Comprehensive Chlorine Suppression: Advances in Materials and System Technologies for Direct Seawater Electrolysis
Corresponding Author: Mingbo Wu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 113
Abstract
Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis’s efficiency. Herein, we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion, with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s cost. Furthermore, promising directions are proposed for durable and efficient seawater electrolysis systems. This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.
Highlights:
1 Rational design of chlorine-suppressing catalysts based on mechanistic insights.
2 Overview of recent advances in cutting-edge seawater electrolysis systems.
3 Discussion of challenges and potential directions for direct seawater electrolysis enhancement.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Höhne, M.J. Gidden, M. den Elzen, F. Hans, C. Fyson et al., Wave of net zero emission targets opens window to meeting the Paris agreement. Nat. Clim. Chang. 11, 820–822 (2021). https://doi.org/10.1038/s41558-021-01142-2
- G. Palmer, Renewables rise above fossil fuels. Nat. Energy 4, 538–539 (2019). https://doi.org/10.1038/s41560-019-0426-y
- D. Welsby, J. Price, S. Pye, P. Ekins, Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021). https://doi.org/10.1038/s41586-021-03821-8
- L. Zhang, N. Jin, Y. Yang, X.-Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15, 228 (2023). https://doi.org/10.1007/s40820-023-01196-1
- S. Lin, Energy efficiency of desalination: fundamental insights from intuitive interpretation. Environ. Sci. Technol. 54, 76–84 (2020). https://doi.org/10.1021/acs.est.9b04788
- M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen et al., Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett. 15, 157 (2023). https://doi.org/10.1007/s40820-023-01129-y
- B. Reda, A.A. Elzamar, S. AlFazzani, S.M. Ezzat, Green hydrogen as a source of renewable energy: a step towards sustainability, an overview. Environ. Dev. Sustain. (2024). https://doi.org/10.1007/s10668-024-04892-z
- M. Ji, J. Wang, Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrog. Energy 46, 38612–38635 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.142
- H. Lee, B. Choe, B. Lee, J. Gu, H.-S. Cho et al., Outlook of industrial-scale green hydrogen production via a hybrid system of alkaline water electrolysis and energy storage system based on seasonal solar radiation. J. Clean. Prod. 377, 134210 (2022). https://doi.org/10.1016/j.jclepro.2022.134210
- Q. Hassan, S. Algburi, A.Z. Sameen, H.M. Salman, M. Jaszczur, Green hydrogen: a pathway to a sustainable energy future. Int. J. Hydrog. Energy 50, 310–333 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.321
- Y. Wang, M. Wang, Y. Yang, D. Kong, C. Meng et al., Potential technology for seawater electrolysis: anion-exchange membrane water electrolysis. Chem Catal. 3, 100643 (2023). https://doi.org/10.1016/j.checat.2023.100643
- Z. Li, Y. Yao, S. Sun, J. Liang, S. Hong et al., Carbon oxyanion self-transformation on NiFe oxalates enables long-term ampere-level current density seawater oxidation. Angew. Chem. Int. Ed. 63, e202316522 (2024). https://doi.org/10.1002/anie.202316522
- C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich et al., Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010). https://doi.org/10.1038/nature09440
- F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9, 962–972 (2016). https://doi.org/10.1002/cssc.201501581
- J. Liu, S. Duan, H. Shi, T. Wang, X. Yang et al., Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew. Chem. Int. Ed. 61, e202210753 (2022). https://doi.org/10.1002/anie.202210753
- H. Zhao, Z.-Y. Yuan, Progress and perspectives for solar-driven water electrolysis to produce green hydrogen. Adv. Energy Mater. 13, 2300254 (2023). https://doi.org/10.1002/aenm.202300254
- M.A. Khan, T. Al-Attas, S. Roy, M.M. Rahman, N. Ghaffour et al., Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021). https://doi.org/10.1039/d1ee00870f
- H. Saada, B. Fabre, G. Loget, G. Benoit, Is direct seawater splitting realistic with conventional electrolyzer technologies? ACS Energy Lett. 9, 3351–3368 (2024). https://doi.org/10.1021/acsenergylett.4c00271
- W. He, X. Li, C. Tang, S. Zhou, X. Lu et al., Materials design and system innovation for direct and indirect seawater electrolysis. ACS Nano 17, 22227–22239 (2023). https://doi.org/10.1021/acsnano.3c08450
- S. Al-Amshawee, M.Y. Bin Mohd Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil et al., Electrodialysis desalination for water and wastewater: a review. Chem. Eng. J. 380, 122231 (2020). https://doi.org/10.1016/j.cej.2019.122231
- H. Yu, J. Wan, M. Goodsite, H. Jin, Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth 6, 267–277 (2023). https://doi.org/10.1016/j.oneear.2023.02.003
- H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for desalination: a state-of-the-art review. Desalination 491, 114569 (2020). https://doi.org/10.1016/j.desal.2020.114569
- E. Salomons, M. Housh, D. Katz, L. Sela, Water-energy nexus in a desalination-based water sector: the impact of electricity load shedding programs. npj Clean Water 6, 67 (2023). https://doi.org/10.1038/s41545-023-00281-7
- Z. Wang, X. Chen, Y. Zhang, J. Ma, Z. Lin et al., Locally enhanced flow and electric fields through a tip effect for efficient flow-electrode capacitive deionization. Nano-Micro Lett. 17, 26 (2024). https://doi.org/10.1007/s40820-024-01531-0
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
- H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan et al., A membrane-based seawater electrolyser for hydrogen generation. Nature 612, 673–678 (2022). https://doi.org/10.1038/s41586-022-05379-5
- T. Liu, Z. Zhao, W. Tang, Y. Chen, C. Lan et al., In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion. Nat. Commun. 15, 5305 (2024). https://doi.org/10.1038/s41467-024-49639-6
- X.-L. Zhang, P.-C. Yu, S.-P. Sun, L. Shi, P.-P. Yang et al., In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting. Nat. Commun. 15, 9462 (2024). https://doi.org/10.1038/s41467-024-53724-1
- C. Rodrigues, J.J. Jackson, M. Montross, A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Ind. Crops Prod. 92, 165–173 (2016). https://doi.org/10.1016/J.INDCROP.2016.08.010
- S. Dresp, T. Ngo Thanh, M. Klingenhof, S. Brückner, P. Hauke et al., Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 13, 1725–1729 (2020). https://doi.org/10.1039/D0EE01125H
- S. Dresp, F. Dionigi, M. Klingenhof, T. Merzdorf, H. Schmies et al., Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts. ACS Catal. 11, 6800–6809 (2021). https://doi.org/10.1021/acscatal.1c00773
- R.K.B. Karlsson, A. Cornell, Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116, 2982–3028 (2016). https://doi.org/10.1021/acs.chemrev.5b00389
- R. Zhang, T. Zhai, H. Wang, S. Lu, Recent advances in high-performance direct seawater electrolysis for “green” hydrogen. Adv. Energy Sustain. Res. 5, 2400085 (2024). https://doi.org/10.1002/aesr.202400085
- C. Harvey, S. Delacroix, C. Tard, Unraveling the competition between the oxygen and chlorine evolution reactions in seawater electrolysis: enhancing selectivity for green hydrogen production. Electrochim. Acta 497, 144534 (2024). https://doi.org/10.1016/j.electacta.2024.144534
- A. Kasani, R. Maric, L. Bonville, S. Blizankov, Catalysts for direct seawater electrolysis: current status and future prospectives. ChemElectroChem 11, e202300743 (2024). https://doi.org/10.1002/celc.202300743
- Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Amorphous metallic ultrathin nanostructures: a latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy 47, 26956–26977 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.049
- J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120, 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
- Y. Wang, R. Ma, Z. Shi, H. Wu, S. Hou et al., Inverse doping IrOx/Ti with weakened Ir-O interaction toward stable and efficient acidic oxygen evolution. Chem 9, 2931–2942 (2023). https://doi.org/10.1016/j.chempr.2023.05.044
- X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
- Y. Li, Z. Zhang, C. Li, Y. Zhou, X.-B. Chen et al., Introducing phosphorus into spinel nickel ferrite to enhance lattice oxygen participation towards water oxidation electrocatalysis. Appl. Catal. B Environ. Energy 355, 124116 (2024). https://doi.org/10.1016/j.apcatb.2024.124116
