Piezotronic Sensor for Bimodal Monitoring of Achilles Tendon Behavior
Corresponding Author: Weili Deng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 241
Abstract
Bimodal pressure sensors capable of simultaneously detecting static and dynamic forces are essential to medical detection and bio-robotics. However, conventional pressure sensors typically integrate multiple operating mechanisms to achieve bimodal detection, leading to complex device architectures and challenges in signal decoupling. In this work, we address these limitations by leveraging the unique piezotronic effect of Y-ion-doped ZnO to develop a bimodal piezotronic sensor (BPS) with a simplified structure and enhanced sensitivity. Through a combination of finite element simulations and experimental validation, we demonstrate that the BPS can effectively monitor both dynamic and static forces, achieving an on/off ratio of 1029, a gauge factor of 23,439 and a static force response duration of up to 600 s, significantly outperforming the performance of conventional piezoelectric sensors. As a proof-of-concept, the BPS demonstrates the continuous monitoring of Achilles tendon behavior under mixed dynamic and static loading conditions. Aided by deep learning algorithms, the system achieves 96% accuracy in identifying Achilles tendon movement patterns, thus enabling warnings for dangerous movements. This work provides a viable strategy for bimodal force monitoring, highlighting its potential in wearable electronics.
Highlights:
1 The underlying mechanism governing the modulation of carrier transport by piezoelectric potential is elucidated through finite element simulations and experimental validation.
2 The bimodal piezotronic sensor (BPS) exhibits exceptional responsiveness to both static and dynamic stimuli, achieving an ultrahigh gauge factor of up to 23,439.
3 The BPS demonstrates robust capability for bimodal monitoring and hazard warning of Achilles tendon behavior, achieving an accuracy of 96%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhou, Y. Du, Y. Chen, C. Zhang, X. Ning et al., Bioinspired ultrasensitive flexible strain sensors for real-time wireless detection of liquid leakage. Nano-Micro Lett. 17(1), 68 (2024). https://doi.org/10.1007/s40820-024-01575-2
- J.-Q. Luo, H.-F. Lu, Y.-J. Nie, Y.-H. Zhou, C.-F. Wang et al., Porous flexible molecular-based piezoelectric composite achieves milliwatt output power density. Nat. Commun. 15(1), 8636 (2024). https://doi.org/10.1038/s41467-024-53031-9
- M. Chen, J. Liu, Y. Hu, Y. Wu, C.-Y. Tang et al., Silk fibroin-based flexible pressure sensors: processing and application. Mater. Futures 3(3), 032501 (2024). https://doi.org/10.1088/2752-5724/ad5f48
- W. Deng, Y. Zhou, A. Libanori, G. Chen, W. Yang et al., Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 51(9), 3380–3435 (2022). https://doi.org/10.1039/d1cs00858g
- H. Xu, W. Zheng, Y. Zhang, D. Zhao, L. Wang et al., A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nat. Commun. 14(1), 7769 (2023). https://doi.org/10.1038/s41467-023-43664-7
- W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380(6646), 735–742 (2023). https://doi.org/10.1126/science.ade0086
- W. Deng, L. Huang, H. Zhang, G. Tian, S. Wang et al., Discrete ZnO p-n homojunction piezoelectric arrays for self-powered human motion monitoring. Nano Energy 124, 109462 (2024). https://doi.org/10.1016/j.nanoen.2024.109462
- S. Wang, Y. Yao, W. Deng, X. Chu, T. Yang et al., Mass-produced skin-inspired piezoresistive sensing array with interlocking interface for object recognition. ACS Nano 18(17), 11183–11192 (2024). https://doi.org/10.1021/acsnano.4c00112
