Bioinspired Precision Peeling of Ultrathin Bamboo Green Cellulose Frameworks for Light Management in Optoelectronics
Corresponding Author: Yiqiang Wu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 19
Abstract
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature. Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency, coupled with impractical thicknesses (≥ 1 mm). Inspired by squid’s skin-peeling mechanism, this work develops a peroxyformic acid (HCOOOH)-enabled precision peeling strategy to isolate intact 10-µm-thick bamboo green (BG) frameworks—100 × thinner than wood-based counterparts while achieving an unprecedented optical performance (88% haze with 80% transparency). This performance surpasses delignified biomass (transparency < 40% at 1 mm) and matches engineered cellulose composites, yet requires no energy-intensive nanofibrillation. The preserved native cellulose I crystalline structure (64.76% crystallinity) and wax-coated uniaxial fibril alignment (Hermans factor: 0.23) contribute to high mechanical strength (903 MPa modulus) and broadband light scattering. As a light-management layer in polycrystalline silicon solar cells, the BG framework boosts photoelectric conversion efficiency by 0.41% absolute (18.74% → 19.15%), outperforming synthetic anti-reflective coatings. The work establishes a scalable, waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
Highlights:
1 First successful peeling of bamboo green into micrometer-scale optical films (10 μm) via a bioinspired peroxyformic acid strategy, achieving intact preservation of monolayer cellular structure.
2 Scalable and stable peeling process enables high-yield production of bamboo green frameworks, demonstrating significant potential for sustainable optical material applications.
3 Experimental validation in light management shows 0.41% absolute photoelectric conversion efficiency enhancement in solar cells, proving practical value as high-performance optical films.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Ito, H. Miyafuji, N. Kasuya, Rhizome and root anatomy of moso bamboo (Phyllostachys pubescens) observed with scanning electron microscopy. J. Wood Sci. 61(4), 431–437 (2015). https://doi.org/10.1007/s10086-015-1482-y
- W.N. Nkeuwa, J. Zhang, K.E. Semple, M. Chen, Y. Xia et al., Bamboo-based composites: a review on fundamentals and processes of bamboo bonding. Compos. Part B Eng. 235, 109776 (2022). https://doi.org/10.1016/j.compositesb.2022.109776
- H. Chen, C. Montanari, M. Yan, S. Popov, Y. Li et al., Refractive index of delignified wood for transparent biocomposites. RSC Adv. 10(67), 40719–40724 (2020). https://doi.org/10.1039/D0RA07409H
- X. Bao, Y. Gao, Y. Liu, Z. Xu, F. Zhang et al., Molecular bridging strategy enables high performance and stable quasi-2D perovskite light-emitting devices. ACS Energy Lett. 8(2), 1018–1025 (2023). https://doi.org/10.1021/acsenergylett.2c02877
- J. Xie, D. Jia, M. Dirican, Y. Xia, C. Li et al., Highly foldable, super-sensitive, and transparent nanocellulose/ceramic/polymer cover windows for flexible OLED displays. ACS Appl. Mater. Interfaces 14(14), 16658–16668 (2022). https://doi.org/10.1021/acsami.2c01353
- K.A. Nirmal, T.D. Dongale, A.C. Khot, C. Yao, N. Kim et al., Ultra-transparent and multifunctional IZVO mesh electrodes for next-generation flexible optoelectronics. Nano Micro Lett. 17(1), 12 (2024). https://doi.org/10.1007/s40820-024-01525-y
- Z. Zhou, X. Zhang, S. Halder, L. Hu, Y. Shin et al., Smart switchable window with bistability and tunability of transmission. Adv. Opt. Mater. 12(14), 2302851 (2024). https://doi.org/10.1002/adom.202302851
- X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33(16), 2213431 (2023). https://doi.org/10.1002/adfm.202213431