- X. Wang, H. Zhong, S. Xi, W.S.V. Lee, J. Xue, Understanding of oxygen redox in the oxygen evolution reaction. Adv. Mater. 34, e2107956 (2022). https://doi.org/10.1002/adma.202107956
- C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
- J. Chang, Y. Shi, H. Wu, J. Yu, W. Jing et al., Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation. J. Am. Chem. Soc. 146, 12958–12968 (2024). https://doi.org/10.1021/jacs.3c13248
- X. Cao, H. Qin, J. Zhang, X. Chen, L. Jiao, Regulation of oxide pathway mechanism for sustainable acidic water oxidation. J. Am. Chem. Soc. 146, 32049–32058 (2024). https://doi.org/10.1021/jacs.4c12942
- Z. He, J. Zhang, Z. Gong, H. Lei, D. Zhou et al., Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 13, 2191 (2022). https://doi.org/10.1038/s41467-022-29875-4
- H. Wu, Q. Huang, Y. Shi, J. Chang, S. Lu, Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 16, 9142–9157 (2023). https://doi.org/10.1007/s12274-023-5502-8
- J. Liu, Z. Yu, J. Huang, S. Yao, R. Jiang et al., Redox-active ligands enhance oxygen evolution reaction activity: regulating the spin state of ferric ions and accelerating electron transfer. J. Colloid Interface Sci. 650, 1182–1192 (2023). https://doi.org/10.1016/j.jcis.2023.07.083
- S. Iqbal, B. Safdar, I. Hussain, K. Zhang, C. Chatzichristodoulou, Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv. Energy Mater. 13, 2203913 (2023). https://doi.org/10.1002/aenm.202203913
- G. Liu, Oxygen evolution reaction electrocatalysts for seawater splitting: a review. J. Electroanal. Chem. 923, 116805 (2022). https://doi.org/10.1016/j.jelechem.2022.116805
- S. Liu, Z. Wang, S. Qiu, F. Deng, Mechanism in pH effects of electrochemical reactions: a mini-review. Carbon Lett. 34, 1269–1286 (2024). https://doi.org/10.1007/s42823-024-00724-2
- B. Xu, J. Liang, X. Sun, X. Xiong, Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance. Green Chem. 25, 3767–3790 (2023). https://doi.org/10.1039/d2gc03377a
- X. Tang, I. Arif, P. Diao, Monitoring the chlorine evolution reaction during electrochemical alkaline seawater splitting. J. Electroanal. Chem. 942, 117569 (2023). https://doi.org/10.1016/j.jelechem.2023.117569
- T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque et al., Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015). https://doi.org/10.1038/srep12167
- N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/c6cs00328a
- Z. Feng, C. Dai, P. Shi, X. Lei, R. Guo et al., Seven mechanisms of oxygen evolution reaction proposed recently: a mini review. Chem. Eng. J. 485, 149992 (2024). https://doi.org/10.1016/j.cej.2024.149992
- J. Nai, X. Xu, Q. Xie, G. Lu, Y. Wang et al., Construction of Ni(CN)2/NiSe2 heterostructures by stepwise topochemical pathways for efficient electrocatalytic oxygen evolution. Adv. Mater. 34, 2104405 (2022). https://doi.org/10.1002/adma.202104405
- J. Ding, H. Yang, S. Zhang, Q. Liu, H. Cao et al., Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 18, 2204524 (2022). https://doi.org/10.1002/smll.202204524
- S. Haschke, M. Mader, S. Schlicht, A.M. Roberts, A.M. Angeles-Boza et al., Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nat. Commun. 9, 4565 (2018). https://doi.org/10.1038/s41467-018-07031-1
- Y. Wen, C. Liu, R. Huang, H. Zhang, X. Li et al., Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 13, 4871 (2022). https://doi.org/10.1038/s41467-022-32581-w
- N.H. Kwon, M. Kim, X. Jin, J. Lim, I.Y. Kim et al., A rational method to kinetically control the rate-determining step to explore efficient electrocatalysts for the oxygen evolution reaction. npg Asia Mater. 10, 659–669 (2018). https://doi.org/10.1038/s41427-018-0060-3
- S. Liu, I. Zaharieva, L. D’Amario, S. Mebs, P. Kubella et al., Electrocatalytic water oxidation at neutral pH–deciphering the rate constraints for an amorphous cobalt-phosphate catalyst system. Adv. Energy Mater. 12, 2202914 (2022). https://doi.org/10.1002/aenm.202202914
- J.C. Fornaciari, L.-C. Weng, S.M. Alia, C. Zhan, T.A. Pham et al., Mechanistic understanding of pH effects on the oxygen evolution reaction. Electrochim. Acta 405, 139810 (2022). https://doi.org/10.1016/j.electacta.2021.139810
- C. Huang, Q. Zhou, L. Yu, D. Duan, T. Cao et al., Functional bimetal co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy Mater. 13, 2301475 (2023). https://doi.org/10.1002/aenm.202301475
- Z. Gong, J. Liu, M. Yan, H. Gong, G. Ye et al., Highly durable and efficient seawater electrolysis enabled by defective graphene-confined nanoreactor. ACS Nano 17, 18372–18381 (2023). https://doi.org/10.1021/acsnano.3c05749
- Y. Xu, Q. Zhang, Q. Zhou, S. Gao, B. Wang et al., Flow accelerated corrosion and erosion–corrosion behavior of marine carbon steel in natural seawater. npj Mater. Degrad. 5, 56 (2021). https://doi.org/10.1038/s41529-021-00205-1
- J. Zhang, P. Ju, C. Wang, Y. Dun, X. Zhao et al., Corrosion behaviour of 316L stainless steel in hot dilute sulphuric acid solution with sulphate and NaCl. Prot. Met. Phys. Chem. Surf. 55, 148–156 (2019). https://doi.org/10.1134/s207020511901026x
- H.-Y. Wang, C.-C. Weng, J.-T. Ren, Z.-Y. Yuan, An overview and recent advances in electrocatalysts for direct seawater splitting. Front. Chem. Sci. Eng. 15, 1408–1426 (2021). https://doi.org/10.1007/s11705-021-2102-6
- Y. Ren, F. Fan, Y. Zhang, L. Chen, Z. Wang et al., A dual-cation exchange membrane electrolyzer for continuous H2 production from seawater. Adv. Sci. 11, 2401702 (2024). https://doi.org/10.1002/advs.202401702
- S. Zhang, Y. Wang, S. Li, Z. Wang, H. Chen et al., Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 14, 4822 (2023). https://doi.org/10.1038/s41467-023-40563-9
- Z. Deng, S. Xu, C. Liu, X. Zhang, M. Li et al., Stability of dimensionally stable anode for chlorine evolution reaction. Nano Res. 17, 949–959 (2024). https://doi.org/10.1007/s12274-023-5965-7
- J. Li, G. Fu, X. Sheng, G. Li, H. Chen et al., A comprehensive review on catalysts for seawater electrolysis. Adv. Powder Mater. 3, 100227 (2024). https://doi.org/10.1016/j.apmate.2024.100227
- M. Chen, N. Kitiphatpiboon, C. Feng, A. Abudula, Y. Ma et al., Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience 3, 100111 (2023). https://doi.org/10.1016/j.esci.2023.100111
- J. Dong, C. Yu, H. Wang, L. Chen, H. Huang et al., A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis. J. Energy Chem. 90, 486–495 (2024). https://doi.org/10.1016/j.jechem.2023.11.001
- L. Hu, X. Tan, R. Luo, X.-J. Wen, X.-K. Wu et al., Phytic-acid-doped conductive hydrogels as alkaline seawater electrocatalysts with anomalous chloride promoted oxygen evolution reaction. Appl. Surf. Sci. 657, 159754 (2024). https://doi.org/10.1016/j.apsusc.2024.159754
- F. Shen, G. Liu, C. Liu, Y. Zhang, L. Yang, Corrosion and oxidation on iron surfaces in chloride contaminated electrolytes: insights from ReaxFF molecular dynamic simulations. J. Mater. Res. Technol. 29, 1305–1312 (2024). https://doi.org/10.1016/j.jmrt.2024.01.194
- W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami et al., Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020). https://doi.org/10.1038/s41560-020-0550-8
- M. Xiao, Q. Wu, R. Ku, L. Zhou, C. Long et al., Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine. Nat. Commun. 14, 5356 (2023). https://doi.org/10.1038/s41467-023-41070-7
- X. Kang, F. Yang, Z. Zhang, H. Liu, S. Ge et al., A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14, 3607 (2023). https://doi.org/10.1038/s41467-023-39386-5
- S. Hong, J. Kim, J. Park, S. Im, M.R. Hoffmann et al., Scalable Ir-doped NiFe2O4/TiO2 heterojunction anode for decentralized saline wastewater treatment and H2 production. Nano-Micro Lett. 17, 51 (2024). https://doi.org/10.1007/s40820-024-01542-x
- Y. Yu, W. Zhou, X. Zhou, J. Yuan, X. Zhang et al., The corrosive Cl–-induced rapid surface reconstruction of amorphous NiFeCoP enables efficient seawater splitting. ACS Catal. 14, 18322–18332 (2024). https://doi.org/10.1021/acscatal.4c05704
- J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
- J. Xu, C.-C. Kao, H. Shen, H. Liu, Y. Zheng et al., Ru0.1Mn0.9Ox electrocatalyst for durable oxygen evolution in acid seawater. Angew. Chem. Int. Ed. (2024). https://doi.org/10.1002/anie.202420615
- H. Liu, W. Shen, D. Huanyu Jin, J. Xu, P. Pinxian Xi et al., High-performance alkaline seawater electrolysis with anomalous chloride promoted oxygen evolution reaction. Angew. Chem. Int. Ed. 62, e202311674 (2023). https://doi.org/10.1002/anie.202311674
