Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene
Corresponding Author: ZhengMing Sun
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 225
Abstract
Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3C2Tx MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti3C2Tx (CZT) exhibit excellent rate capability (137.0 mAh g−1 at 10 A g−1) and cycling stability (175.3 mAh g−1 after 4000 cycles at 3.0 A g−1, with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg−1) and power density (837.2 W kg−1). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
Highlights:
1 Heterostructure engineering is proposed to construct CoTe2/ZnTe heterostructures with built-in electric field.
2 Conductive and elastic Ti3C2Tx MXene is introduced to improve the conductivity and alleviate the volume change of CoTe2/ZnTe upon cycling.
3 The resulting CoTe2/ZnTe/Ti3C2Tx (CZT) demonstrates outstanding rate capability (137.0 mAh g−1 at 10 A g−1) and cycling stability (175.3 mAh g−1 after 4000 cycles at 3.0 A g−1). Moreover, the CZT-based full cells demonstrate excellent energy density (220.2 Wh kg−1) and power density (837.2 W kg−1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lin, X. Zhang, E. Fan, R. Chen, F. Wu et al., Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ. Sci. 16(3), 745–791 (2023). https://doi.org/10.1039/d2ee03257k
- S. Imtiaz, I.S. Amiinu, Y. Xu, T. Kennedy, Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater. Today 48, 241–269 (2021). https://doi.org/10.1016/j.mattod.2021.02.008
- S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020). https://doi.org/10.1016/j.est.2019.101047
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13(1), 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
- W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Status of rechargeable potassium batteries. Nano Energy 83(83), 105792 (2021). https://doi.org/10.1016/j.nanoen.2021.105792
- X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/d0ee02917c
- D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
- S. Zhang, L. Qiu, Y. Zheng, Q. Shi, T. Zhou et al., Rational design of core-shell ZnTe@N-doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage. Adv. Funct. Mater. 31(3), 2006425 (2021). https://doi.org/10.1002/adfm.202006425
- H. Fan, P. Mao, H. Sun, Y. Wang, S.S. Mofarah et al., Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater. Horiz. 9, 524–546 (2021). https://doi.org/10.1039/d1mh01587g
- X. Wei, B. Liu, Z. Chen, K. Wu, Y. Liu et al., Recent advances in modulation engineering-enabled metal compounds for potassium-ion storage. Energy Storage Mater. 51, 815–839 (2022). https://doi.org/10.1016/j.ensm.2022.07.022
- D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Comprehensively understanding the role of anion vacancies on K-ion storage: a case study of Se-vacancy-engineered VSe2. Adv. Mater. 35, 2211311 (2023). https://doi.org/10.1002/adma.202211311
- X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu et al., Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv. Mater. 33(31), 2100272 (2021). https://doi.org/10.1002/adma.202100272
- D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Revealing the evolution of doping anions and their impact on K-ion storage: a case study of Se-doped In2S3. Energy Storage Mater. 58, 165–175 (2023). https://doi.org/10.1016/j.ensm.2023.03.021
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), 1905923 (2020). https://doi.org/10.1002/adma.201905923
- G.D. Park, J.-S. Park, J.K. Kim, Y.C. Kang, Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries. Adv. Energy Mater. 11(27), 2003058 (2021). https://doi.org/10.1002/aenm.202003058
- C. Ke, R. Shao, Y. Zhang, Z. Sun, S. Qi et al., Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv. Funct. Mater. 32(38), 2205635 (2022). https://doi.org/10.1002/adfm.202205635
- Q. Pan, Z. Tong, Y. Su, Y. Zheng, L. Shang et al., Flat-zigzag interface design of chalcogenide heterostructure toward ultralow volume expansion for high-performance potassium storage. Adv. Mater. 34(39), 2203485 (2022). https://doi.org/10.1002/adma.202203485
- Z. Xia, X. Chen, H. Ci, Z. Fan, Y. Yi et al., Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 53, 155–162 (2021). https://doi.org/10.1016/j.jechem.2020.04.071
- P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c