- J. Liu, G. Tian, W. Yang, W. Deng, Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci. 2(4), 22 (2022). https://doi.org/10.20517/ss.2022.23
- B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
- Y. Liu, J. Tao, Y. Mo, R. Bao, C. Pan, Ultrasensitive touch sensor for simultaneous tactile and slip sensing. Adv. Mater. 36(21), e2313857 (2024). https://doi.org/10.1002/adma.202313857
- H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34(31), e2202622 (2022). https://doi.org/10.1002/adma.202202622
- X. Xu, B. Yan, Bioinspired luminescent HOF-based foam as ultrafast and ultrasensitive pressure and acoustic bimodal sensor for human-machine interactive object and information recognition. Adv. Mater. 35(38), e2303410 (2023). https://doi.org/10.1002/adma.202303410
- G. Tian, W. Deng, T. Yang, J. Zhang, T. Xu et al., Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring. Adv. Mater. 36(26), 2313612 (2024). https://doi.org/10.1002/adma.202313612
- J. He, H. Liu, X. Cao, Z. Zhu, Y. Liang et al., Dual-mode sensing chips for wide-range and high-accuracy biomarker detection. Adv. Funct. Mater. 34(39), 2404909 (2024). https://doi.org/10.1002/adfm.202404909
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24(13), 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
- X. Wei, H. Li, W. Yue, S. Gao, Z. Chen et al., A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 5(5), 1481–1501 (2022). https://doi.org/10.1016/j.matt.2022.02.016
- F.-C. Kao, H.-H. Ho, P.-Y. Chiu, M.-K. Hsieh, J.-C. Liao et al., Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Sci. Technol. Adv. Mater. 23(1), 1–16 (2022). https://doi.org/10.1080/14686996.2021.2015249
- T. Wang, T. Jin, W. Lin, Y. Lin, H. Liu et al., Multimodal sensors enabled autonomous soft robotic system with self-adaptive manipulation. ACS Nano 18(14), 9980–9996 (2024). https://doi.org/10.1021/acsnano.3c11281
- S. Feng, J. Li, L. Feng, Z. Liu, J. Wang et al., Dual-mode conversion of photodetector and neuromorphic vision sensor via bias voltage regulation on a single device. Adv. Mater. 35(49), e2308090 (2023). https://doi.org/10.1002/adma.202308090
- J. Yu, J. Tang, L. Wang, Y. Guo, W. Ma et al., Dual-mode sensor for intelligent solution monitoring: enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing. Nano Energy 118, 109009 (2023). https://doi.org/10.1016/j.nanoen.2023.109009
- H. Xiao, S. Li, Z. He, Y. Wu, Z. Gao et al., Dual mode strain–temperature sensor with high stimuli discriminability and resolution for smart wearables. Adv. Funct. Mater. 33(16), 2214907 (2023). https://doi.org/10.1002/adfm.202214907
- R. Ge, Q. Yu, F. Zhou, S. Liu, Y. Qin, Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing. Nat. Commun. 14(1), 6315 (2023). https://doi.org/10.1038/s41467-023-41983-3
- Q. Yu, R. Ge, J. Wen, T. Du, J. Zhai et al., Highly sensitive strain sensors based on piezotronic tunneling junction. Nat. Commun. 13(1), 778 (2022). https://doi.org/10.1038/s41467-022-28443-0
- Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29(41), 1900959 (2019). https://doi.org/10.1002/adfm.201900959
- C. An, H. Qi, L. Wang, X. Fu, A. Wang et al., Piezotronic and piezo-phototronic effects of atomically-thin ZnO nanosheets. Nano Energy 82, 105653 (2021). https://doi.org/10.1016/j.nanoen.2020.105653
- P. Keil, M. Trapp, N. Novak, T. Frömling, H.-J. Kleebe et al., Piezotronic tuning of potential barriers in ZnO bicrystals. Adv. Mater. 30, 1705573 (2018). https://doi.org/10.1002/adma.201705573
