al., Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries. Nat. Commun. 15(1), 1056 (2024). https://doi.org/10.1038/s41467-024-45372-2
- M. Zhang, H. Wang, A. Shao, Z. Wang, X. Tang et al., Enabling 4.5 V solid polymer batteries through a 10 µm, crosslinked polyether electrolyte. Adv. Energy Mater. 14(14), 2303932 (2024). https://doi.org/10.1002/aenm.202303932
- X. Zhou, F. Huang, X. Zhang, B. Zhang, Y. Cui et al., Interface-targeting carrier-catalytic integrated design contributing to lithium dihalide-rich SEI toward high interface stability for long-life solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 136(21), e202401576 (2024). https://doi.org/10.1002/ange.202401576
- K. Liu, H. Cheng, Z. Wang, Y. Zhao, Y. Lv et al., A 3 µm-ultrathin hybrid electrolyte membrane with integrative architecture for all-solid-state lithium metal batteries. Adv. Energy Mater. 14(14), 2303940 (2024). https://doi.org/10.1002/aenm.202303940
- Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant Lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204218 (2023). https://doi.org/10.1002/aenm.202204218
- L. Wu, F. Pei, D. Cheng, Y. Zhang, H. Cheng et al., Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 34(16), 2310084 (2024). https://doi.org/10.1002/adfm.202310084
- X.-X. Wang, L.-N. Song, L.-J. Zheng, D.-H. Guan, C.-L. Miao et al., Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew. Chem. Int. Ed. 62(37), e202308837 (2023). https://doi.org/10.1002/anie.202308837
- Z. Tian, D. Kim, Long-cycling lithium polymer battery enabled by interface integration between cathode and solid electrolyte. Energy Storage Mater. 53, 264–272 (2022). https://doi.org/10.1016/j.ensm.2022.09.011
- X. Da, J. Chen, Y. Qin, J. Zhao, X. Jia et al., CO2-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries. Adv. Energy Mater. 14(11), 2303527 (2024). https://doi.org/10.1002/aenm.202303527
- B.-H. Kang, S.-F. Li, J. Yang, Z.-M. Li, Y.-F. Huang, Uniform lithium plating for dendrite-free lithium metal batteries: role of dipolar channels in poly(vinylidene fluoride) and PbZrxTi1-xO3 interface. ACS Nano 17(14), 14114–14122 (2023). https://doi.org/10.1021/acsnano.3c04684
- C. Shen, W. Feng, Y. Yu, H. Wang, Y. Cheng et al., In situ polymerization inhibiting electron localization in hybrid electrolyte for room-temperature solid-state lithium metal batteries. Adv. Energy Mater. 14(20), 2304511 (2024). https://doi.org/10.1002/aenm.202304511
- K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60(46), 24668–24675 (2021). https://doi.org/10.1002/anie.202110917
- X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139(39), 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
- T. Krauskopf, F.H. Richter, W.G. Zeier, J. Janek, Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120(15), 7745–7794 (2020). https://doi.org/10.1021/acs.chemrev.0c00431
- W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202320149 (2024). https://doi.org/10.1002/anie.202320149
- W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed. 62(25), e202302505 (2023). https://doi.org/10.1002/anie.202302505
- Q. Ma, S. Fu, A.-J. Wu, Q. Deng, W.-D. Li et al., Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv. Energy Mater. 13(11), 2203892 (2023). https://doi.org/10.1002/aenm.202203892
- L. Pan, S. Feng, H. Sun, X.X. Liu, P. Yuan et al., Ultrathin, mechanically durable, and scalable polymer-in-salt solid electrolyte for high-rate lithium metal batteries. Small 20(34), e2400272 (2024). https://doi.org/10.1002/smll.202400272
- L. He, Z. Di, J. Li, S. Wang, W. Kong et al., The effects of fluorinated metal–organic frameworks as additives in polymer-based electrolytes for all-solid-state lithium batteries. Chem. Commun. 60(98), 14637–14640 (2024). https://doi.org/10.1039/D4CC04826A
- W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60(23), 12931–12940 (2021). https://doi.org/10.1002/anie.202101537
- Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang et al., Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries. Adv. Sci. 8(16), 2100899 (2021). https://doi.org/10.1002/advs.202100899
