Electrode/Electrolyte Optimization-Induced Double-Layered Architecture for High-Performance Aqueous Zinc-(Dual) Halogen Batteries
Corresponding Author: Xiaomin Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 58
Abstract
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources, intrinsic safety, and high theoretical capacity. Nevertheless, the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation. Herein, a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid (ZEA) artificial film and ZnF2-rich solid electrolyte interphase (SEI) layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization. The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer, therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode. Such double-layered architecture not only modulates Zn2+ flux and suppresses the zinc dendrite growth, but also blocks the direct contact between the metal anode and electrolyte, thus mitigating the corrosion from the active species. When employing optimized metal anodes and electrolytes, the as-developed zinc-(dual) halogen batteries present high areal capacity and satisfactory cycling stability. This work provides a new avenue for developing aqueous zinc-(dual) halogen batteries.
Highlights:
1 A double-layered protective film based on zinc-based coordination compound and ZnF2-rich solid electrolyte interphase layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.
2 The double-layered architecture can effectively modulate Zn2+ flux and suppress the zinc dendrite growth, thus facilitating the uniform zinc deposition.
3 The as-developed zinc-(dual) halogen batteries based on double-layered protective film can present high areal capacity and satisfactory cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Yang, J. Xia, C. Cui, T.P. Pollard, J. Vatamanu et al., All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6, 325–335 (2023). https://doi.org/10.1038/s41893-022-01028-x
- J. Yang, H. Hua, H. Yang, P. Lai, M. Zhang et al., A high utilization and environmentally sustainable all-organic aqueous zinc-ion battery enabled by a molecular architecture design. Adv. Energy Mater. 13, 2204005 (2023). https://doi.org/10.1002/aenm.202204005
- J. Yan, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., High-voltage zinc-ion batteries: design strategies and challenges. Adv. Funct. Mater. 31, 2010213 (2021). https://doi.org/10.1002/adfm.202010213
- J. Chen, A. Naveed, Y. Nuli, J. Yang, J. Wang, Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Mater. 31, 382–400 (2020). https://doi.org/10.1016/j.ensm.2020.06.027
- S. Zheng, Q. Wang, Y. Hou, L. Li, Z. Tao, Recent progress and strategies toward high performance zinc-organic batteries. J. Energy Chem. 63, 87–112 (2021). https://doi.org/10.1016/j.jechem.2021.07.027
- D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34, e2108856 (2022). https://doi.org/10.1002/adma.202108856
- Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10, 2001599 (2020). https://doi.org/10.1002/aenm.202001599
- G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin et al., Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 34, 2301291 (2024). https://doi.org/10.1002/adfm.202301291
- H. Liu, C.-Y. Chen, H. Yang, Y. Wang, L. Zou et al., A zinc-dual-halogen battery with a molten hydrate electrolyte. Adv. Mater. 32, e2004553 (2020). https://doi.org/10.1002/adma.202004553
- Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12, 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
- Y. Zhang, C. Wei, M.-X. Wu, Y. Wang, H. Jiang et al., A high-performance COF-based aqueous zinc-bromine battery. Chem. Eng. J. 451, 138915 (2023). https://doi.org/10.1016/j.cej.2022.138915
- Z. Xie, Z. Zhu, Z. Liu, M. Sajid, N. Chen et al., Rechargeable hydrogen-chlorine battery operates in a wide temperature range. J. Am. Chem. Soc. 145, 25422–25430 (2023). https://doi.org/10.1021/jacs.3c09819
- H. Liu, C.-Y. Chen, J. Jiang, R. Zhang, L. Zou et al., Metal–organic framework-derived MnO nanocrystals embedded in a spindle carbon for rechargeable aqueous zinc battery with a molten hydrate electrolyte. Small Struct. 4, 2300071 (2023). https://doi.org/10.1002/sstr.202300071
- L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33, e2007406 (2021). https://doi.org/10.1002/adma.202007406