- Q. Tang, M. Zou, L. Chang, W. Guo, A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chem. Eng. J. 430, 132152 (2022). https://doi.org/10.1016/j.cej.2021.132152
- Q. Fu, Y. Chen, M. Sorieul, Wood-based flexible electronics. ACS Nano 14(3), 3528–3538 (2020). https://doi.org/10.1021/acsnano.9b09817
- S. Chen, N. Yue, M. Cui, A. Penkova, R. Huang et al., Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydr. Polym. 294, 119803 (2022). https://doi.org/10.1016/j.carbpol.2022.119803
- Y. Baş, L. Berglund, J.S. Stevanic, G. Scheepers, T. Niittylä et al., Influence of TEMPO on preparation of softwood nanofibrils and their hydrogel network properties. Carbohydr. Polym. 348, 122812 (2025). https://doi.org/10.1016/j.carbpol.2024.122812
- J. Tang, X. Fan, H. Huang, X. Dong, X. Li et al., Biodegradable, strong, and clear wood package for plastic alternative. Nano Res. 17(9), 8531–8541 (2024). https://doi.org/10.1007/s12274-024-6831-y
- X. Li, J. Li, X. Shen, M. Cao, Y. Wang et al., Transparent cellulose/lignin composite films with adjustable haze and UV-blocking performance for light management. ACS Sustain Chem. Eng. 12(14), 5427–5435 (2024). https://doi.org/10.1021/acssuschemeng.3c07076
- T. Sharma, S. Bawa, S. Kumar, G. Manik, Y.S. Negi, Bioactive enhancement of PVA films through CNC reinforcement and Ficus auriculata fruit extract: a novel synthesis for sustainable applications. Int. J. Biol. Macromol. 275, 133338 (2024). https://doi.org/10.1016/j.ijbiomac.2024.133338
- X. Dai, L. Wang, A.M. Fallatah, X. Wang, A.S.A. Almalki et al., High transmittance, high haze, and UV-harvesting CNNs@CNF/PVA composite film for light management. Adv. Compos. Hybrid Mater. 7(6), 234 (2024). https://doi.org/10.1007/s42114-024-01050-x
- K. Hofman, N. Tucker, J. Stanger, M. Staiger, S. Marshall et al., Effects of the molecular format of collagen on characteristics of electrospun fibres. J. Mater. Sci. 47(3), 1148–1155 (2012). https://doi.org/10.1007/s10853-011-5775-2
- L. He, L. Chen, H. Shao, J. Qi, Y. Jiang et al., Microstructure and physicochemical properties of the anisotropic moso bamboo (Phyllostachys pubescens) surface. Eur. J. Wood Wood Prod. 80(2), 277–288 (2022). https://doi.org/10.1007/s00107-021-01750-x
- F. Chen, M. Ritter, Y. Xu, K. Tu, S.M. Koch et al., Lightweight, strong, and transparent wood films produced by capillary driven self-densification. Small 20(38), 2311966 (2024). https://doi.org/10.1002/smll.202311966
- X. Li, H. Ye, X. Zhao, Y. Li, G. Wang, Preparation of dimensionally stable and strong thin-type bamboo bundle laminated veneer lumber through delignification and phenolic resin synergies. Compos. Part B Eng. 284, 111662 (2024). https://doi.org/10.1016/j.compositesb.2024.111662
- K. Zeissler, Wood-based electronics that fold. Nat. Electron. 7(11), 941 (2024). https://doi.org/10.1038/s41928-024-01302-0
- X. Yang, X. Pang, X. Liu, S. Yang, X. Li, Determining the pore structure and radial variability of moso bamboo (Phyllostachys edulis). Wood Sci. Technol. 57(2), 345–357 (2023). https://doi.org/10.1007/s00226-022-01451-5
- J. Zhang, Y.S. Choi, C.G. Yoo, T.H. Kim, R.C. Brown et al., Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis. ACS Sustain Chem. Eng. 3(2), 293–301 (2015). https://doi.org/10.1021/sc500664h
- Y. Gao, A.S. Lipton, Y. Wittmer, D.T. Murray, J.C. Mortimer, A grass-specific cellulose-xylan interaction dominates in sorghum secondary cell walls. Nat. Commun. 11(1), 6081 (2020). https://doi.org/10.1038/s41467-020-19837-z
- X. Zhao, D. Liu, Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind. Crops Prod. 32(3), 284–291 (2010). https://doi.org/10.1016/j.indcrop.2010.05.003