- X.X. Liu, L. Pan, H. Zhang, P. Yuan, M. Cao et al., Host-guest inversion engineering induced superionic composite solid electrolytes for high-rate solid-state alkali metal batteries. Nano-Micro Lett. 17(1), 190 (2025). https://doi.org/10.1007/s40820-025-01691-7
- S. Kim, H. Jamal, F. Khan, A. Al-Ahmed, M.M. Abdelnaby et al., Achieving high durability in all-solid-state lithium metal batteries using metal–organic framework solid polymer electrolytes. J. Mater. Chem. A 12(18), 10942–10955 (2024). https://doi.org/10.1039/D3TA07184G
- Y. Luo, L. Gao, W. Kang, A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms. J. Energy Chem. 89, 543–556 (2024). https://doi.org/10.1016/j.jechem.2023.11.005
- T. Zhang, X. Shi, Y. Li, S. Sangaraju, F. Wang et al., Carboxylic bacterial cellulose fiber-based hydrogel electrolyte with imidazole-type ionic liquid for dendrite-free zinc metal batteries. Mater. Rep. Energy 4(2), 100272 (2024). https://doi.org/10.1016/j.matre.2024.100272
- Y.-B. He, Fundamentals and perspectives of poly(vinylidene fluoride)-based electrolytes for solid-state lithium batteries. Energy Lab 2, 240007 (2024). https://doi.org/10.54227/elab.20240007
- Q. Sun, Reviews of selected 100 recent papers for lithium batteries. Energy Storage Sci. Technol. 13, 4207–4225 (2024). https://doi.org/10.19799/j.cnki.2095-4239.2024.0982
- E. Kim, H. Jamal, I. Jeon, F. Khan, S.-E. Chun et al., Functionality of 1-butyl-2, 3-dimethylimidazolium bromide (BMI-Br) as a solid plasticizer in PEO-based polymer electrolyte for highly reliable lithium metal batteries. Adv. Energy Mater. 13(47), 2301674 (2023). https://doi.org/10.1002/aenm.202301674
- T. Wei, X. Guo, Y. Zhou, M. Wang, P. Hao et al., Double three-dimensional structures enabled spherical lithium deposition for advanced lithium metal anode. Next Energy 7, 100237 (2025). https://doi.org/10.1016/j.nxener.2024.100237
- J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3, 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135
References
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8(3), 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
W. Deng, Y. Zhou, N. Hu, S. Ni, W. Zhang et al., Recent advances of high performance SiOx (0https://doi.org/10.1016/j.matre.2024.100270
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
Y. Song, X. Sun, S. Lou, F. Sun, J. Wang, Alleviating range anxiety: solid-state batteries and extreme fast charging. Prog. Mater. Sci. 147, 101339 (2025). https://doi.org/10.1016/j.pmatsci.2024.101339
X. Hu, Z. Zhang, X. Zhang, Y. Wang, X. Yang et al., External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9(5), 305–320 (2024). https://doi.org/10.1038/s41578-024-00669-y
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
P. Lu, Z. Zhou, Z. Xiao, J. Lu, J. Zhang et al., Materials and chemistry design for low-temperature all-solid-state batteries. Joule 8(3), 635–657 (2024). https://doi.org/10.1016/j.joule.2024.01.027
K. Yang, L. Zhao, X. An, L. Chen, J. Ma et al., Determining the role of ion transport throughput in solid-state lithium batteries. Angew. Chem. Int. Ed. 62(24), e202302586 (2023). https://doi.org/10.1002/anie.202302586
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
B. Li, C. Wang, R. Yu, J. Han, S. Jiang et al., Recent progress on metal–organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering. Energy Environ. Sci. 17(5), 1854–1884 (2024). https://doi.org/10.1039/D3EE02705H
S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35(2), e2110423 (2023). https://doi.org/10.1002/adma.202110423
Y. Huang, G. Rui, Q. Li, E. Allahyarov, R. Li et al., Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12(1), 675 (2021). https://doi.org/10.1038/s41467-020-20662-7
M.G. Broadhurst, G.T. Davis, Physical basis for piezoelectricity in PVDF. Ferroelectrics 60(1), 3–13 (1984). https://doi.org/10.1080/00150198408017504
V. Cauda, S. Stassi, K. Bejtka, G. Canavese, Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl. Mater. Interfaces 5(13), 6430–6437 (2013). https://doi.org/10.1021/am4016878
Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen et al., Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 64, 62–84 (2022). https://doi.org/10.1016/j.jechem.2021.04.007
Y. Zhang, C. Zhu, S. Bai, J. Mao, F. Cheng, Recent advances and future perspectives of PVDF-based composite polymer electrolytes for lithium metal batteries: a review. Energy Fuels 37(10), 7014–7041 (2023). https://doi.org/10.1021/acs.energyfuels.3c00678
C.M. Costa, V.F. Cardoso, P. Martins, D.M. Correia, R. Gonçalves et al., Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): Recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications. Chem. Rev. 123(19), 11392–11487 (2023). https://doi.org/10.1021/acs.chemrev.3c00196
S. Zhou, S. Zhong, Y. Dong, Z. Liu, L. Dong et al., Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries. Adv. Funct. Mater. 33(20), 2214432 (2023). https://doi.org/10.1002/adfm.202214432
X. Zhang, J. Han, X. Niu, C. Xin, C. Xue et al., High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 3(9), 876–883 (2020). https://doi.org/10.1002/batt.202000081
J. Zhu, S. He, H. Tian, Y. Hu, C. Xin et al., The influences of DMF content in composite polymer electrolytes on Li+-conductivity and interfacial stability with Li-metal. Adv. Funct. Mater. 33(25), 2301165 (2023). https://doi.org/10.1002/adfm.202301165
Q. Liu, G. Yang, X. Li, S. Zhang, R. Chen et al., Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 51, 443–452 (2022). https://doi.org/10.1016/j.ensm.2022.06.040
C. Zhou, S. Bag, B. Lv, V. Thangadurai, Understanding the role of solvents on the morphological structure and Li-ion conductivity of poly(vinylidene fluoride)-based polymer electrolytes. J. Electrochem. Soc. 167(7), 070552 (2020). https://doi.org/10.1149/1945-7111/ab7c3a
P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36(13), 2311195 (2024). https://doi.org/10.1002/adma.202311195
Y.-F. Huang, J.-P. Zeng, S.-F. Li, C. Dai, J.-F. Liu et al., Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation. Adv. Energy Mater. 13(15), 2203888 (2023). https://doi.org/10.1002/aenm.202203888
J. Zhang, Y. Zeng, Q. Li, Z. Tang, D. Sun et al., Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater. 54, 440–449 (2023). https://doi.org/10.1016/j.ensm.2022.10.055
S. Pazhaniswamy, S.A. Joshi, H. Hou, A.K. Parameswaran, S. Agarwal, Hybrid polymer electrolyte encased cathode ps interface-based core–shell structure for high-performance room temperature all-solid-state batteries. Adv. Energy Mater. 13(1), 2202981 (2023). https://doi.org/10.1002/aenm.202202981
X. Yi, Y. Guo, S. Chi, S. Pan, C. Geng et al., Surface Li2CO3 mediated phosphorization enables compatible interfaces of composite polymer electrolyte for solid-state lithium batteries. Adv. Funct. Mater. 33(35), 2303574 (2023). https://doi.org/10.1002/adfm.202303574
S. Ge, J. Wu, R. Wang, L. Zhang, S. Liu et al., Tailoring practical solid electrolyte composites containing ferroelectric ceramic nanofibers and all-trans block copolymers for all-solid-state lithium metal batteries. ACS Nano 18(21), 13818–13828 (2024). https://doi.org/10.1021/acsnano.4c02236
W. Yang, Y. Liu, X. Sun, Z. He, P. He et al., Solvation-tailored PVDF-based solid-state electrolyte for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202401428 (2024). https://doi.org/10.1002/anie.202401428
D. Zhang, Y. Liu, S. Yang, J. Zhu, H. Hong et al., Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries. Adv. Mater. 36(28), 2401549 (2024). https://doi.org/10.1002/adma.202401549
H. Kise, H. Ogata, Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions. J. Polym. Sci. Polym. Chem. Ed. 21(12), 3443–3451 (1983). https://doi.org/10.1002/pol.1983.170211208
G.J. Ross, J.F. Watts, M.P. Hill, P. Morrissey, Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer 41(5), 1685–1696 (2000). https://doi.org/10.1016/S0032-3861(99)00343-2
Y. Wang, P. Yuan, X.X. Liu, S. Feng, M. Cao et al., Sacrificial NH4HCO3 inhibits fluoropolymer/garnet interfacial reactions toward 1mS cm−1 and 5V-level composite solid electrolyte. Adv. Funct. Mater. 34(45), 2405060 (2024). https://doi.org/10.1002/adfm.202405060