- A. Malek, Y. Xue, X. Lu, Dynamically restructuring NixCryO electrocatalyst for stable oxygen evolution reaction in real seawater. Angew. Chem. Int. Ed. 62, e202309854 (2023). https://doi.org/10.1002/anie.202309854
- Z. Ding, S. Chen, T. Yang, Z. Sheng, X. Zhang et al., Atomically dispersed MoNi alloy catalyst for partial oxidation of methane. Nat. Commun. 15, 4636 (2024). https://doi.org/10.1038/s41467-024-49038-x
- J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121
- S. Zha, Z.-J. Zhao, S. Chen, S. Liu, T. Liu et al., Predicting the catalytic activity of surface oxidation reactions by ionization energies. CCS Chem. 2, 262–270 (2020). https://doi.org/10.31635/ccschem.020.201900096
- Z. Lu, H. Yang, G. Qi, Q. Liu, L. Feng et al., Efficient and stable pH-universal water electrolysis catalyzed by N-doped hollow carbon confined RuIrOx nanocrystals. Small 20, 2308841 (2024). https://doi.org/10.1002/smll.202308841
- D. Yun-Nan Gong, C.-Y. Cao, D. Wen-Jie Shi, J.-H. Zhang, J.-H. Deng et al., Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202215187 (2022). https://doi.org/10.1002/anie.202215187
- H. Zhang, L. Wu, R. Feng, S. Wang, C.-S. Hsu et al., Oxygen vacancies unfold the catalytic potential of NiFe-layered double hydroxides by promoting their electronic transport for oxygen evolution reaction. ACS Catal. 13, 6000–6012 (2023). https://doi.org/10.1021/acscatal.2c05783
- X. Xu, M. Liu, Y. Nie, C. Wang, W. Wang et al., Modulating electronic structure of interfacial Fe sites in Fe2N/CoFe2O4 nano-heterostructure for enhancing corrosion-resistance and oxygen electrocatalysis in zinc-air battery. Chem. Eng. J. 471, 144639 (2023). https://doi.org/10.1016/j.cej.2023.144639
- J. Yang, Y. Wang, J. Yang, Y. Pang, X. Zhu et al., Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires. Small 18, 2106187 (2022). https://doi.org/10.1002/smll.202106187
- C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong et al., Rational design of cobalt–chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 4, 11292–11298 (2016). https://doi.org/10.1039/c6ta04052g
- Y. Song, M. Sun, S. Zhang, X. Zhang, P. Yi et al., Alleviating the work function of vein-like CoXP by Cr doping for enhanced seawater electrolysis. Adv. Funct. Mater. 33, 2214081 (2023). https://doi.org/10.1002/adfm.202214081
- W. Zhou, A. Li, M. Zhou, Y. Xu, Y. Zhang et al., Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat. Commun. 14, 5388 (2023). https://doi.org/10.1038/s41467-023-41056-5
- M. Liu, J.-A. Wang, W. Klysubun, G.-G. Wang, S. Sattayaporn et al., Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 12, 5260 (2021). https://doi.org/10.1038/s41467-021-25647-8
- X. Zheng, J. Yang, P. Li, Q. Wang, J. Wu et al., Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 9, eadi8025 (2023). https://doi.org/10.1126/sciadv.adi8025
- Y. Gao, Y. Xue, F. He, Y. Li, Controlled growth of a high selectivity interface for seawater electrolysis. Proc. Natl. Acad. Sci. USA 119, e2206946119 (2022). https://doi.org/10.1073/pnas.2206946119
- M.M. Najafpour, G. Renger, M. Hołyńska, A.N. Moghaddam, E.-M. Aro et al., Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem. Rev. 116, 2886–2936 (2016). https://doi.org/10.1021/acs.chemrev.5b00340
- J.G. Vos, T.A. Wezendonk, A.W. Jeremiasse, M.T.M. Koper, MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 140, 10270–10281 (2018). https://doi.org/10.1021/jacs.8b05382
- Y. Wang, Y. Liu, D. Wiley, S. Zhao, Z. Tang, Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 9, 18974–18993 (2021). https://doi.org/10.1039/d1ta02745j
- J. Cao, T. Mou, B. Mei, P. Yao, C. Han et al., Improved electrocatalytic activity and stability by single iridium atoms on iron-based layered double hydroxides for oxygen evolution. Angew. Chem. Int. Ed. 62, e202310973 (2023). https://doi.org/10.1002/anie.202310973
- J. Zhu, B. Mao, B. Wang, M. Cao, The dynamic anti-corrosion of self-derived space charge layer enabling long-term stable seawater oxidation. Appl. Catal. B Environ. Energy 344, 123658 (2024). https://doi.org/10.1016/j.apcatb.2023.123658
- S. Zhao, B. Liu, K. Li, S. Wang, G. Zhang et al., A silicon photoanode protected with TiO2/stainless steel bilayer stack for solar seawater splitting. Nat. Commun. 15, 2970 (2024). https://doi.org/10.1038/s41467-024-47389-z
- T. Liu, C. Lan, M. Tang, M. Li, Y. Xu et al., Redox-mediated decoupled seawater direct splitting for H2 production. Nat. Commun. 15, 8874 (2024). https://doi.org/10.1038/s41467-024-53335-w
- L. Shao, X. Han, L. Shi, T. Wang, Y. Zhang et al., In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis. Adv. Energy Mater. 14, 2303261 (2024). https://doi.org/10.1002/aenm.202303261
- L. Zhou, D. Guo, L. Wu, Z. Guan, C. Zou et al., A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation. Nat. Commun. 15, 2481 (2024). https://doi.org/10.1038/s41467-024-46708-8
- H. Hu, Z. Zhang, L. Liu, X. Che, J. Wang et al., Efficient and durable seawater electrolysis with a V2O3-protected catalyst. Sci. Adv. 10, eadn7012 (2024). https://doi.org/10.1126/sciadv.adn7012
- W. Hao, X. Ma, L. Wang, Y. Guo, Q. Bi et al., Surface corrosion-resistant and multi-scenario MoNiP electrode for efficient industrial-scale seawater splitting. Energy Mater Adv (2024). https://doi.org/10.1002/aenm.202403009
- L. Li, H. Cheng, J. Zhang, Y. Guo, C. Sun et al., Quantitative chemistry in electrolyte solvation design for aqueous batteries. ACS Energy Lett. 8, 1076–1095 (2023). https://doi.org/10.1021/acsenergylett.2c02585
- M. Yu, J. Li, F. Liu, J. Liu, W. Xu et al., Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting. J. Energy Chem. 72, 361–369 (2022). https://doi.org/10.1016/j.jechem.2022.04.004
- T. Ma, D. Wenwen Xu, B. Li, D. Xu Chen, J. Zhao et al., The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem. Int. Ed. 60, 22740–22744 (2021). https://doi.org/10.1002/anie.202110355
- L. Ye, Y. Ding, X. Niu, X. Xu, K. Fan et al., Unraveling the crucial contribution of additive chromate to efficient and stable alkaline seawater oxidation on Ni-based layered double hydroxides. J. Colloid Interface Sci. 665, 240–251 (2024). https://doi.org/10.1016/j.jcis.2024.03.132
- R. Gao, D. Yan, Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 10, 1900954 (2020). https://doi.org/10.1002/aenm.201900954
- X.-J. Zhai, Q.-X. Lv, J.-Y. Xie, Y.-X. Zhang, Y.-M. Chai et al., Advances in the design of highly stable NiFe-LDH electrocatalysts for oxygen evolution in seawater. Chem. Eng. J. 496, 153187 (2024). https://doi.org/10.1016/j.cej.2024.153187
- M. Xu, M. Wei, Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications. Adv. Funct. Mater. 28, 1802943 (2018). https://doi.org/10.1002/adfm.201802943
- L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Electrocatalysts: 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9, 1970057 (2019). https://doi.org/10.1002/aenm.201970057
- P.-J. Deng, Y. Liu, H. Liu, X. Li, J. Lu et al., Layered double hydroxides with carbonate intercalation as ultra-stable anodes for seawater splitting at ampere-level current density. Adv. Energy Mater. 14, 2400053 (2024). https://doi.org/10.1002/aenm.202400053
- R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963). https://doi.org/10.1021/ja00905a001
- M. Li, H.-J. Niu, Y. Li, J. Liu, X. Yang et al., Synergetic regulation of CeO2 modification and (W2O7)2- intercalation on NiFe-LDH for high-performance large-current seawater electrooxidation. Appl. Catal. B Environ. 330, 122612 (2023). https://doi.org/10.1016/j.apcatb.2023.122612
- R. Fan, C. Liu, Z. Li, H. Huang, J. Feng et al., Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nat. Sustain. 7, 158–167 (2024). https://doi.org/10.1038/s41893-023-01263-w
- W. Liu, W. Liu, T. Hou, J. Ding, Z. Wang et al., Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 17, 4797–4806 (2024). https://doi.org/10.1007/s12274-024-6433-8
- L. Yu, J. Xiao, C. Huang, J. Zhou, M. Qiu et al., High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proc. Natl. Acad. Sci. USA 119, e2202382119 (2022). https://doi.org/10.1073/pnas.2202382119
- X. Duan, Q. Sha, P. Li, T. Li, G. Yang et al., Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 15, 1973 (2024). https://doi.org/10.1038/s41467-024-46140-y
- F. Dong, H. Duan, Z. Lin, H. Yuan, M. Ju et al., Unravelling the effect of Cl- on alkaline saline water electrooxidation on NiFe (oxy)hydroxides. Appl. Catal. B Environ. 340, 123242 (2024). https://doi.org/10.1016/j.apcatb.2023.123242