- X. Qian, M.R. Nimlos, M. Davis, D.K. Johnson, M.E. Himmel, Ab initio molecular dynamics simulations of β-d-glucose and β-d-xylose degradation mechanisms in acidic aqueous solution. Carbohydr. Res. 340(14), 2319–2327 (2005). https://doi.org/10.1016/j.carres.2005.07.021
- R. Sun, J. Tomkinson, Z.C. Geng, N.J. Wang, Comparative studies of hemicelluloses solubilized during the treatments of maize stems with peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen peroxide. Part 2. spectroscopic and thermal characterizations. Holzforschung 54(5), 492–496 (2000). https://doi.org/10.1515/hf.2000.083
- A. Kato, J.-I. Azuma, T. Koshijima, Isolation and identification of a new feruloylated tetrasaccharide from bagasse lignin-carbohydrate complex containing phenolic acid. Agric. Biol. Chem. 51(6), 1691–1693 (1987). https://doi.org/10.1080/00021369.1987.10868250
- N. Feng, L. Ren, H. Wu, Q. Wu, Y. Xie, New insights on structure of lignin-carbohydrate complex from hot water pretreatment liquor. Carbohydr. Polym. 224, 115130 (2019). https://doi.org/10.1016/j.carbpol.2019.115130
- X. Du, M. Pérez-Boada, C. Fernández, J. Rencoret, J.C. del Río et al., Analysis of lignin-carbohydrate and lignin-lignin linkages after hydrolase treatment of xylan-lignin, glucomannan-lignin and glucan-lignin complexes from spruce wood. Planta 239(5), 1079–1090 (2014). https://doi.org/10.1007/s00425-014-2037-y
- G. Jacucci, L. Schertel, Y. Zhang, H. Yang, S. Vignolini, Light management with natural materials: from whiteness to transparency. Adv. Mater. 33(28), e2001215 (2021). https://doi.org/10.1002/adma.202001215
- Y.-G. Qiu, X.-G. Lou, Study on the cuticle of bamboo stem by means of SEM-EDXA (I). Trans China Pulp Pap 22, 10–14 (2007)
- K. Koch, H.-J. Ensikat, The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39(7), 759–772 (2008). https://doi.org/10.1016/j.micron.2007.11.010
- T.H. Yeats, J.K.C. Rose, The formation and function of plant cuticles. Plant Physiol. 163(1), 5–20 (2013). https://doi.org/10.1104/pp.113.222737
- D. Zhang, Z. Fang, S. Hu, X. Qiu, High aspect ratio cellulose nanofibrils with low crystallinity for strong and tough films. Carbohydr. Polym. 346, 122630 (2024). https://doi.org/10.1016/j.carbpol.2024.122630
- H. Yu, C. Gui, Y. Ji, X. Li, F. Rao et al., Changes in chemical and thermal properties of bamboo after delignification treatment. Polymers 14(13), 2573 (2022). https://doi.org/10.3390/polym14132573
- X. Zhao, D. Liu, Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility–the Formiline process. Bioresour. Technol. 117, 25–32 (2012). https://doi.org/10.1016/j.biortech.2012.04.062
- Y. Tan, K. Wang, Y. Dong, S. Gong, Y. Lu et al., Programmable and shape-color synchronous dual-response wood with thermal stimulus. ACS Nano 18(8), 6718–6730 (2024). https://doi.org/10.1021/acsnano.3c03607
- Q. Tang, L. Fang, Y. Wang, M. Zou, W. Guo, Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate. Nanoscale 10(9), 4344–4353 (2018). https://doi.org/10.1039/C7NR08367J
- K. Wang, H. Peng, Q. Gu, X. Zhang, X. Liu et al., Scalable, large-size, and flexible transparent bamboo. Chem. Eng. J. 451, 138349 (2023). https://doi.org/10.1016/j.cej.2022.138349
- Z. Wang, X. Wang, Y. Zhang, Properties of transparent bamboo based on different positions of bamboo. Ind. Crops Prod. 202, 117077 (2023). https://doi.org/10.1016/j.indcrop.2023.117077
- Y. Chen, Y. Zhang, J. Long, K. Xu, T. Zhong, Multiscale cellulose-based optical management films with tunable transparency and haze fabricated by different bamboo components and mechanical defibrillation approaches. Carbohydr. Polym. 348, 122811 (2025). https://doi.org/10.1016/j.carbpol.2024.122811
- S. Chen, D. Xu, H. Yin, R. Huang, W. Qi et al., Large-scale engineerable films tailored with cellulose nanofibrils for lighting management and thermal insulation. Small 20(43), 2401283 (2024). https://doi.org/10.1002/smll.202401283
- Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang et al., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10(1), 2515 (2019). https://doi.org/10.1038/s41467-019-10351-5
- L. Shi, Y. He, X. Wang, Y. Hu, Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanops. Energy Convers. Manag. 171, 272–278 (2018). https://doi.org/10.1016/j.enconman.2018.05.106
- Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
- I.-S. Yu, S.-C. Wu, L. Dumont, J. Cardin, C. Labbé et al., Monolithic crystalline silicon solar cells with SiN x layers doped with Tb3+ and Yb3+ rare-earth ions. J. Rare Earths 37(5), 515–519 (2019). https://doi.org/10.1016/j.jre.2018.07.014
- X. Wang, L. Xu, S. Ge, S.Y. Foong, R.K. Liew et al., Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance. Energy 274, 127354 (2023). https://doi.org/10.1016/j.energy.2023.127354
- Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu et al., Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014). https://doi.org/10.1021/nl404101p
References
R. Ito, H. Miyafuji, N. Kasuya, Rhizome and root anatomy of moso bamboo (Phyllostachys pubescens) observed with scanning electron microscopy. J. Wood Sci. 61(4), 431–437 (2015). https://doi.org/10.1007/s10086-015-1482-y
W.N. Nkeuwa, J. Zhang, K.E. Semple, M. Chen, Y. Xia et al., Bamboo-based composites: a review on fundamentals and processes of bamboo bonding. Compos. Part B Eng. 235, 109776 (2022). https://doi.org/10.1016/j.compositesb.2022.109776
H. Chen, C. Montanari, M. Yan, S. Popov, Y. Li et al., Refractive index of delignified wood for transparent biocomposites. RSC Adv. 10(67), 40719–40724 (2020). https://doi.org/10.1039/D0RA07409H
X. Bao, Y. Gao, Y. Liu, Z. Xu, F. Zhang et al., Molecular bridging strategy enables high performance and stable quasi-2D perovskite light-emitting devices. ACS Energy Lett. 8(2), 1018–1025 (2023). https://doi.org/10.1021/acsenergylett.2c02877
J. Xie, D. Jia, M. Dirican, Y. Xia, C. Li et al., Highly foldable, super-sensitive, and transparent nanocellulose/ceramic/polymer cover windows for flexible OLED displays. ACS Appl. Mater. Interfaces 14(14), 16658–16668 (2022). https://doi.org/10.1021/acsami.2c01353
K.A. Nirmal, T.D. Dongale, A.C. Khot, C. Yao, N. Kim et al., Ultra-transparent and multifunctional IZVO mesh electrodes for next-generation flexible optoelectronics. Nano Micro Lett. 17(1), 12 (2024). https://doi.org/10.1007/s40820-024-01525-y
Z. Zhou, X. Zhang, S. Halder, L. Hu, Y. Shin et al., Smart switchable window with bistability and tunability of transmission. Adv. Opt. Mater. 12(14), 2302851 (2024). https://doi.org/10.1002/adom.202302851
X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33(16), 2213431 (2023). https://doi.org/10.1002/adfm.202213431
Q. Tang, M. Zou, L. Chang, W. Guo, A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chem. Eng. J. 430, 132152 (2022). https://doi.org/10.1016/j.cej.2021.132152
Q. Fu, Y. Chen, M. Sorieul, Wood-based flexible electronics. ACS Nano 14(3), 3528–3538 (2020). https://doi.org/10.1021/acsnano.9b09817
S. Chen, N. Yue, M. Cui, A. Penkova, R. Huang et al., Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydr. Polym. 294, 119803 (2022). https://doi.org/10.1016/j.carbpol.2022.119803
Y. Baş, L. Berglund, J.S. Stevanic, G. Scheepers, T. Niittylä et al., Influence of TEMPO on preparation of softwood nanofibrils and their hydrogel network properties. Carbohydr. Polym. 348, 122812 (2025). https://doi.org/10.1016/j.carbpol.2024.122812
J. Tang, X. Fan, H. Huang, X. Dong, X. Li et al., Biodegradable, strong, and clear wood package for plastic alternative. Nano Res. 17(9), 8531–8541 (2024). https://doi.org/10.1007/s12274-024-6831-y