- A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
- S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. 25, 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
- W. Wu, X. Yin, S. Wang, Q. Jiang, H.-Y. Shi et al., Zinc-dual-halide complexes suppressing polyhalide formation for rechargeable aqueous zinc-halogen batteries. Chem. Commun. 59, 11536–11539 (2023). https://doi.org/10.1039/d3cc02893c
- H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 32, e2004240 (2020). https://doi.org/10.1002/adma.202004240
- W.-D. Liu, X. Tang, J.-A. Feng, C.-Y. Zhang, H. Liu et al., Recent advances in vacancy engineering for reliable lithium-sulfur batteries. Rare Met. 43, 455–477 (2024). https://doi.org/10.1007/s12598-023-02417-7
- Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16, 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
- Y. Li, Z. Yu, J. Huang, Y. Wang, Y. Xia, Constructing solid electrolyte interphase for aqueous zinc batteries. Angew. Chem. Int. Ed. 62, e202309957 (2023). https://doi.org/10.1002/anie.202309957
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60, 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
- Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, J. Chen, Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15, 5982–5987 (2015). https://doi.org/10.1021/acs.nanolett.5b02116
- B. Oh, Y.-E. Hyung, D.R. Vissers, K. Amine, New interpenetrating network-type siloxane polymer electrolyte. Electrochem. Solid-State Lett. 5, E59 (2002). https://doi.org/10.1149/1.1511342
- N. Serizawa, S. Seki, K. Takei, H. Miyashiro, K. Yoshida et al., EQCM measurement of deposition and dissolution of lithium in glyme-Li salt molten complex. J. Electrochem. Soc. 160, A1529–A1533 (2013). https://doi.org/10.1149/2.085309jes
- Z. Wei, W. Shin, H. Jiang, X. Wu, W.F. Stickle et al., Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries. Nat. Commun. 10, 3227 (2019). https://doi.org/10.1038/s41467-019-11218-5
- X. Geng, X. Hou, X. He, H.J. Fan, Challenges and strategies on interphasial regulation for aqueous rechargeable batteries. Adv. Energy Mater. 14, 2304094 (2024). https://doi.org/10.1002/aenm.202304094
- J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15, 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
- Y. Wang, T. Wang, D. Dong, J. Xie, Y. Guan et al., Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5, 162–179 (2022). https://doi.org/10.1016/j.matt.2021.10.021
- J.-B. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, P. Roy, Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 122, 184509 (2005). https://doi.org/10.1063/1.1894929
- J. Wang, G. Jing, R. Zheng, Z. Huang, W. Sun et al., Ethylenediamine tetramethylenephosphonic acid as a selective collector for the improved separation of chalcopyrite against pyrite at low alkalinity. Int. J. Min. Sci. Technol. 33, 873–882 (2023). https://doi.org/10.1016/j.ijmst.2023.03.010
- D. Gopi, S. Manimozhi, K.M. Govindaraju, P. Manisankar, S. Rajeswari, Surface and electrochemical characterization of pitting corrosion behaviour of 304 stainless steel in ground water media. J. Appl. Electrochem. 37, 439–449 (2007). https://doi.org/10.1007/s10800-006-9274-0
- Z. Zhao, K. Lu, G. Ji, H. Zhang, J. Cui et al., The enhanced separation effect of synthesized hydroxyapatite incorporated with ethylenediamine-tetramethylene phosphonic acid for Zn2+ and Co2+ ions and the deep insight into mechanism. J. Mol. Liq. 386, 122555 (2023). https://doi.org/10.1016/j.molliq.2023.122555
- J. Li, J. Song, L. Luo, H. Zhang, J. Feng et al., Synergy of MXene with Se infiltrated porous N-doped carbon nanofibers as Janus electrodes for high-performance sodium/lithium–selenium batteries. Adv. Energy Mater. 12, 2200894 (2022). https://doi.org/10.1002/aenm.202200894
- T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202314883 (2023). https://doi.org/10.1002/anie.202314883
- J. Li, B. He, Y. Zhang, Z. Cheng, L. Yuan et al., In situ constructing coordination compounds interphase to stabilize Zn metal anode for high-performance aqueous Zn-SeS2 batteries. Small 18, e2200567 (2022). https://doi.org/10.1002/smll.202200567
- C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8, 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