- A. Khan, J. Azadmanjiri, B. Wu, L. Liping, J. Min, Atomically thin nanosheets confined in 2D heterostructures: metal-ion batteries prospective. Adv. Energy Mater. 11(20), 2100451 (2021). https://doi.org/10.1002/aenm.202100451
- M.K. Aslam, M. Xu, A mini-review: MXene composites for sodium/potassium-ion batteries. Nanoscale 12(30), 15993–16007 (2020). https://doi.org/10.1039/d0nr04111d
- H. Wang, Z. Cui, S.A. He, J.Q. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- M. Lu, H. Li, W. Han, J. Chen, W. Shi et al., 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem. 31, 148–153 (2019). https://doi.org/10.1016/j.jechem.2018.05.017
- C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3(1), 29–55 (2020). https://doi.org/10.1002/eem2.12058
- X. Xu, L. Yang, W. Zheng, H. Zhang, F. Wu et al., MXenes with applications in supercapacitors and secondary batteries: a comprehensive review. Mater. Rep. Energy 2(1), 100080 (2022). https://doi.org/10.1016/j.matre.2022.100080
- M. Lu, W. Han, H. Li, W. Shi, J. Wang et al., Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Mater. 16, 163–168 (2019). https://doi.org/10.1016/j.ensm.2018.04.029
- Y. Wen, M. Wu, M. Zhang, C. Li, G. Shi, Topological design of ultrastrong and highly conductive graphene films. Adv. Mater. 29(41), 1702831 (2017). https://doi.org/10.1002/adma.201702831
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- R. Hu, D. Sha, X. Cao, C. Lu, Y. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12(47), 2203118 (2022). https://doi.org/10.1002/aenm.202203118
- C. Zhang, H. Li, X. Zeng, S. Xi, R. Wang et al., Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage. Adv. Energy Mater. 12(41), 2202577 (2022). https://doi.org/10.1002/aenm.202202577
- W. Feng, X. Wen, Y. Wang, L. Song, X. Li et al., Interfacial coupling SnSe2/SnSe heterostructures as long cyclic anodes of lithium-ion battery. Adv. Sci. 10(2), 2204671 (2023). https://doi.org/10.1002/advs.202204671
- D. Sha, C. Lu, W. He, J. Ding, H. Zhang et al., Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 16(2), 2711–2720 (2022). https://doi.org/10.1021/acsnano.1c09639
- X. Zhao, H. Xu, Z. Hui, Y. Sun, C. Yu et al., Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small 15(47), 1904255 (2019). https://doi.org/10.1002/smll.201904255
- S.D. Negedu, R. Tromer, C.C. Gowda, C.F. Woellner, F.E. Olu et al., Two-dimensional cobalt telluride as a piezo-tribogenerator. Nanoscale 14(21), 7788–7797 (2022). https://doi.org/10.1039/d2nr00132b
- L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, Smart Hybridization of TiO2 nanorods and Fe3O4 nanops with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 25(22), 3341–3350 (2015). https://doi.org/10.1002/adfm.201404348
- H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore-shell Fe2N-nanop-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
- Y. Li, Q. Zhang, Y. Yuan, H. Liu, C. Yang et al., Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 10(23), 2000717 (2020). https://doi.org/10.1002/aenm.202000717
- J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan et al., Microbe-Assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15(2), 3423–3433 (2021). https://doi.org/10.1021/acsnano.0c10491
- K.-T. Chen, S. Chong, L. Yuan, Y.-C. Yang, H.-Y. Tuan, Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Storage Mater. 39, 239–249 (2021). https://doi.org/10.1016/j.ensm.2021.04.019
- X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13(1), 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
- X. Li, H. Liang, X. Liu, R. Sun, Z. Qin et al., Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem. Eng. J. 425, 130657 (2021). https://doi.org/10.1016/j.cej.2021.130657
- R. Verma, P.N. Didwal, A.-G. Nguyen, C.-J. Park, SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chem. Eng. J. 421(1), 129988 (2021). https://doi.org/10.1016/j.cej.2021.129988
- S.H. Yang, Y.J. Lee, H. Kang, S.-K. Park, Y.C. Kang, Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14(1), 17 (2022). https://doi.org/10.1007/s40820-021-00741-0
- W. Luo, Y. Feng, D. Shen, J. Zhou, C. Gao et al., Engineering ion diffusion by CoS@SnS heterojunction for ultrahigh-rate and stable potassium batteries. ACS Appl. Mater. Interfaces 14(14), 16379–16385 (2022). https://doi.org/10.1021/acsami.2c02679
- Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao et al., Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 15(28), 1901272 (2019). https://doi.org/10.1002/smll.201901272