- W. Xu, Z. Wang, P. Liu, X. Tang, S. Zhang et al., Ag nanop-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 36, 2306062 (2024). https://doi.org/10.1002/adma.202306062
- J. Yao, R. Yang, C. Liu, B.-H. Zhao, B. Zhang et al., Alkynes electrooxidation to α, α-dichloroketones in seawater with natural chlorine participation via competitive reaction inhibition and tip-enhanced reagent concentration. ACS Cent. Sci. 10, 155–162 (2024). https://doi.org/10.1021/acscentsci.3c01277
- A. Saha, W. Ali, D.B. Werz, D. Maiti, Highly scalable photoinduced synthesis of silanols via untraversed pathway for chlorine radical (Cl•) generation. Nat. Commun. 14, 8173 (2023). https://doi.org/10.1038/s41467-023-43286-z
- L. Huang, P. Wang, Y. Jiang, K. Davey, Y. Zheng et al., Ethylene electrooxidation to 2-chloroethanol in acidic seawater with natural chloride participation. J. Am. Chem. Soc. 145, 15565–15571 (2023). https://doi.org/10.1021/jacs.3c05114
- L. Han, S. Deng, R. Zhao, X. Wang, Z. Guo et al., Performance evaluation on CO2 fixation with chlorine gas production based on direct electrolysis of seawater. J. Environ. Chem. Eng. 11, 110937 (2023). https://doi.org/10.1016/j.jece.2023.110937
- Y. Liu, G. Tang, Y. Wang, M. Cheng, J. Gao et al., Spatiotemporal differences in tropospheric ozone sensitivity and the impact of “dual carbon” goal. Sci. Bull. 69, 422–425 (2024). https://doi.org/10.1016/j.scib.2023.12.026
- Y. Han, L. Shao, Y. Liu, G. Li, T. Wang et al., Sulfate-assisted Ni/Fe-based electrodes for anion exchange membrane saline splitting. Nano Res. 17, 5985–5995 (2024). https://doi.org/10.1007/s12274-024-6646-x
- Y.S. Park, J. Lee, M.J. Jang, J. Yang, J. Jeong et al., High-performance anion exchange membrane alkaline seawater electrolysis. J. Mater. Chem. A 9, 9586–9592 (2021). https://doi.org/10.1039/d0ta12336f
- K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar et al., Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019). https://doi.org/10.1146/annurev-chembioeng-060718-030241
- R.-T. Liu, Z.-L. Xu, F.-M. Li, F.-Y. Chen, J.-Y. Yu et al., Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023). https://doi.org/10.1039/d2cs00681b
- S. Mo, L. Du, Z. Huang, J. Chen, Y. Zhou et al., Recent advances on PEM fuel cells: from key materials to membrane electrode assembly. Electrochem. Energy Rev. 6, 28 (2023). https://doi.org/10.1007/s41918-023-00190-w
- D.H. Marin, J.T. Perryman, M.A. Hubert, G.A. Lindquist, L. Chen et al., Hydrogen production with seawater-resilient bipolar membrane electrolyzers. Joule 7, 765–781 (2023). https://doi.org/10.1016/j.joule.2023.03.005
- Z. Kang, M. Wang, Y. Yang, H. Wang, Y. Liu et al., Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells. Int. J. Hydrog. Energy 47, 5807–5816 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.227
- S. Zaman, M. Khalid, S. Shahgaldi, Advanced electrocatalyst supports for proton exchange membrane water electrolyzers. ACS Energy Lett. 9, 2922–2935 (2024). https://doi.org/10.1021/acsenergylett.4c00275
- X.-L. Zhang, P.-C. Yu, X.-Z. Su, S.-J. Hu, L. Shi et al., Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. Sci. Adv. 9, eadh2885 (2023). https://doi.org/10.1126/sciadv.adh2885
- L. Giordano, B. Han, M. Risch, W.T. Hong, R.R. Rao et al., pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016). https://doi.org/10.1016/j.cattod.2015.10.006
- Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen et al., Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 11, 2002 (2020). https://doi.org/10.1038/s41467-020-15873-x
- H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou et al., Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 6, e12441 (2023). https://doi.org/10.1002/eem2.12441
- J. Lim, J.M. Klein, S.G. Lee, E.J. Park, S.Y. Kang et al., Addressing the challenge of electrochemical ionomer oxidation in future anion exchange membrane water electrolyzers. ACS Energy Lett. 9, 3074–3083 (2024). https://doi.org/10.1021/acsenergylett.4c00832
- Q. Xu, L. Zhang, J. Zhang, J. Wang, Y. Hu et al., Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem 4, 100087 (2022). https://doi.org/10.1016/j.enchem.2022.100087
- J. Ding, Z. Peng, Z. Wang, C. Zeng, Y. Feng et al., Phosphorus–tungsten dual-doping boosts acidic overall seawater splitting performance over RuOx nanocrystals. J. Mater. Chem. A 12, 28023–28031 (2024). https://doi.org/10.1039/d4ta05277c
- C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet et al., Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanops. Nat. Energy 3, 476–483 (2018). https://doi.org/10.1038/s41560-018-0132-1
- P.-C. Yu, X.-L. Zhang, T.-Y. Zhang, X.-Y.-N. Tao, Y. Yang et al., Nitrogen-mediated promotion of cobalt-based oxygen evolution catalyst for practical anion-exchange membrane electrolysis. J. Am. Chem. Soc. 146, 20379–20390 (2024). https://doi.org/10.1021/jacs.4c05983
- J. Chang, G. Wang, Z. Yang, B. Li, Q. Wang et al., Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 33, 2101425 (2021). https://doi.org/10.1002/adma.202101425
- H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10,000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36, 2411302 (2024). https://doi.org/10.1002/adma.202411302
- H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9, eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
- M. El-Shafie, Hydrogen production by water electrolysis technologies: a review. Results Eng. 20, 101426 (2023). https://doi.org/10.1016/j.rineng.2023.101426
- E.S. Akyüz, E. Telli, M. Farsak, Hydrogen generation electrolyzers: paving the way for sustainable energy. Int. J. Hydrog. Energy 81, 1338–1362 (2024). https://doi.org/10.1016/j.ijhydene.2024.07.175
- L.J. Titheridge, A.T. Marshall, Techno-economic modelling of AEM electrolysis systems to identify ideal current density and aspects requiring further research. Int. J. Hydrog. Energy 49, 518–532 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.181
- G.A. Lindquist, Q. Xu, S.Z. Oener, S.W. Boettcher, Membrane electrolyzers for impure-water splitting. Joule 4, 2549–2561 (2020). https://doi.org/10.1016/j.joule.2020.09.020
- L.A. Cohen, M.S. Weimer, K. Yim, J. Jin, D.V. Fraga Alvarez et al., How low can you go? Nanoscale membranes for efficient water electrolysis. ACS Energy Lett. 9, 1624–1632 (2024). https://doi.org/10.1021/acsenergylett.4c00170
- J.G. Vos, M.T.M. Koper, Measurement of competition between oxygen evolution and chlorine evolution using rotating ring-disk electrode voltammetry. J. Electroanal. Chem. 819, 260–268 (2018). https://doi.org/10.1016/j.jelechem.2017.10.058
- Y.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan et al., Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 10, 788–798 (2017). https://doi.org/10.1039/c6ee03768b
- F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12, 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
- Q. Qian, D. Jihua Zhang, D. Jianming Li, Y. Li, D. Xu Jin et al., Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem. Int. Ed. 60, 5984–5993 (2021). https://doi.org/10.1002/anie.202014362
- Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li et al., Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 11, 1853 (2020). https://doi.org/10.1038/s41467-020-15563-8
- J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang et al., Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021). https://doi.org/10.1038/s41893-020-00635-w
- S. Shiva Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 8, 13793–13813 (2022). https://doi.org/10.1016/j.egyr.2022.10.127
- S.S. Veroneau, D.G. Nocera, Continuous electrochemical water splitting from natural water sources via forward osmosis. Proc. Natl. Acad. Sci. USA 118, e2024855118 (2021). https://doi.org/10.1073/pnas.2024855118
- R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao et al., Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020). https://doi.org/10.1038/s41563-019-0536-8
- H. Shi, T. Wang, J. Liu, W. Chen, S. Li et al., A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 14, 3934 (2023). https://doi.org/10.1038/s41467-023-39681-1
- L. Su, J. Chen, F. Yang, P. Li, Y. Jin et al., Electric-double-layer origin of the kinetic pH effect of hydrogen electrocatalysis revealed by a universal hydroxide adsorption-dependent inflection-point behavior. J. Am. Chem. Soc. 145, 12051–12058 (2023). https://doi.org/10.1021/jacs.3c01164
- A. Odenweller, F. Ueckerdt, G.F. Nemet, M. Jensterle, G. Luderer, Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022). https://doi.org/10.1038/s41560-022-01097-4