Z. Wei, D. Kong, L. Quan, J. He, J. Liu et al., Removing electrochemical constraints on polytetrafluoroethylene as dry-process binder for high-loading graphite anodes. Joule 8(5), 1350–1363 (2024). https://doi.org/10.1016/j.joule.2024.01.028
W. Liu, X. Huang, G. Li, Z. Wang, H. Huang et al., Electrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteries. J. Power Sources 68(2), 344–347 (1997). https://doi.org/10.1016/S0378-7753(97)02637-2
S. Choi, T. Kim, H. Ji, H.J. Lee, M. Oh, Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: Logical inference on MOF structure based on growth behavior and morphological feature. J. Am. Chem. Soc. 138(43), 14434–14440 (2016). https://doi.org/10.1021/jacs.6b08821
Q. Zeng, K. Wang, B. Zou, Large negative linear compressibility in InH(BDC)2 from framework hinging. J. Am. Chem. Soc. 139(44), 15648–15651 (2017). https://doi.org/10.1021/jacs.7b10292
Q. Yang, N. Deng, Y. Zhao, L. Gao, B. Cheng et al., A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries. Chem. Eng. J. 451, 138532 (2023). https://doi.org/10.1016/j.cej.2022.138532
D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Revealing the evolution of doping anions and their impact on K-Ion storage: A case study of Se-doped In2S3. Energy Storage Mater. 58, 165–175 (2023). https://doi.org/10.1016/j.ensm.2023.03.021
H.T.T. Nguyen, D.H. Nguyen, Q.-C. Zhang, V.-C. Nguyen, Y.-L. Lee et al., Facile Li+ transport in interpenetrating O- and F-containing polymer networks for solid-state lithium batteries. Adv. Funct. Mater. 33(12), 2213469 (2023). https://doi.org/10.1002/adfm.202213469
J.H. Lee, H. Lee, J. Lee, T.W. Kang, J.H. Park et al., Multicomponent covalent organic framework solid electrolyte allowing effective Li-ion dissociation and diffusion for all-solid-state batteries. ACS Nano 17(17), 17372–17382 (2023). https://doi.org/10.1021/acsnano.3c05405
X. Zhan, M. Li, X. Zhao, Y. Wang, S. Li et al., Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries. Nat. Commun. 15(1), 1056 (2024). https://doi.org/10.1038/s41467-024-45372-2
M. Zhang, H. Wang, A. Shao, Z. Wang, X. Tang et al., Enabling 4.5 V solid polymer batteries through a 10 µm, crosslinked polyether electrolyte. Adv. Energy Mater. 14(14), 2303932 (2024). https://doi.org/10.1002/aenm.202303932
X. Zhou, F. Huang, X. Zhang, B. Zhang, Y. Cui et al., Interface-targeting carrier-catalytic integrated design contributing to lithium dihalide-rich SEI toward high interface stability for long-life solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 136(21), e202401576 (2024). https://doi.org/10.1002/ange.202401576
K. Liu, H. Cheng, Z. Wang, Y. Zhao, Y. Lv et al., A 3 µm-ultrathin hybrid electrolyte membrane with integrative architecture for all-solid-state lithium metal batteries. Adv. Energy Mater. 14(14), 2303940 (2024). https://doi.org/10.1002/aenm.202303940
Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant Lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204218 (2023). https://doi.org/10.1002/aenm.202204218
L. Wu, F. Pei, D. Cheng, Y. Zhang, H. Cheng et al., Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 34(16), 2310084 (2024). https://doi.org/10.1002/adfm.202310084
X.-X. Wang, L.-N. Song, L.-J. Zheng, D.-H. Guan, C.-L. Miao et al., Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew. Chem. Int. Ed. 62(37), e202308837 (2023). https://doi.org/10.1002/anie.202308837
Z. Tian, D. Kim, Long-cycling lithium polymer battery enabled by interface integration between cathode and solid electrolyte. Energy Storage Mater. 53, 264–272 (2022). https://doi.org/10.1016/j.ensm.2022.09.011
X. Da, J. Chen, Y. Qin, J. Zhao, X. Jia et al., CO2-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries. Adv. Energy Mater. 14(11), 2303527 (2024). https://doi.org/10.1002/aenm.202303527