- Y. Liu, Z. Sun, X. Sun, Y. Lin, K. Tan et al., Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem. Int. Ed. 59(6), 2473–2482 (2020). https://doi.org/10.1002/anie.201913343
- C.H. Chang, K.T. Chen, Y.Y. Hsieh, C.B. Chang, H.Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 16(1), 1486–1501 (2022). https://doi.org/10.1021/acsnano.1c09863
- N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14(1), 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
- L. Sun, J. Sun, S. Zhai, T. Dong, H. Yang et al., Homologous MXene-derived electrodes for potassium-ion full batteries. Adv. Energy Mater. 12(23), 2200113 (2022). https://doi.org/10.1002/aenm.202200113
References
J. Lin, X. Zhang, E. Fan, R. Chen, F. Wu et al., Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ. Sci. 16(3), 745–791 (2023). https://doi.org/10.1039/d2ee03257k
S. Imtiaz, I.S. Amiinu, Y. Xu, T. Kennedy, Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater. Today 48, 241–269 (2021). https://doi.org/10.1016/j.mattod.2021.02.008
S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020). https://doi.org/10.1016/j.est.2019.101047
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13(1), 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Status of rechargeable potassium batteries. Nano Energy 83(83), 105792 (2021). https://doi.org/10.1016/j.nanoen.2021.105792
X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/d0ee02917c
D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
S. Zhang, L. Qiu, Y. Zheng, Q. Shi, T. Zhou et al., Rational design of core-shell ZnTe@N-doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage. Adv. Funct. Mater. 31(3), 2006425 (2021). https://doi.org/10.1002/adfm.202006425
H. Fan, P. Mao, H. Sun, Y. Wang, S.S. Mofarah et al., Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater. Horiz. 9, 524–546 (2021). https://doi.org/10.1039/d1mh01587g
X. Wei, B. Liu, Z. Chen, K. Wu, Y. Liu et al., Recent advances in modulation engineering-enabled metal compounds for potassium-ion storage. Energy Storage Mater. 51, 815–839 (2022). https://doi.org/10.1016/j.ensm.2022.07.022
D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Comprehensively understanding the role of anion vacancies on K-ion storage: a case study of Se-vacancy-engineered VSe2. Adv. Mater. 35, 2211311 (2023). https://doi.org/10.1002/adma.202211311
X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu et al., Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv. Mater. 33(31), 2100272 (2021). https://doi.org/10.1002/adma.202100272
D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Revealing the evolution of doping anions and their impact on K-ion storage: a case study of Se-doped In2S3. Energy Storage Mater. 58, 165–175 (2023). https://doi.org/10.1016/j.ensm.2023.03.021
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), 1905923 (2020). https://doi.org/10.1002/adma.201905923
G.D. Park, J.-S. Park, J.K. Kim, Y.C. Kang, Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries. Adv. Energy Mater. 11(27), 2003058 (2021). https://doi.org/10.1002/aenm.202003058
C. Ke, R. Shao, Y. Zhang, Z. Sun, S. Qi et al., Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv. Funct. Mater. 32(38), 2205635 (2022). https://doi.org/10.1002/adfm.202205635
Q. Pan, Z. Tong, Y. Su, Y. Zheng, L. Shang et al., Flat-zigzag interface design of chalcogenide heterostructure toward ultralow volume expansion for high-performance potassium storage. Adv. Mater. 34(39), 2203485 (2022). https://doi.org/10.1002/adma.202203485
Z. Xia, X. Chen, H. Ci, Z. Fan, Y. Yi et al., Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 53, 155–162 (2021). https://doi.org/10.1016/j.jechem.2020.04.071
P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c
A. Khan, J. Azadmanjiri, B. Wu, L. Liping, J. Min, Atomically thin nanosheets confined in 2D heterostructures: metal-ion batteries prospective. Adv. Energy Mater. 11(20), 2100451 (2021). https://doi.org/10.1002/aenm.202100451
M.K. Aslam, M. Xu, A mini-review: MXene composites for sodium/potassium-ion batteries. Nanoscale 12(30), 15993–16007 (2020). https://doi.org/10.1039/d0nr04111d
H. Wang, Z. Cui, S.A. He, J.Q. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
M. Lu, H. Li, W. Han, J. Chen, W. Shi et al., 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem. 31, 148–153 (2019). https://doi.org/10.1016/j.jechem.2018.05.017