- B. Wei, J. Zheng, Abhishek, X. Liu, J. Wu et al., Design principle of insulating surface protective layers for metallic Zn anodes: a case study of ZrO2. Adv. Energy Mater. 14, 2470096 (2024). https://doi.org/10.1002/aenm.202470096
- Y. Zhang, Y. Wang, C. Wang, W. Li, X. Liu et al., A multifunctional additive based on the cation–anion synergistic effect for highly stable zinc metal anodes. J. Phys. Chem. Lett. 15, 4669–4678 (2024). https://doi.org/10.1021/acs.jpclett.4c00834
- D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202310290 (2023). https://doi.org/10.1002/anie.202310290
- D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023). https://doi.org/10.1002/anie.202216934
- Y. Lyu, J.A. Yuwono, P. Wang, Y. Wang, F. Yang et al., Organic pH buffer for dendrite-free and shuttle-free Zn-I2 batteries. Angew. Chem. Int. Ed. 62, e202303011 (2023). https://doi.org/10.1002/anie.202303011
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
- X. Ji, A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1, 99–107 (2021). https://doi.org/10.1016/j.esci.2021.10.004
- Y. Zhang, S. Shen, K. Xi, P. Li, Z. Kang et al., Suppressed dissolution of fluorine-rich SEI enables highly reversible zinc metal anode for stable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63, e202407067 (2024). https://doi.org/10.1002/anie.202407067
- L. Ran, Y. Xu, X. Zhu, S. Chen, X. Qiu, Mn single-atom tuning Fe-N-C catalyst enables highly efficient and durable oxygen electrocatalysis and zinc-air batteries. ACS Nano 18, 750–760 (2024). https://doi.org/10.1021/acsnano.3c09100
- X. Jia, C. Liu, Z. Wang, D. Huang, G. Cao, Weakly polarized organic cation-modified hydrated vanadium oxides for high-energy efficiency aqueous zinc-ion batteries. Nano-Micro Lett. 16, 129 (2024). https://doi.org/10.1007/s40820-024-01339-y
- S. Lv, T. Fang, Z. Ding, Y. Wang, H. Jiang et al., A high-performance quasi-solid-state aqueous zinc-dual halogen battery. ACS Nano 16, 20389–20399 (2022). https://doi.org/10.1021/acsnano.2c06362
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 131, 7905–7910 (2019). https://doi.org/10.1002/ange.201904174
- J. Lei, Y. Yao, Y. Huang, Y.-C. Lu, A highly reversible low-cost aqueous sulfur–manganese redox flow battery. ACS Energy Lett. 8, 429–435 (2023). https://doi.org/10.1021/acsenergylett.2c02524
- N. Chen, W. Wang, Y. Ma, M. Chuai, X. Zheng et al., Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent. Small Methods 8, e2201553 (2024). https://doi.org/10.1002/smtd.202201553
- G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14, 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
- X. Li, Y. Wang, J. Lu, S. Li, P. Li et al., Three-electron transfer-based high-capacity organic lithium-iodine (chlorine) batteries. Angew. Chem. Int. Ed. 62, e202310168 (2023). https://doi.org/10.1002/anie.202310168
- Q. Guo, K.-I. Kim, S. Li, A.M. Scida, P. Yu et al., Reversible insertion of I-Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 6, 459–467 (2021). https://doi.org/10.1021/acsenergylett.0c02575
References
C. Yang, J. Xia, C. Cui, T.P. Pollard, J. Vatamanu et al., All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6, 325–335 (2023). https://doi.org/10.1038/s41893-022-01028-x
J. Yang, H. Hua, H. Yang, P. Lai, M. Zhang et al., A high utilization and environmentally sustainable all-organic aqueous zinc-ion battery enabled by a molecular architecture design. Adv. Energy Mater. 13, 2204005 (2023). https://doi.org/10.1002/aenm.202204005
J. Yan, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., High-voltage zinc-ion batteries: design strategies and challenges. Adv. Funct. Mater. 31, 2010213 (2021). https://doi.org/10.1002/adfm.202010213
J. Chen, A. Naveed, Y. Nuli, J. Yang, J. Wang, Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Mater. 31, 382–400 (2020). https://doi.org/10.1016/j.ensm.2020.06.027
S. Zheng, Q. Wang, Y. Hou, L. Li, Z. Tao, Recent progress and strategies toward high performance zinc-organic batteries. J. Energy Chem. 63, 87–112 (2021). https://doi.org/10.1016/j.jechem.2021.07.027
D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34, e2108856 (2022). https://doi.org/10.1002/adma.202108856
Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10, 2001599 (2020). https://doi.org/10.1002/aenm.202001599
G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin et al., Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 34, 2301291 (2024). https://doi.org/10.1002/adfm.202301291
H. Liu, C.-Y. Chen, H. Yang, Y. Wang, L. Zou et al., A zinc-dual-halogen battery with a molten hydrate electrolyte. Adv. Mater. 32, e2004553 (2020). https://doi.org/10.1002/adma.202004553
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12, 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
Y. Zhang, C. Wei, M.-X. Wu, Y. Wang, H. Jiang et al., A high-performance COF-based aqueous zinc-bromine battery. Chem. Eng. J. 451, 138915 (2023). https://doi.org/10.1016/j.cej.2022.138915
Z. Xie, Z. Zhu, Z. Liu, M. Sajid, N. Chen et al., Rechargeable hydrogen-chlorine battery operates in a wide temperature range. J. Am. Chem. Soc. 145, 25422–25430 (2023). https://doi.org/10.1021/jacs.3c09819
H. Liu, C.-Y. Chen, J. Jiang, R. Zhang, L. Zou et al., Metal–organic framework-derived MnO nanocrystals embedded in a spindle carbon for rechargeable aqueous zinc battery with a molten hydrate electrolyte. Small Struct. 4, 2300071 (2023). https://doi.org/10.1002/sstr.202300071
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33, e2007406 (2021). https://doi.org/10.1002/adma.202007406
A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. 25, 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
W. Wu, X. Yin, S. Wang, Q. Jiang, H.-Y. Shi et al., Zinc-dual-halide complexes suppressing polyhalide formation for rechargeable aqueous zinc-halogen batteries. Chem. Commun. 59, 11536–11539 (2023). https://doi.org/10.1039/d3cc02893c
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 32, e2004240 (2020). https://doi.org/10.1002/adma.202004240
W.-D. Liu, X. Tang, J.-A. Feng, C.-Y. Zhang, H. Liu et al., Recent advances in vacancy engineering for reliable lithium-sulfur batteries. Rare Met. 43, 455–477 (2024). https://doi.org/10.1007/s12598-023-02417-7
Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16, 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
Y. Li, Z. Yu, J. Huang, Y. Wang, Y. Xia, Constructing solid electrolyte interphase for aqueous zinc batteries. Angew. Chem. Int. Ed. 62, e202309957 (2023). https://doi.org/10.1002/anie.202309957
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60, 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, J. Chen, Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15, 5982–5987 (2015). https://doi.org/10.1021/acs.nanolett.5b02116
B. Oh, Y.-E. Hyung, D.R. Vissers, K. Amine, New interpenetrating network-type siloxane polymer electrolyte. Electrochem. Solid-State Lett. 5, E59 (2002). https://doi.org/10.1149/1.1511342
N. Serizawa, S. Seki, K. Takei, H. Miyashiro, K. Yoshida et al., EQCM measurement of deposition and dissolution of lithium in glyme-Li salt molten complex. J. Electrochem. Soc. 160, A1529–A1533 (2013). https://doi.org/10.1149/2.085309jes
Z. Wei, W. Shin, H. Jiang, X. Wu, W.F. Stickle et al., Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries. Nat. Commun. 10, 3227 (2019). https://doi.org/10.1038/s41467-019-11218-5
X. Geng, X. Hou, X. He, H.J. Fan, Challenges and strategies on interphasial regulation for aqueous rechargeable batteries. Adv. Energy Mater. 14, 2304094 (2024). https://doi.org/10.1002/aenm.202304094
J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15, 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
Y. Wang, T. Wang, D. Dong, J. Xie, Y. Guan et al., Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5, 162–179 (2022). https://doi.org/10.1016/j.matt.2021.10.021
J.-B. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, P. Roy, Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 122, 184509 (2005). https://doi.org/10.1063/1.1894929
J. Wang, G. Jing, R. Zheng, Z. Huang, W. Sun et al., Ethylenediamine tetramethylenephosphonic acid as a selective collector for the improved separation of chalcopyrite against pyrite at low alkalinity. Int. J. Min. Sci. Technol. 33, 873–882 (2023). https://doi.org/10.1016/j.ijmst.2023.03.010