- Q. Wen, D. Yan, F. Liu, M. Wang, Y. Ling et al., Highly selective ionic transport through subnanometer pores in polymer films. Adv. Funct. Mater. 26, 5796–5803 (2016). https://doi.org/10.1002/adfm.201601689
- Z. Sun, J. Pan, J. Guo, F. Yan, The alkaline stability of anion exchange membrane for fuel cell applications: the effects of alkaline media. Adv. Sci. 5, 1800065 (2018). https://doi.org/10.1002/advs.201800065
- Y. Wen, J. Yuan, X. Ma, S. Wang, Y. Liu, Polymeric nanocomposite membranes for water treatment: a review. Environ. Chem. Lett. 17, 1539–1551 (2019). https://doi.org/10.1007/s10311-019-00895-9
References
N. Höhne, M.J. Gidden, M. den Elzen, F. Hans, C. Fyson et al., Wave of net zero emission targets opens window to meeting the Paris agreement. Nat. Clim. Chang. 11, 820–822 (2021). https://doi.org/10.1038/s41558-021-01142-2
G. Palmer, Renewables rise above fossil fuels. Nat. Energy 4, 538–539 (2019). https://doi.org/10.1038/s41560-019-0426-y
D. Welsby, J. Price, S. Pye, P. Ekins, Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021). https://doi.org/10.1038/s41586-021-03821-8
L. Zhang, N. Jin, Y. Yang, X.-Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15, 228 (2023). https://doi.org/10.1007/s40820-023-01196-1
S. Lin, Energy efficiency of desalination: fundamental insights from intuitive interpretation. Environ. Sci. Technol. 54, 76–84 (2020). https://doi.org/10.1021/acs.est.9b04788
M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen et al., Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett. 15, 157 (2023). https://doi.org/10.1007/s40820-023-01129-y
B. Reda, A.A. Elzamar, S. AlFazzani, S.M. Ezzat, Green hydrogen as a source of renewable energy: a step towards sustainability, an overview. Environ. Dev. Sustain. (2024). https://doi.org/10.1007/s10668-024-04892-z
M. Ji, J. Wang, Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrog. Energy 46, 38612–38635 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.142
H. Lee, B. Choe, B. Lee, J. Gu, H.-S. Cho et al., Outlook of industrial-scale green hydrogen production via a hybrid system of alkaline water electrolysis and energy storage system based on seasonal solar radiation. J. Clean. Prod. 377, 134210 (2022). https://doi.org/10.1016/j.jclepro.2022.134210
Q. Hassan, S. Algburi, A.Z. Sameen, H.M. Salman, M. Jaszczur, Green hydrogen: a pathway to a sustainable energy future. Int. J. Hydrog. Energy 50, 310–333 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.321
Y. Wang, M. Wang, Y. Yang, D. Kong, C. Meng et al., Potential technology for seawater electrolysis: anion-exchange membrane water electrolysis. Chem Catal. 3, 100643 (2023). https://doi.org/10.1016/j.checat.2023.100643
Z. Li, Y. Yao, S. Sun, J. Liang, S. Hong et al., Carbon oxyanion self-transformation on NiFe oxalates enables long-term ampere-level current density seawater oxidation. Angew. Chem. Int. Ed. 63, e202316522 (2024). https://doi.org/10.1002/anie.202316522
C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich et al., Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010). https://doi.org/10.1038/nature09440
F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9, 962–972 (2016). https://doi.org/10.1002/cssc.201501581
J. Liu, S. Duan, H. Shi, T. Wang, X. Yang et al., Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew. Chem. Int. Ed. 61, e202210753 (2022). https://doi.org/10.1002/anie.202210753
H. Zhao, Z.-Y. Yuan, Progress and perspectives for solar-driven water electrolysis to produce green hydrogen. Adv. Energy Mater. 13, 2300254 (2023). https://doi.org/10.1002/aenm.202300254
M.A. Khan, T. Al-Attas, S. Roy, M.M. Rahman, N. Ghaffour et al., Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021). https://doi.org/10.1039/d1ee00870f
H. Saada, B. Fabre, G. Loget, G. Benoit, Is direct seawater splitting realistic with conventional electrolyzer technologies? ACS Energy Lett. 9, 3351–3368 (2024). https://doi.org/10.1021/acsenergylett.4c00271
W. He, X. Li, C. Tang, S. Zhou, X. Lu et al., Materials design and system innovation for direct and indirect seawater electrolysis. ACS Nano 17, 22227–22239 (2023). https://doi.org/10.1021/acsnano.3c08450
S. Al-Amshawee, M.Y. Bin Mohd Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil et al., Electrodialysis desalination for water and wastewater: a review. Chem. Eng. J. 380, 122231 (2020). https://doi.org/10.1016/j.cej.2019.122231
H. Yu, J. Wan, M. Goodsite, H. Jin, Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth 6, 267–277 (2023). https://doi.org/10.1016/j.oneear.2023.02.003
H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for desalination: a state-of-the-art review. Desalination 491, 114569 (2020). https://doi.org/10.1016/j.desal.2020.114569
E. Salomons, M. Housh, D. Katz, L. Sela, Water-energy nexus in a desalination-based water sector: the impact of electricity load shedding programs. npj Clean Water 6, 67 (2023). https://doi.org/10.1038/s41545-023-00281-7
Z. Wang, X. Chen, Y. Zhang, J. Ma, Z. Lin et al., Locally enhanced flow and electric fields through a tip effect for efficient flow-electrode capacitive deionization. Nano-Micro Lett. 17, 26 (2024). https://doi.org/10.1007/s40820-024-01531-0
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan et al., A membrane-based seawater electrolyser for hydrogen generation. Nature 612, 673–678 (2022). https://doi.org/10.1038/s41586-022-05379-5
T. Liu, Z. Zhao, W. Tang, Y. Chen, C. Lan et al., In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion. Nat. Commun. 15, 5305 (2024). https://doi.org/10.1038/s41467-024-49639-6
X.-L. Zhang, P.-C. Yu, S.-P. Sun, L. Shi, P.-P. Yang et al., In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting. Nat. Commun. 15, 9462 (2024). https://doi.org/10.1038/s41467-024-53724-1
C. Rodrigues, J.J. Jackson, M. Montross, A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Ind. Crops Prod. 92, 165–173 (2016). https://doi.org/10.1016/J.INDCROP.2016.08.010
S. Dresp, T. Ngo Thanh, M. Klingenhof, S. Brückner, P. Hauke et al., Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 13, 1725–1729 (2020). https://doi.org/10.1039/D0EE01125H
S. Dresp, F. Dionigi, M. Klingenhof, T. Merzdorf, H. Schmies et al., Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts. ACS Catal. 11, 6800–6809 (2021). https://doi.org/10.1021/acscatal.1c00773
R.K.B. Karlsson, A. Cornell, Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116, 2982–3028 (2016). https://doi.org/10.1021/acs.chemrev.5b00389
R. Zhang, T. Zhai, H. Wang, S. Lu, Recent advances in high-performance direct seawater electrolysis for “green” hydrogen. Adv. Energy Sustain. Res. 5, 2400085 (2024). https://doi.org/10.1002/aesr.202400085
C. Harvey, S. Delacroix, C. Tard, Unraveling the competition between the oxygen and chlorine evolution reactions in seawater electrolysis: enhancing selectivity for green hydrogen production. Electrochim. Acta 497, 144534 (2024). https://doi.org/10.1016/j.electacta.2024.144534
A. Kasani, R. Maric, L. Bonville, S. Blizankov, Catalysts for direct seawater electrolysis: current status and future prospectives. ChemElectroChem 11, e202300743 (2024). https://doi.org/10.1002/celc.202300743
Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Amorphous metallic ultrathin nanostructures: a latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy 47, 26956–26977 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.049
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120, 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
Y. Wang, R. Ma, Z. Shi, H. Wu, S. Hou et al., Inverse doping IrOx/Ti with weakened Ir-O interaction toward stable and efficient acidic oxygen evolution. Chem 9, 2931–2942 (2023). https://doi.org/10.1016/j.chempr.2023.05.044
X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
Y. Li, Z. Zhang, C. Li, Y. Zhou, X.-B. Chen et al., Introducing phosphorus into spinel nickel ferrite to enhance lattice oxygen participation towards water oxidation electrocatalysis. Appl. Catal. B Environ. Energy 355, 124116 (2024). https://doi.org/10.1016/j.apcatb.2024.124116
X. Wang, H. Zhong, S. Xi, W.S.V. Lee, J. Xue, Understanding of oxygen redox in the oxygen evolution reaction. Adv. Mater. 34, e2107956 (2022). https://doi.org/10.1002/adma.202107956
C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
J. Chang, Y. Shi, H. Wu, J. Yu, W. Jing et al., Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation. J. Am. Chem. Soc. 146, 12958–12968 (2024). https://doi.org/10.1021/jacs.3c13248