- S. Liu, L. Wang, Z. Wang, Y. Cai, X. Feng et al., Double-channel piezotronic transistors for highly sensitive pressure sensing. ACS Nano 12(2), 1732–1738 (2018). https://doi.org/10.1021/acsnano.7b08447
- W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6135), 952–957 (2013). https://doi.org/10.1126/science.1234855
- Z. Zhao, X. Pu, C. Han, C. Du, L. Li et al., Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 9(8), 8578–8583 (2015). https://doi.org/10.1021/acsnano.5b03737
- L. Wang, Z.L. Wang, Advances in piezotronic transistors and piezotronics. Nano Today 37, 101108 (2021). https://doi.org/10.1016/j.nantod.2021.101108
- J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao et al., Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008). https://doi.org/10.1021/nl802367t
- M. Song, Y. Liu, A. Yu, Y. Zhang, J. Zhai et al., Flexible Li-doped ZnO piezotronic transistor array for in-plane strain mapping. Nano Energy 55, 341–347 (2019). https://doi.org/10.1016/j.nanoen.2018.11.013
- L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin et al., Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10, 2636–2643 (2016). https://doi.org/10.1021/acsnano.5b07678
- W. Wu, Y. Wei, Z.L. Wang, Strain-gated piezotronic logic nanodevices. Adv. Mater. 22(42), 4711–4715 (2010). https://doi.org/10.1002/adma.201001925
- R.-W. Shao, K. Zheng, B. Wei, Y.-F. Zhang, Y.-J. Li et al., Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain. Nanoscale 6(9), 4936–4941 (2014). https://doi.org/10.1039/C4NR00059E
- L. Wang, S. Liu, G. Gao, Y. Pang, X. Yin et al., Ultrathin piezotronic transistors with 2 nm channel lengths. ACS Nano 12(5), 4903–4908 (2018). https://doi.org/10.1021/acsnano.8b01957
- R. Zhu, R. Yang, Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 25(34), 345702 (2014). https://doi.org/10.1088/0957-4484/25/34/345702
- C. Pan, J. Zhai, Z.L. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 119(15), 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599
- Z. Ge, Y. Qiao, W. Zhu, Y. Xu, Q. Fang et al., Highly stretchable polyester-based piezoelectric elastomer for simultaneously realization of accelerated regeneration and motion monitoring for Achilles tendon rupture. Nano Energy 115, 108751 (2023). https://doi.org/10.1016/j.nanoen.2023.108751
- N. Maffulli, Rupture of the Achilles tendon. J. Bone Jt. Surg. Am. 82(12), 1805 (2000). https://doi.org/10.2106/00004623-200012000-00017
- Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
- M. Lee, Y. Lee, J.H. Choi, H. Kim, D. Jeong et al., Postoperative long-term monitoring of mechanical characteristics in reconstructed soft tissues using biocompatible, immune-tolerant, and wireless electronic sutures. ACS Nano 18(19), 12210–12224 (2024). https://doi.org/10.1021/acsnano.4c00396
- L. Wang, S. Liu, X. Feng, Q. Xu, S. Bai et al., Ultrasensitive vertical piezotronic transistor based on ZnO twin nanoplatelet. ACS Nano 11(5), 4859–4865 (2017). https://doi.org/10.1021/acsnano.7b01374
- R. Pandey, G. Khandelwal, I.A. Palani, V. Singh, S.-J. Kim, A La-doped ZnO ultra-flexible flutter-piezoelectric nanogenerator for energy harvesting and sensing applications: a novel renewable source of energy. Nanoscale 11(29), 14032–14041 (2019). https://doi.org/10.1039/C9NR02560J
- N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra et al., Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator. Ceram. Int. 44(7), 8582–8590 (2018). https://doi.org/10.1016/j.ceramint.2018.02.066
- S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, N. Muensit, Optical and photocatalytic properties of La-doped ZnO nanops prepared via precipitation and mechanical milling method. Ceram. Int. 39(3), 2811–2819 (2013). https://doi.org/10.1016/j.ceramint.2012.09.050