X. Li, J. Li, X. Shen, M. Cao, Y. Wang et al., Transparent cellulose/lignin composite films with adjustable haze and UV-blocking performance for light management. ACS Sustain Chem. Eng. 12(14), 5427–5435 (2024). https://doi.org/10.1021/acssuschemeng.3c07076
T. Sharma, S. Bawa, S. Kumar, G. Manik, Y.S. Negi, Bioactive enhancement of PVA films through CNC reinforcement and Ficus auriculata fruit extract: a novel synthesis for sustainable applications. Int. J. Biol. Macromol. 275, 133338 (2024). https://doi.org/10.1016/j.ijbiomac.2024.133338
X. Dai, L. Wang, A.M. Fallatah, X. Wang, A.S.A. Almalki et al., High transmittance, high haze, and UV-harvesting CNNs@CNF/PVA composite film for light management. Adv. Compos. Hybrid Mater. 7(6), 234 (2024). https://doi.org/10.1007/s42114-024-01050-x
K. Hofman, N. Tucker, J. Stanger, M. Staiger, S. Marshall et al., Effects of the molecular format of collagen on characteristics of electrospun fibres. J. Mater. Sci. 47(3), 1148–1155 (2012). https://doi.org/10.1007/s10853-011-5775-2
L. He, L. Chen, H. Shao, J. Qi, Y. Jiang et al., Microstructure and physicochemical properties of the anisotropic moso bamboo (Phyllostachys pubescens) surface. Eur. J. Wood Wood Prod. 80(2), 277–288 (2022). https://doi.org/10.1007/s00107-021-01750-x
F. Chen, M. Ritter, Y. Xu, K. Tu, S.M. Koch et al., Lightweight, strong, and transparent wood films produced by capillary driven self-densification. Small 20(38), 2311966 (2024). https://doi.org/10.1002/smll.202311966
X. Li, H. Ye, X. Zhao, Y. Li, G. Wang, Preparation of dimensionally stable and strong thin-type bamboo bundle laminated veneer lumber through delignification and phenolic resin synergies. Compos. Part B Eng. 284, 111662 (2024). https://doi.org/10.1016/j.compositesb.2024.111662
K. Zeissler, Wood-based electronics that fold. Nat. Electron. 7(11), 941 (2024). https://doi.org/10.1038/s41928-024-01302-0
X. Yang, X. Pang, X. Liu, S. Yang, X. Li, Determining the pore structure and radial variability of moso bamboo (Phyllostachys edulis). Wood Sci. Technol. 57(2), 345–357 (2023). https://doi.org/10.1007/s00226-022-01451-5
J. Zhang, Y.S. Choi, C.G. Yoo, T.H. Kim, R.C. Brown et al., Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis. ACS Sustain Chem. Eng. 3(2), 293–301 (2015). https://doi.org/10.1021/sc500664h
Y. Gao, A.S. Lipton, Y. Wittmer, D.T. Murray, J.C. Mortimer, A grass-specific cellulose-xylan interaction dominates in sorghum secondary cell walls. Nat. Commun. 11(1), 6081 (2020). https://doi.org/10.1038/s41467-020-19837-z
X. Zhao, D. Liu, Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind. Crops Prod. 32(3), 284–291 (2010). https://doi.org/10.1016/j.indcrop.2010.05.003
X. Qian, M.R. Nimlos, M. Davis, D.K. Johnson, M.E. Himmel, Ab initio molecular dynamics simulations of β-d-glucose and β-d-xylose degradation mechanisms in acidic aqueous solution. Carbohydr. Res. 340(14), 2319–2327 (2005). https://doi.org/10.1016/j.carres.2005.07.021
R. Sun, J. Tomkinson, Z.C. Geng, N.J. Wang, Comparative studies of hemicelluloses solubilized during the treatments of maize stems with peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen peroxide. Part 2. spectroscopic and thermal characterizations. Holzforschung 54(5), 492–496 (2000). https://doi.org/10.1515/hf.2000.083
A. Kato, J.-I. Azuma, T. Koshijima, Isolation and identification of a new feruloylated tetrasaccharide from bagasse lignin-carbohydrate complex containing phenolic acid. Agric. Biol. Chem. 51(6), 1691–1693 (1987). https://doi.org/10.1080/00021369.1987.10868250
N. Feng, L. Ren, H. Wu, Q. Wu, Y. Xie, New insights on structure of lignin-carbohydrate complex from hot water pretreatment liquor. Carbohydr. Polym. 224, 115130 (2019). https://doi.org/10.1016/j.carbpol.2019.115130