D. Gopi, S. Manimozhi, K.M. Govindaraju, P. Manisankar, S. Rajeswari, Surface and electrochemical characterization of pitting corrosion behaviour of 304 stainless steel in ground water media. J. Appl. Electrochem. 37, 439–449 (2007). https://doi.org/10.1007/s10800-006-9274-0
Z. Zhao, K. Lu, G. Ji, H. Zhang, J. Cui et al., The enhanced separation effect of synthesized hydroxyapatite incorporated with ethylenediamine-tetramethylene phosphonic acid for Zn2+ and Co2+ ions and the deep insight into mechanism. J. Mol. Liq. 386, 122555 (2023). https://doi.org/10.1016/j.molliq.2023.122555
J. Li, J. Song, L. Luo, H. Zhang, J. Feng et al., Synergy of MXene with Se infiltrated porous N-doped carbon nanofibers as Janus electrodes for high-performance sodium/lithium–selenium batteries. Adv. Energy Mater. 12, 2200894 (2022). https://doi.org/10.1002/aenm.202200894
T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202314883 (2023). https://doi.org/10.1002/anie.202314883
J. Li, B. He, Y. Zhang, Z. Cheng, L. Yuan et al., In situ constructing coordination compounds interphase to stabilize Zn metal anode for high-performance aqueous Zn-SeS2 batteries. Small 18, e2200567 (2022). https://doi.org/10.1002/smll.202200567
C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8, 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
B. Wei, J. Zheng, Abhishek, X. Liu, J. Wu et al., Design principle of insulating surface protective layers for metallic Zn anodes: a case study of ZrO2. Adv. Energy Mater. 14, 2470096 (2024). https://doi.org/10.1002/aenm.202470096
Y. Zhang, Y. Wang, C. Wang, W. Li, X. Liu et al., A multifunctional additive based on the cation–anion synergistic effect for highly stable zinc metal anodes. J. Phys. Chem. Lett. 15, 4669–4678 (2024). https://doi.org/10.1021/acs.jpclett.4c00834
D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202310290 (2023). https://doi.org/10.1002/anie.202310290
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023). https://doi.org/10.1002/anie.202216934
Y. Lyu, J.A. Yuwono, P. Wang, Y. Wang, F. Yang et al., Organic pH buffer for dendrite-free and shuttle-free Zn-I2 batteries. Angew. Chem. Int. Ed. 62, e202303011 (2023). https://doi.org/10.1002/anie.202303011
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
X. Ji, A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1, 99–107 (2021). https://doi.org/10.1016/j.esci.2021.10.004
Y. Zhang, S. Shen, K. Xi, P. Li, Z. Kang et al., Suppressed dissolution of fluorine-rich SEI enables highly reversible zinc metal anode for stable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63, e202407067 (2024). https://doi.org/10.1002/anie.202407067
L. Ran, Y. Xu, X. Zhu, S. Chen, X. Qiu, Mn single-atom tuning Fe-N-C catalyst enables highly efficient and durable oxygen electrocatalysis and zinc-air batteries. ACS Nano 18, 750–760 (2024). https://doi.org/10.1021/acsnano.3c09100
X. Jia, C. Liu, Z. Wang, D. Huang, G. Cao, Weakly polarized organic cation-modified hydrated vanadium oxides for high-energy efficiency aqueous zinc-ion batteries. Nano-Micro Lett. 16, 129 (2024). https://doi.org/10.1007/s40820-024-01339-y
S. Lv, T. Fang, Z. Ding, Y. Wang, H. Jiang et al., A high-performance quasi-solid-state aqueous zinc-dual halogen battery. ACS Nano 16, 20389–20399 (2022). https://doi.org/10.1021/acsnano.2c06362
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 131, 7905–7910 (2019). https://doi.org/10.1002/ange.201904174
J. Lei, Y. Yao, Y. Huang, Y.-C. Lu, A highly reversible low-cost aqueous sulfur–manganese redox flow battery. ACS Energy Lett. 8, 429–435 (2023). https://doi.org/10.1021/acsenergylett.2c02524
N. Chen, W. Wang, Y. Ma, M. Chuai, X. Zheng et al., Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent. Small Methods 8, e2201553 (2024). https://doi.org/10.1002/smtd.202201553
G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14, 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
X. Li, Y. Wang, J. Lu, S. Li, P. Li et al., Three-electron transfer-based high-capacity organic lithium-iodine (chlorine) batteries. Angew. Chem. Int. Ed. 62, e202310168 (2023). https://doi.org/10.1002/anie.202310168
Q. Guo, K.-I. Kim, S. Li, A.M. Scida, P. Yu et al., Reversible insertion of I-Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 6, 459–467 (2021). https://doi.org/10.1021/acsenergylett.0c02575