- S. Fiedler, L.O.L.C. Lem, C. Ton-That, M.R. Phillips, The role of surface depletion layer effects on the enhancement of the UV emission in ZnO induced by a nanostructured Al surface coating. Appl. Surf. Sci. 504, 144409 (2020). https://doi.org/10.1016/j.apsusc.2019.144409
- D. Zhu, Q. Zhou, Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light. Appl. Catal. B Environ. 268, 118426 (2020). https://doi.org/10.1016/j.apcatb.2019.118426
- J.B. Coulter, D.P. Birnie III., Assessing tauc plot slope quantification: ZnO thin films as a model system. Phys. Status Solidi B 255(3), 1700393 (2018). https://doi.org/10.1002/pssb.201700393
- X. Yang, G. Hu, G. Gao, X. Chen, J. Sun et al., Coupled ion-gel channel-width gating and piezotronic interface gating in ZnO nanowire devices. Adv. Funct. Mater. 29(41), 1807837 (2019). https://doi.org/10.1002/adfm.201807837
- Z. Pan, W. Peng, F. Li, Y. He, Carrier concentration-dependent piezotronic and piezo-phototronic effects in ZnO thin-film transistor. Nano Energy 49, 529–537 (2018). https://doi.org/10.1016/j.nanoen.2018.05.005
- F. Xue, L. Zhang, X. Feng, G. Hu, F.R. Fan et al., Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Res. 8, 2390–2399 (2015). https://doi.org/10.1007/s12274-015-0749-3
- X. Sun, Y. Gu, X. Wang, Z. Zhang, Y. Zhang, Strain-modulated transport properties of Cu/ZnO-nanobelt/Cu nanojunctions. Phys. Status Solidi B 252(8), 1767–1772 (2015). https://doi.org/10.1002/pssb.201451550
- K. Nakamura, First-principles simulation on wire diameter dependence of piezoresistivity in zinc oxide nanowires. J. Appl. Phys. 54, 06FJ11 (2015). https://doi.org/10.7567/JJAP.54.06FJ11
- P. Wang, Y. Gu, P. Lin, Y. Zhao, Y. Cui et al., Asymmetric behavior in flexible piezoelectric strain sensors made of single ZnO nanowires. J. Nanosci. Nanotechnol. 14(8), 6084–6088 (2014). https://doi.org/10.1166/jnn.2014.8850
- G. Zhang, X. Luo, Y. Zheng, B. Wang, Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations. Phys. Chem. Chem. Phys. 14(19), 7051–7058 (2012). https://doi.org/10.1039/C2CP23652D
- K. Sun, H. Zhang, L. Hu, D. Yu, S. Qiao et al., Growth of ultralong ZnO microwire and its application in isolatable and flexible piezoelectric strain sensor. Phys. Status Solidi A 207(2), 488–492 (2010). https://doi.org/10.1002/pssa.200925468
- J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao et al., Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008). https://doi.org/10.1021/nl802367t
- Z. Wang, Y. Sun, S. Wang, D. Xiong, G. Tian et al., Insight into piezoelectricity modulation mechanism of ZnO doped with Y ions. J. Mater. Chem. A 12(21), 12435–12442 (2024). https://doi.org/10.1039/D4TA01317D
- Y. Sun, S. Shen, W. Deng, G. Tian, D. Xiong et al., Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity. Nano Energy 105, 108024 (2023). https://doi.org/10.1016/j.nanoen.2022.108024
- M. Lee, Y. Lee, J.H. Choi, H. Kim, D. Jeong et al., Postoperative long-term monitoring of mechanical characteristics in reconstructed soft tissues using biocompatible, immune-tolerant, and wireless electronic sutures. ACS Nano 18, 12210–12224 (2024). https://doi.org/10.1021/acsnano.4c00396
References
W. Zhou, Y. Du, Y. Chen, C. Zhang, X. Ning et al., Bioinspired ultrasensitive flexible strain sensors for real-time wireless detection of liquid leakage. Nano-Micro Lett. 17(1), 68 (2024). https://doi.org/10.1007/s40820-024-01575-2
J.-Q. Luo, H.-F. Lu, Y.-J. Nie, Y.-H. Zhou, C.-F. Wang et al., Porous flexible molecular-based piezoelectric composite achieves milliwatt output power density. Nat. Commun. 15(1), 8636 (2024). https://doi.org/10.1038/s41467-024-53031-9