X. Cao, H. Qin, J. Zhang, X. Chen, L. Jiao, Regulation of oxide pathway mechanism for sustainable acidic water oxidation. J. Am. Chem. Soc. 146, 32049–32058 (2024). https://doi.org/10.1021/jacs.4c12942
Z. He, J. Zhang, Z. Gong, H. Lei, D. Zhou et al., Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 13, 2191 (2022). https://doi.org/10.1038/s41467-022-29875-4
H. Wu, Q. Huang, Y. Shi, J. Chang, S. Lu, Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 16, 9142–9157 (2023). https://doi.org/10.1007/s12274-023-5502-8
J. Liu, Z. Yu, J. Huang, S. Yao, R. Jiang et al., Redox-active ligands enhance oxygen evolution reaction activity: regulating the spin state of ferric ions and accelerating electron transfer. J. Colloid Interface Sci. 650, 1182–1192 (2023). https://doi.org/10.1016/j.jcis.2023.07.083
S. Iqbal, B. Safdar, I. Hussain, K. Zhang, C. Chatzichristodoulou, Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv. Energy Mater. 13, 2203913 (2023). https://doi.org/10.1002/aenm.202203913
G. Liu, Oxygen evolution reaction electrocatalysts for seawater splitting: a review. J. Electroanal. Chem. 923, 116805 (2022). https://doi.org/10.1016/j.jelechem.2022.116805
S. Liu, Z. Wang, S. Qiu, F. Deng, Mechanism in pH effects of electrochemical reactions: a mini-review. Carbon Lett. 34, 1269–1286 (2024). https://doi.org/10.1007/s42823-024-00724-2
B. Xu, J. Liang, X. Sun, X. Xiong, Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance. Green Chem. 25, 3767–3790 (2023). https://doi.org/10.1039/d2gc03377a
X. Tang, I. Arif, P. Diao, Monitoring the chlorine evolution reaction during electrochemical alkaline seawater splitting. J. Electroanal. Chem. 942, 117569 (2023). https://doi.org/10.1016/j.jelechem.2023.117569
T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque et al., Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015). https://doi.org/10.1038/srep12167
N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/c6cs00328a
Z. Feng, C. Dai, P. Shi, X. Lei, R. Guo et al., Seven mechanisms of oxygen evolution reaction proposed recently: a mini review. Chem. Eng. J. 485, 149992 (2024). https://doi.org/10.1016/j.cej.2024.149992
J. Nai, X. Xu, Q. Xie, G. Lu, Y. Wang et al., Construction of Ni(CN)2/NiSe2 heterostructures by stepwise topochemical pathways for efficient electrocatalytic oxygen evolution. Adv. Mater. 34, 2104405 (2022). https://doi.org/10.1002/adma.202104405
J. Ding, H. Yang, S. Zhang, Q. Liu, H. Cao et al., Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 18, 2204524 (2022). https://doi.org/10.1002/smll.202204524
S. Haschke, M. Mader, S. Schlicht, A.M. Roberts, A.M. Angeles-Boza et al., Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nat. Commun. 9, 4565 (2018). https://doi.org/10.1038/s41467-018-07031-1
Y. Wen, C. Liu, R. Huang, H. Zhang, X. Li et al., Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 13, 4871 (2022). https://doi.org/10.1038/s41467-022-32581-w
N.H. Kwon, M. Kim, X. Jin, J. Lim, I.Y. Kim et al., A rational method to kinetically control the rate-determining step to explore efficient electrocatalysts for the oxygen evolution reaction. npg Asia Mater. 10, 659–669 (2018). https://doi.org/10.1038/s41427-018-0060-3
S. Liu, I. Zaharieva, L. D’Amario, S. Mebs, P. Kubella et al., Electrocatalytic water oxidation at neutral pH–deciphering the rate constraints for an amorphous cobalt-phosphate catalyst system. Adv. Energy Mater. 12, 2202914 (2022). https://doi.org/10.1002/aenm.202202914
J.C. Fornaciari, L.-C. Weng, S.M. Alia, C. Zhan, T.A. Pham et al., Mechanistic understanding of pH effects on the oxygen evolution reaction. Electrochim. Acta 405, 139810 (2022). https://doi.org/10.1016/j.electacta.2021.139810
C. Huang, Q. Zhou, L. Yu, D. Duan, T. Cao et al., Functional bimetal co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy Mater. 13, 2301475 (2023). https://doi.org/10.1002/aenm.202301475
Z. Gong, J. Liu, M. Yan, H. Gong, G. Ye et al., Highly durable and efficient seawater electrolysis enabled by defective graphene-confined nanoreactor. ACS Nano 17, 18372–18381 (2023). https://doi.org/10.1021/acsnano.3c05749
Y. Xu, Q. Zhang, Q. Zhou, S. Gao, B. Wang et al., Flow accelerated corrosion and erosion–corrosion behavior of marine carbon steel in natural seawater. npj Mater. Degrad. 5, 56 (2021). https://doi.org/10.1038/s41529-021-00205-1
J. Zhang, P. Ju, C. Wang, Y. Dun, X. Zhao et al., Corrosion behaviour of 316L stainless steel in hot dilute sulphuric acid solution with sulphate and NaCl. Prot. Met. Phys. Chem. Surf. 55, 148–156 (2019). https://doi.org/10.1134/s207020511901026x
H.-Y. Wang, C.-C. Weng, J.-T. Ren, Z.-Y. Yuan, An overview and recent advances in electrocatalysts for direct seawater splitting. Front. Chem. Sci. Eng. 15, 1408–1426 (2021). https://doi.org/10.1007/s11705-021-2102-6
Y. Ren, F. Fan, Y. Zhang, L. Chen, Z. Wang et al., A dual-cation exchange membrane electrolyzer for continuous H2 production from seawater. Adv. Sci. 11, 2401702 (2024). https://doi.org/10.1002/advs.202401702
S. Zhang, Y. Wang, S. Li, Z. Wang, H. Chen et al., Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 14, 4822 (2023). https://doi.org/10.1038/s41467-023-40563-9
Z. Deng, S. Xu, C. Liu, X. Zhang, M. Li et al., Stability of dimensionally stable anode for chlorine evolution reaction. Nano Res. 17, 949–959 (2024). https://doi.org/10.1007/s12274-023-5965-7
J. Li, G. Fu, X. Sheng, G. Li, H. Chen et al., A comprehensive review on catalysts for seawater electrolysis. Adv. Powder Mater. 3, 100227 (2024). https://doi.org/10.1016/j.apmate.2024.100227
M. Chen, N. Kitiphatpiboon, C. Feng, A. Abudula, Y. Ma et al., Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience 3, 100111 (2023). https://doi.org/10.1016/j.esci.2023.100111
J. Dong, C. Yu, H. Wang, L. Chen, H. Huang et al., A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis. J. Energy Chem. 90, 486–495 (2024). https://doi.org/10.1016/j.jechem.2023.11.001
L. Hu, X. Tan, R. Luo, X.-J. Wen, X.-K. Wu et al., Phytic-acid-doped conductive hydrogels as alkaline seawater electrocatalysts with anomalous chloride promoted oxygen evolution reaction. Appl. Surf. Sci. 657, 159754 (2024). https://doi.org/10.1016/j.apsusc.2024.159754
F. Shen, G. Liu, C. Liu, Y. Zhang, L. Yang, Corrosion and oxidation on iron surfaces in chloride contaminated electrolytes: insights from ReaxFF molecular dynamic simulations. J. Mater. Res. Technol. 29, 1305–1312 (2024). https://doi.org/10.1016/j.jmrt.2024.01.194
W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami et al., Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020). https://doi.org/10.1038/s41560-020-0550-8
M. Xiao, Q. Wu, R. Ku, L. Zhou, C. Long et al., Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine. Nat. Commun. 14, 5356 (2023). https://doi.org/10.1038/s41467-023-41070-7
X. Kang, F. Yang, Z. Zhang, H. Liu, S. Ge et al., A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14, 3607 (2023). https://doi.org/10.1038/s41467-023-39386-5
S. Hong, J. Kim, J. Park, S. Im, M.R. Hoffmann et al., Scalable Ir-doped NiFe2O4/TiO2 heterojunction anode for decentralized saline wastewater treatment and H2 production. Nano-Micro Lett. 17, 51 (2024). https://doi.org/10.1007/s40820-024-01542-x
Y. Yu, W. Zhou, X. Zhou, J. Yuan, X. Zhang et al., The corrosive Cl–-induced rapid surface reconstruction of amorphous NiFeCoP enables efficient seawater splitting. ACS Catal. 14, 18322–18332 (2024). https://doi.org/10.1021/acscatal.4c05704
J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
J. Xu, C.-C. Kao, H. Shen, H. Liu, Y. Zheng et al., Ru0.1Mn0.9Ox electrocatalyst for durable oxygen evolution in acid seawater. Angew. Chem. Int. Ed. (2024). https://doi.org/10.1002/anie.202420615
H. Liu, W. Shen, D. Huanyu Jin, J. Xu, P. Pinxian Xi et al., High-performance alkaline seawater electrolysis with anomalous chloride promoted oxygen evolution reaction. Angew. Chem. Int. Ed. 62, e202311674 (2023). https://doi.org/10.1002/anie.202311674
A. Malek, Y. Xue, X. Lu, Dynamically restructuring NixCryO electrocatalyst for stable oxygen evolution reaction in real seawater. Angew. Chem. Int. Ed. 62, e202309854 (2023). https://doi.org/10.1002/anie.202309854
Z. Ding, S. Chen, T. Yang, Z. Sheng, X. Zhang et al., Atomically dispersed MoNi alloy catalyst for partial oxidation of methane. Nat. Commun. 15, 4636 (2024). https://doi.org/10.1038/s41467-024-49038-x
J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121