C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3(1), 29–55 (2020). https://doi.org/10.1002/eem2.12058
X. Xu, L. Yang, W. Zheng, H. Zhang, F. Wu et al., MXenes with applications in supercapacitors and secondary batteries: a comprehensive review. Mater. Rep. Energy 2(1), 100080 (2022). https://doi.org/10.1016/j.matre.2022.100080
M. Lu, W. Han, H. Li, W. Shi, J. Wang et al., Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Mater. 16, 163–168 (2019). https://doi.org/10.1016/j.ensm.2018.04.029
Y. Wen, M. Wu, M. Zhang, C. Li, G. Shi, Topological design of ultrastrong and highly conductive graphene films. Adv. Mater. 29(41), 1702831 (2017). https://doi.org/10.1002/adma.201702831
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
R. Hu, D. Sha, X. Cao, C. Lu, Y. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12(47), 2203118 (2022). https://doi.org/10.1002/aenm.202203118
C. Zhang, H. Li, X. Zeng, S. Xi, R. Wang et al., Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage. Adv. Energy Mater. 12(41), 2202577 (2022). https://doi.org/10.1002/aenm.202202577
W. Feng, X. Wen, Y. Wang, L. Song, X. Li et al., Interfacial coupling SnSe2/SnSe heterostructures as long cyclic anodes of lithium-ion battery. Adv. Sci. 10(2), 2204671 (2023). https://doi.org/10.1002/advs.202204671
D. Sha, C. Lu, W. He, J. Ding, H. Zhang et al., Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 16(2), 2711–2720 (2022). https://doi.org/10.1021/acsnano.1c09639
X. Zhao, H. Xu, Z. Hui, Y. Sun, C. Yu et al., Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small 15(47), 1904255 (2019). https://doi.org/10.1002/smll.201904255
S.D. Negedu, R. Tromer, C.C. Gowda, C.F. Woellner, F.E. Olu et al., Two-dimensional cobalt telluride as a piezo-tribogenerator. Nanoscale 14(21), 7788–7797 (2022). https://doi.org/10.1039/d2nr00132b
L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, Smart Hybridization of TiO2 nanorods and Fe3O4 nanops with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 25(22), 3341–3350 (2015). https://doi.org/10.1002/adfm.201404348
H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore-shell Fe2N-nanop-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
Y. Li, Q. Zhang, Y. Yuan, H. Liu, C. Yang et al., Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 10(23), 2000717 (2020). https://doi.org/10.1002/aenm.202000717
J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan et al., Microbe-Assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15(2), 3423–3433 (2021). https://doi.org/10.1021/acsnano.0c10491
K.-T. Chen, S. Chong, L. Yuan, Y.-C. Yang, H.-Y. Tuan, Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Storage Mater. 39, 239–249 (2021). https://doi.org/10.1016/j.ensm.2021.04.019
X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13(1), 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
X. Li, H. Liang, X. Liu, R. Sun, Z. Qin et al., Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem. Eng. J. 425, 130657 (2021). https://doi.org/10.1016/j.cej.2021.130657
R. Verma, P.N. Didwal, A.-G. Nguyen, C.-J. Park, SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chem. Eng. J. 421(1), 129988 (2021). https://doi.org/10.1016/j.cej.2021.129988
S.H. Yang, Y.J. Lee, H. Kang, S.-K. Park, Y.C. Kang, Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14(1), 17 (2022). https://doi.org/10.1007/s40820-021-00741-0
W. Luo, Y. Feng, D. Shen, J. Zhou, C. Gao et al., Engineering ion diffusion by CoS@SnS heterojunction for ultrahigh-rate and stable potassium batteries. ACS Appl. Mater. Interfaces 14(14), 16379–16385 (2022). https://doi.org/10.1021/acsami.2c02679
Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao et al., Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 15(28), 1901272 (2019). https://doi.org/10.1002/smll.201901272
Y. Liu, Z. Sun, X. Sun, Y. Lin, K. Tan et al., Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem. Int. Ed. 59(6), 2473–2482 (2020). https://doi.org/10.1002/anie.201913343
C.H. Chang, K.T. Chen, Y.Y. Hsieh, C.B. Chang, H.Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 16(1), 1486–1501 (2022). https://doi.org/10.1021/acsnano.1c09863
N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14(1), 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
L. Sun, J. Sun, S. Zhai, T. Dong, H. Yang et al., Homologous MXene-derived electrodes for potassium-ion full batteries. Adv. Energy Mater. 12(23), 2200113 (2022). https://doi.org/10.1002/aenm.202200113