X. Du, M. Pérez-Boada, C. Fernández, J. Rencoret, J.C. del Río et al., Analysis of lignin-carbohydrate and lignin-lignin linkages after hydrolase treatment of xylan-lignin, glucomannan-lignin and glucan-lignin complexes from spruce wood. Planta 239(5), 1079–1090 (2014). https://doi.org/10.1007/s00425-014-2037-y
G. Jacucci, L. Schertel, Y. Zhang, H. Yang, S. Vignolini, Light management with natural materials: from whiteness to transparency. Adv. Mater. 33(28), e2001215 (2021). https://doi.org/10.1002/adma.202001215
Y.-G. Qiu, X.-G. Lou, Study on the cuticle of bamboo stem by means of SEM-EDXA (I). Trans China Pulp Pap 22, 10–14 (2007)
K. Koch, H.-J. Ensikat, The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39(7), 759–772 (2008). https://doi.org/10.1016/j.micron.2007.11.010
T.H. Yeats, J.K.C. Rose, The formation and function of plant cuticles. Plant Physiol. 163(1), 5–20 (2013). https://doi.org/10.1104/pp.113.222737
D. Zhang, Z. Fang, S. Hu, X. Qiu, High aspect ratio cellulose nanofibrils with low crystallinity for strong and tough films. Carbohydr. Polym. 346, 122630 (2024). https://doi.org/10.1016/j.carbpol.2024.122630
H. Yu, C. Gui, Y. Ji, X. Li, F. Rao et al., Changes in chemical and thermal properties of bamboo after delignification treatment. Polymers 14(13), 2573 (2022). https://doi.org/10.3390/polym14132573
X. Zhao, D. Liu, Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility–the Formiline process. Bioresour. Technol. 117, 25–32 (2012). https://doi.org/10.1016/j.biortech.2012.04.062
Y. Tan, K. Wang, Y. Dong, S. Gong, Y. Lu et al., Programmable and shape-color synchronous dual-response wood with thermal stimulus. ACS Nano 18(8), 6718–6730 (2024). https://doi.org/10.1021/acsnano.3c03607
Q. Tang, L. Fang, Y. Wang, M. Zou, W. Guo, Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate. Nanoscale 10(9), 4344–4353 (2018). https://doi.org/10.1039/C7NR08367J
K. Wang, H. Peng, Q. Gu, X. Zhang, X. Liu et al., Scalable, large-size, and flexible transparent bamboo. Chem. Eng. J. 451, 138349 (2023). https://doi.org/10.1016/j.cej.2022.138349
Z. Wang, X. Wang, Y. Zhang, Properties of transparent bamboo based on different positions of bamboo. Ind. Crops Prod. 202, 117077 (2023). https://doi.org/10.1016/j.indcrop.2023.117077
Y. Chen, Y. Zhang, J. Long, K. Xu, T. Zhong, Multiscale cellulose-based optical management films with tunable transparency and haze fabricated by different bamboo components and mechanical defibrillation approaches. Carbohydr. Polym. 348, 122811 (2025). https://doi.org/10.1016/j.carbpol.2024.122811
S. Chen, D. Xu, H. Yin, R. Huang, W. Qi et al., Large-scale engineerable films tailored with cellulose nanofibrils for lighting management and thermal insulation. Small 20(43), 2401283 (2024). https://doi.org/10.1002/smll.202401283
Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang et al., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10(1), 2515 (2019). https://doi.org/10.1038/s41467-019-10351-5
L. Shi, Y. He, X. Wang, Y. Hu, Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanops. Energy Convers. Manag. 171, 272–278 (2018). https://doi.org/10.1016/j.enconman.2018.05.106
Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
I.-S. Yu, S.-C. Wu, L. Dumont, J. Cardin, C. Labbé et al., Monolithic crystalline silicon solar cells with SiN x layers doped with Tb3+ and Yb3+ rare-earth ions. J. Rare Earths 37(5), 515–519 (2019). https://doi.org/10.1016/j.jre.2018.07.014
X. Wang, L. Xu, S. Ge, S.Y. Foong, R.K. Liew et al., Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance. Energy 274, 127354 (2023). https://doi.org/10.1016/j.energy.2023.127354
Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu et al., Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014). https://doi.org/10.1021/nl404101p