S. Zha, Z.-J. Zhao, S. Chen, S. Liu, T. Liu et al., Predicting the catalytic activity of surface oxidation reactions by ionization energies. CCS Chem. 2, 262–270 (2020). https://doi.org/10.31635/ccschem.020.201900096
Z. Lu, H. Yang, G. Qi, Q. Liu, L. Feng et al., Efficient and stable pH-universal water electrolysis catalyzed by N-doped hollow carbon confined RuIrOx nanocrystals. Small 20, 2308841 (2024). https://doi.org/10.1002/smll.202308841
D. Yun-Nan Gong, C.-Y. Cao, D. Wen-Jie Shi, J.-H. Zhang, J.-H. Deng et al., Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202215187 (2022). https://doi.org/10.1002/anie.202215187
H. Zhang, L. Wu, R. Feng, S. Wang, C.-S. Hsu et al., Oxygen vacancies unfold the catalytic potential of NiFe-layered double hydroxides by promoting their electronic transport for oxygen evolution reaction. ACS Catal. 13, 6000–6012 (2023). https://doi.org/10.1021/acscatal.2c05783
X. Xu, M. Liu, Y. Nie, C. Wang, W. Wang et al., Modulating electronic structure of interfacial Fe sites in Fe2N/CoFe2O4 nano-heterostructure for enhancing corrosion-resistance and oxygen electrocatalysis in zinc-air battery. Chem. Eng. J. 471, 144639 (2023). https://doi.org/10.1016/j.cej.2023.144639
J. Yang, Y. Wang, J. Yang, Y. Pang, X. Zhu et al., Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires. Small 18, 2106187 (2022). https://doi.org/10.1002/smll.202106187
C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong et al., Rational design of cobalt–chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 4, 11292–11298 (2016). https://doi.org/10.1039/c6ta04052g
Y. Song, M. Sun, S. Zhang, X. Zhang, P. Yi et al., Alleviating the work function of vein-like CoXP by Cr doping for enhanced seawater electrolysis. Adv. Funct. Mater. 33, 2214081 (2023). https://doi.org/10.1002/adfm.202214081
W. Zhou, A. Li, M. Zhou, Y. Xu, Y. Zhang et al., Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat. Commun. 14, 5388 (2023). https://doi.org/10.1038/s41467-023-41056-5
M. Liu, J.-A. Wang, W. Klysubun, G.-G. Wang, S. Sattayaporn et al., Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 12, 5260 (2021). https://doi.org/10.1038/s41467-021-25647-8
X. Zheng, J. Yang, P. Li, Q. Wang, J. Wu et al., Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 9, eadi8025 (2023). https://doi.org/10.1126/sciadv.adi8025
Y. Gao, Y. Xue, F. He, Y. Li, Controlled growth of a high selectivity interface for seawater electrolysis. Proc. Natl. Acad. Sci. USA 119, e2206946119 (2022). https://doi.org/10.1073/pnas.2206946119
M.M. Najafpour, G. Renger, M. Hołyńska, A.N. Moghaddam, E.-M. Aro et al., Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem. Rev. 116, 2886–2936 (2016). https://doi.org/10.1021/acs.chemrev.5b00340
J.G. Vos, T.A. Wezendonk, A.W. Jeremiasse, M.T.M. Koper, MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 140, 10270–10281 (2018). https://doi.org/10.1021/jacs.8b05382
Y. Wang, Y. Liu, D. Wiley, S. Zhao, Z. Tang, Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 9, 18974–18993 (2021). https://doi.org/10.1039/d1ta02745j
J. Cao, T. Mou, B. Mei, P. Yao, C. Han et al., Improved electrocatalytic activity and stability by single iridium atoms on iron-based layered double hydroxides for oxygen evolution. Angew. Chem. Int. Ed. 62, e202310973 (2023). https://doi.org/10.1002/anie.202310973
J. Zhu, B. Mao, B. Wang, M. Cao, The dynamic anti-corrosion of self-derived space charge layer enabling long-term stable seawater oxidation. Appl. Catal. B Environ. Energy 344, 123658 (2024). https://doi.org/10.1016/j.apcatb.2023.123658
S. Zhao, B. Liu, K. Li, S. Wang, G. Zhang et al., A silicon photoanode protected with TiO2/stainless steel bilayer stack for solar seawater splitting. Nat. Commun. 15, 2970 (2024). https://doi.org/10.1038/s41467-024-47389-z
T. Liu, C. Lan, M. Tang, M. Li, Y. Xu et al., Redox-mediated decoupled seawater direct splitting for H2 production. Nat. Commun. 15, 8874 (2024). https://doi.org/10.1038/s41467-024-53335-w
L. Shao, X. Han, L. Shi, T. Wang, Y. Zhang et al., In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis. Adv. Energy Mater. 14, 2303261 (2024). https://doi.org/10.1002/aenm.202303261
L. Zhou, D. Guo, L. Wu, Z. Guan, C. Zou et al., A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation. Nat. Commun. 15, 2481 (2024). https://doi.org/10.1038/s41467-024-46708-8
H. Hu, Z. Zhang, L. Liu, X. Che, J. Wang et al., Efficient and durable seawater electrolysis with a V2O3-protected catalyst. Sci. Adv. 10, eadn7012 (2024). https://doi.org/10.1126/sciadv.adn7012
W. Hao, X. Ma, L. Wang, Y. Guo, Q. Bi et al., Surface corrosion-resistant and multi-scenario MoNiP electrode for efficient industrial-scale seawater splitting. Energy Mater Adv (2024). https://doi.org/10.1002/aenm.202403009
L. Li, H. Cheng, J. Zhang, Y. Guo, C. Sun et al., Quantitative chemistry in electrolyte solvation design for aqueous batteries. ACS Energy Lett. 8, 1076–1095 (2023). https://doi.org/10.1021/acsenergylett.2c02585
M. Yu, J. Li, F. Liu, J. Liu, W. Xu et al., Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting. J. Energy Chem. 72, 361–369 (2022). https://doi.org/10.1016/j.jechem.2022.04.004
T. Ma, D. Wenwen Xu, B. Li, D. Xu Chen, J. Zhao et al., The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem. Int. Ed. 60, 22740–22744 (2021). https://doi.org/10.1002/anie.202110355
L. Ye, Y. Ding, X. Niu, X. Xu, K. Fan et al., Unraveling the crucial contribution of additive chromate to efficient and stable alkaline seawater oxidation on Ni-based layered double hydroxides. J. Colloid Interface Sci. 665, 240–251 (2024). https://doi.org/10.1016/j.jcis.2024.03.132
R. Gao, D. Yan, Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 10, 1900954 (2020). https://doi.org/10.1002/aenm.201900954
X.-J. Zhai, Q.-X. Lv, J.-Y. Xie, Y.-X. Zhang, Y.-M. Chai et al., Advances in the design of highly stable NiFe-LDH electrocatalysts for oxygen evolution in seawater. Chem. Eng. J. 496, 153187 (2024). https://doi.org/10.1016/j.cej.2024.153187
M. Xu, M. Wei, Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications. Adv. Funct. Mater. 28, 1802943 (2018). https://doi.org/10.1002/adfm.201802943
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Electrocatalysts: 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9, 1970057 (2019). https://doi.org/10.1002/aenm.201970057
P.-J. Deng, Y. Liu, H. Liu, X. Li, J. Lu et al., Layered double hydroxides with carbonate intercalation as ultra-stable anodes for seawater splitting at ampere-level current density. Adv. Energy Mater. 14, 2400053 (2024). https://doi.org/10.1002/aenm.202400053
R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963). https://doi.org/10.1021/ja00905a001
M. Li, H.-J. Niu, Y. Li, J. Liu, X. Yang et al., Synergetic regulation of CeO2 modification and (W2O7)2- intercalation on NiFe-LDH for high-performance large-current seawater electrooxidation. Appl. Catal. B Environ. 330, 122612 (2023). https://doi.org/10.1016/j.apcatb.2023.122612
R. Fan, C. Liu, Z. Li, H. Huang, J. Feng et al., Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nat. Sustain. 7, 158–167 (2024). https://doi.org/10.1038/s41893-023-01263-w
W. Liu, W. Liu, T. Hou, J. Ding, Z. Wang et al., Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 17, 4797–4806 (2024). https://doi.org/10.1007/s12274-024-6433-8
L. Yu, J. Xiao, C. Huang, J. Zhou, M. Qiu et al., High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proc. Natl. Acad. Sci. USA 119, e2202382119 (2022). https://doi.org/10.1073/pnas.2202382119
X. Duan, Q. Sha, P. Li, T. Li, G. Yang et al., Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 15, 1973 (2024). https://doi.org/10.1038/s41467-024-46140-y
F. Dong, H. Duan, Z. Lin, H. Yuan, M. Ju et al., Unravelling the effect of Cl- on alkaline saline water electrooxidation on NiFe (oxy)hydroxides. Appl. Catal. B Environ. 340, 123242 (2024). https://doi.org/10.1016/j.apcatb.2023.123242
W. Xu, Z. Wang, P. Liu, X. Tang, S. Zhang et al., Ag nanop-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 36, 2306062 (2024). https://doi.org/10.1002/adma.202306062
J. Yao, R. Yang, C. Liu, B.-H. Zhao, B. Zhang et al., Alkynes electrooxidation to α, α-dichloroketones in seawater with natural chlorine participation via competitive reaction inhibition and tip-enhanced reagent concentration. ACS Cent. Sci. 10, 155–162 (2024). https://doi.org/10.1021/acscentsci.3c01277