B.-H. Kang, S.-F. Li, J. Yang, Z.-M. Li, Y.-F. Huang, Uniform lithium plating for dendrite-free lithium metal batteries: role of dipolar channels in poly(vinylidene fluoride) and PbZrxTi1-xO3 interface. ACS Nano 17(14), 14114–14122 (2023). https://doi.org/10.1021/acsnano.3c04684
C. Shen, W. Feng, Y. Yu, H. Wang, Y. Cheng et al., In situ polymerization inhibiting electron localization in hybrid electrolyte for room-temperature solid-state lithium metal batteries. Adv. Energy Mater. 14(20), 2304511 (2024). https://doi.org/10.1002/aenm.202304511
K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60(46), 24668–24675 (2021). https://doi.org/10.1002/anie.202110917
X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139(39), 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
T. Krauskopf, F.H. Richter, W.G. Zeier, J. Janek, Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120(15), 7745–7794 (2020). https://doi.org/10.1021/acs.chemrev.0c00431
W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202320149 (2024). https://doi.org/10.1002/anie.202320149
W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed. 62(25), e202302505 (2023). https://doi.org/10.1002/anie.202302505
Q. Ma, S. Fu, A.-J. Wu, Q. Deng, W.-D. Li et al., Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv. Energy Mater. 13(11), 2203892 (2023). https://doi.org/10.1002/aenm.202203892
L. Pan, S. Feng, H. Sun, X.X. Liu, P. Yuan et al., Ultrathin, mechanically durable, and scalable polymer-in-salt solid electrolyte for high-rate lithium metal batteries. Small 20(34), e2400272 (2024). https://doi.org/10.1002/smll.202400272
L. He, Z. Di, J. Li, S. Wang, W. Kong et al., The effects of fluorinated metal–organic frameworks as additives in polymer-based electrolytes for all-solid-state lithium batteries. Chem. Commun. 60(98), 14637–14640 (2024). https://doi.org/10.1039/D4CC04826A
W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60(23), 12931–12940 (2021). https://doi.org/10.1002/anie.202101537
Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang et al., Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries. Adv. Sci. 8(16), 2100899 (2021). https://doi.org/10.1002/advs.202100899
X.X. Liu, L. Pan, H. Zhang, P. Yuan, M. Cao et al., Host-guest inversion engineering induced superionic composite solid electrolytes for high-rate solid-state alkali metal batteries. Nano-Micro Lett. 17(1), 190 (2025). https://doi.org/10.1007/s40820-025-01691-7
S. Kim, H. Jamal, F. Khan, A. Al-Ahmed, M.M. Abdelnaby et al., Achieving high durability in all-solid-state lithium metal batteries using metal–organic framework solid polymer electrolytes. J. Mater. Chem. A 12(18), 10942–10955 (2024). https://doi.org/10.1039/D3TA07184G
Y. Luo, L. Gao, W. Kang, A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms. J. Energy Chem. 89, 543–556 (2024). https://doi.org/10.1016/j.jechem.2023.11.005
T. Zhang, X. Shi, Y. Li, S. Sangaraju, F. Wang et al., Carboxylic bacterial cellulose fiber-based hydrogel electrolyte with imidazole-type ionic liquid for dendrite-free zinc metal batteries. Mater. Rep. Energy 4(2), 100272 (2024). https://doi.org/10.1016/j.matre.2024.100272
Y.-B. He, Fundamentals and perspectives of poly(vinylidene fluoride)-based electrolytes for solid-state lithium batteries. Energy Lab 2, 240007 (2024). https://doi.org/10.54227/elab.20240007
Q. Sun, Reviews of selected 100 recent papers for lithium batteries. Energy Storage Sci. Technol. 13, 4207–4225 (2024). https://doi.org/10.19799/j.cnki.2095-4239.2024.0982
E. Kim, H. Jamal, I. Jeon, F. Khan, S.-E. Chun et al., Functionality of 1-butyl-2, 3-dimethylimidazolium bromide (BMI-Br) as a solid plasticizer in PEO-based polymer electrolyte for highly reliable lithium metal batteries. Adv. Energy Mater. 13(47), 2301674 (2023). https://doi.org/10.1002/aenm.202301674
T. Wei, X. Guo, Y. Zhou, M. Wang, P. Hao et al., Double three-dimensional structures enabled spherical lithium deposition for advanced lithium metal anode. Next Energy 7, 100237 (2025). https://doi.org/10.1016/j.nxener.2024.100237
J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3, 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135