A. Saha, W. Ali, D.B. Werz, D. Maiti, Highly scalable photoinduced synthesis of silanols via untraversed pathway for chlorine radical (Cl•) generation. Nat. Commun. 14, 8173 (2023). https://doi.org/10.1038/s41467-023-43286-z
L. Huang, P. Wang, Y. Jiang, K. Davey, Y. Zheng et al., Ethylene electrooxidation to 2-chloroethanol in acidic seawater with natural chloride participation. J. Am. Chem. Soc. 145, 15565–15571 (2023). https://doi.org/10.1021/jacs.3c05114
L. Han, S. Deng, R. Zhao, X. Wang, Z. Guo et al., Performance evaluation on CO2 fixation with chlorine gas production based on direct electrolysis of seawater. J. Environ. Chem. Eng. 11, 110937 (2023). https://doi.org/10.1016/j.jece.2023.110937
Y. Liu, G. Tang, Y. Wang, M. Cheng, J. Gao et al., Spatiotemporal differences in tropospheric ozone sensitivity and the impact of “dual carbon” goal. Sci. Bull. 69, 422–425 (2024). https://doi.org/10.1016/j.scib.2023.12.026
Y. Han, L. Shao, Y. Liu, G. Li, T. Wang et al., Sulfate-assisted Ni/Fe-based electrodes for anion exchange membrane saline splitting. Nano Res. 17, 5985–5995 (2024). https://doi.org/10.1007/s12274-024-6646-x
Y.S. Park, J. Lee, M.J. Jang, J. Yang, J. Jeong et al., High-performance anion exchange membrane alkaline seawater electrolysis. J. Mater. Chem. A 9, 9586–9592 (2021). https://doi.org/10.1039/d0ta12336f
K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar et al., Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019). https://doi.org/10.1146/annurev-chembioeng-060718-030241
R.-T. Liu, Z.-L. Xu, F.-M. Li, F.-Y. Chen, J.-Y. Yu et al., Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023). https://doi.org/10.1039/d2cs00681b
S. Mo, L. Du, Z. Huang, J. Chen, Y. Zhou et al., Recent advances on PEM fuel cells: from key materials to membrane electrode assembly. Electrochem. Energy Rev. 6, 28 (2023). https://doi.org/10.1007/s41918-023-00190-w
D.H. Marin, J.T. Perryman, M.A. Hubert, G.A. Lindquist, L. Chen et al., Hydrogen production with seawater-resilient bipolar membrane electrolyzers. Joule 7, 765–781 (2023). https://doi.org/10.1016/j.joule.2023.03.005
Z. Kang, M. Wang, Y. Yang, H. Wang, Y. Liu et al., Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells. Int. J. Hydrog. Energy 47, 5807–5816 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.227
S. Zaman, M. Khalid, S. Shahgaldi, Advanced electrocatalyst supports for proton exchange membrane water electrolyzers. ACS Energy Lett. 9, 2922–2935 (2024). https://doi.org/10.1021/acsenergylett.4c00275
X.-L. Zhang, P.-C. Yu, X.-Z. Su, S.-J. Hu, L. Shi et al., Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. Sci. Adv. 9, eadh2885 (2023). https://doi.org/10.1126/sciadv.adh2885
L. Giordano, B. Han, M. Risch, W.T. Hong, R.R. Rao et al., pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016). https://doi.org/10.1016/j.cattod.2015.10.006
Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen et al., Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 11, 2002 (2020). https://doi.org/10.1038/s41467-020-15873-x
H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou et al., Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 6, e12441 (2023). https://doi.org/10.1002/eem2.12441
J. Lim, J.M. Klein, S.G. Lee, E.J. Park, S.Y. Kang et al., Addressing the challenge of electrochemical ionomer oxidation in future anion exchange membrane water electrolyzers. ACS Energy Lett. 9, 3074–3083 (2024). https://doi.org/10.1021/acsenergylett.4c00832
Q. Xu, L. Zhang, J. Zhang, J. Wang, Y. Hu et al., Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem 4, 100087 (2022). https://doi.org/10.1016/j.enchem.2022.100087
J. Ding, Z. Peng, Z. Wang, C. Zeng, Y. Feng et al., Phosphorus–tungsten dual-doping boosts acidic overall seawater splitting performance over RuOx nanocrystals. J. Mater. Chem. A 12, 28023–28031 (2024). https://doi.org/10.1039/d4ta05277c
C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet et al., Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanops. Nat. Energy 3, 476–483 (2018). https://doi.org/10.1038/s41560-018-0132-1
P.-C. Yu, X.-L. Zhang, T.-Y. Zhang, X.-Y.-N. Tao, Y. Yang et al., Nitrogen-mediated promotion of cobalt-based oxygen evolution catalyst for practical anion-exchange membrane electrolysis. J. Am. Chem. Soc. 146, 20379–20390 (2024). https://doi.org/10.1021/jacs.4c05983
J. Chang, G. Wang, Z. Yang, B. Li, Q. Wang et al., Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 33, 2101425 (2021). https://doi.org/10.1002/adma.202101425
H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10,000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36, 2411302 (2024). https://doi.org/10.1002/adma.202411302
H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9, eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
M. El-Shafie, Hydrogen production by water electrolysis technologies: a review. Results Eng. 20, 101426 (2023). https://doi.org/10.1016/j.rineng.2023.101426
E.S. Akyüz, E. Telli, M. Farsak, Hydrogen generation electrolyzers: paving the way for sustainable energy. Int. J. Hydrog. Energy 81, 1338–1362 (2024). https://doi.org/10.1016/j.ijhydene.2024.07.175
L.J. Titheridge, A.T. Marshall, Techno-economic modelling of AEM electrolysis systems to identify ideal current density and aspects requiring further research. Int. J. Hydrog. Energy 49, 518–532 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.181
G.A. Lindquist, Q. Xu, S.Z. Oener, S.W. Boettcher, Membrane electrolyzers for impure-water splitting. Joule 4, 2549–2561 (2020). https://doi.org/10.1016/j.joule.2020.09.020
L.A. Cohen, M.S. Weimer, K. Yim, J. Jin, D.V. Fraga Alvarez et al., How low can you go? Nanoscale membranes for efficient water electrolysis. ACS Energy Lett. 9, 1624–1632 (2024). https://doi.org/10.1021/acsenergylett.4c00170
J.G. Vos, M.T.M. Koper, Measurement of competition between oxygen evolution and chlorine evolution using rotating ring-disk electrode voltammetry. J. Electroanal. Chem. 819, 260–268 (2018). https://doi.org/10.1016/j.jelechem.2017.10.058
Y.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan et al., Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 10, 788–798 (2017). https://doi.org/10.1039/c6ee03768b
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12, 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
Q. Qian, D. Jihua Zhang, D. Jianming Li, Y. Li, D. Xu Jin et al., Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem. Int. Ed. 60, 5984–5993 (2021). https://doi.org/10.1002/anie.202014362
Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li et al., Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 11, 1853 (2020). https://doi.org/10.1038/s41467-020-15563-8
J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang et al., Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021). https://doi.org/10.1038/s41893-020-00635-w
S. Shiva Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 8, 13793–13813 (2022). https://doi.org/10.1016/j.egyr.2022.10.127
S.S. Veroneau, D.G. Nocera, Continuous electrochemical water splitting from natural water sources via forward osmosis. Proc. Natl. Acad. Sci. USA 118, e2024855118 (2021). https://doi.org/10.1073/pnas.2024855118
R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao et al., Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020). https://doi.org/10.1038/s41563-019-0536-8
H. Shi, T. Wang, J. Liu, W. Chen, S. Li et al., A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 14, 3934 (2023). https://doi.org/10.1038/s41467-023-39681-1
L. Su, J. Chen, F. Yang, P. Li, Y. Jin et al., Electric-double-layer origin of the kinetic pH effect of hydrogen electrocatalysis revealed by a universal hydroxide adsorption-dependent inflection-point behavior. J. Am. Chem. Soc. 145, 12051–12058 (2023). https://doi.org/10.1021/jacs.3c01164
A. Odenweller, F. Ueckerdt, G.F. Nemet, M. Jensterle, G. Luderer, Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022). https://doi.org/10.1038/s41560-022-01097-4
Q. Wen, D. Yan, F. Liu, M. Wang, Y. Ling et al., Highly selective ionic transport through subnanometer pores in polymer films. Adv. Funct. Mater. 26, 5796–5803 (2016). https://doi.org/10.1002/adfm.201601689
Z. Sun, J. Pan, J. Guo, F. Yan, The alkaline stability of anion exchange membrane for fuel cell applications: the effects of alkaline media. Adv. Sci. 5, 1800065 (2018). https://doi.org/10.1002/advs.201800065
Y. Wen, J. Yuan, X. Ma, S. Wang, Y. Liu, Polymeric nanocomposite membranes for water treatment: a review. Environ. Chem. Lett. 17, 1539–1551 (2019). https://doi.org/10.1007/s10311-019-00895-9