M. Chen, J. Liu, Y. Hu, Y. Wu, C.-Y. Tang et al., Silk fibroin-based flexible pressure sensors: processing and application. Mater. Futures 3(3), 032501 (2024). https://doi.org/10.1088/2752-5724/ad5f48
W. Deng, Y. Zhou, A. Libanori, G. Chen, W. Yang et al., Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 51(9), 3380–3435 (2022). https://doi.org/10.1039/d1cs00858g
H. Xu, W. Zheng, Y. Zhang, D. Zhao, L. Wang et al., A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nat. Commun. 14(1), 7769 (2023). https://doi.org/10.1038/s41467-023-43664-7
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380(6646), 735–742 (2023). https://doi.org/10.1126/science.ade0086
W. Deng, L. Huang, H. Zhang, G. Tian, S. Wang et al., Discrete ZnO p-n homojunction piezoelectric arrays for self-powered human motion monitoring. Nano Energy 124, 109462 (2024). https://doi.org/10.1016/j.nanoen.2024.109462
S. Wang, Y. Yao, W. Deng, X. Chu, T. Yang et al., Mass-produced skin-inspired piezoresistive sensing array with interlocking interface for object recognition. ACS Nano 18(17), 11183–11192 (2024). https://doi.org/10.1021/acsnano.4c00112
J. Liu, G. Tian, W. Yang, W. Deng, Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci. 2(4), 22 (2022). https://doi.org/10.20517/ss.2022.23
B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
Y. Liu, J. Tao, Y. Mo, R. Bao, C. Pan, Ultrasensitive touch sensor for simultaneous tactile and slip sensing. Adv. Mater. 36(21), e2313857 (2024). https://doi.org/10.1002/adma.202313857
H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34(31), e2202622 (2022). https://doi.org/10.1002/adma.202202622
X. Xu, B. Yan, Bioinspired luminescent HOF-based foam as ultrafast and ultrasensitive pressure and acoustic bimodal sensor for human-machine interactive object and information recognition. Adv. Mater. 35(38), e2303410 (2023). https://doi.org/10.1002/adma.202303410
G. Tian, W. Deng, T. Yang, J. Zhang, T. Xu et al., Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring. Adv. Mater. 36(26), 2313612 (2024). https://doi.org/10.1002/adma.202313612
J. He, H. Liu, X. Cao, Z. Zhu, Y. Liang et al., Dual-mode sensing chips for wide-range and high-accuracy biomarker detection. Adv. Funct. Mater. 34(39), 2404909 (2024). https://doi.org/10.1002/adfm.202404909
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24(13), 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
X. Wei, H. Li, W. Yue, S. Gao, Z. Chen et al., A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 5(5), 1481–1501 (2022). https://doi.org/10.1016/j.matt.2022.02.016
F.-C. Kao, H.-H. Ho, P.-Y. Chiu, M.-K. Hsieh, J.-C. Liao et al., Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Sci. Technol. Adv. Mater. 23(1), 1–16 (2022). https://doi.org/10.1080/14686996.2021.2015249
T. Wang, T. Jin, W. Lin, Y. Lin, H. Liu et al., Multimodal sensors enabled autonomous soft robotic system with self-adaptive manipulation. ACS Nano 18(14), 9980–9996 (2024). https://doi.org/10.1021/acsnano.3c11281
S. Feng, J. Li, L. Feng, Z. Liu, J. Wang et al., Dual-mode conversion of photodetector and neuromorphic vision sensor via bias voltage regulation on a single device. Adv. Mater. 35(49), e2308090 (2023). https://doi.org/10.1002/adma.202308090
J. Yu, J. Tang, L. Wang, Y. Guo, W. Ma et al., Dual-mode sensor for intelligent solution monitoring: enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing. Nano Energy 118, 109009 (2023). https://doi.org/10.1016/j.nanoen.2023.109009
H. Xiao, S. Li, Z. He, Y. Wu, Z. Gao et al., Dual mode strain–temperature sensor with high stimuli discriminability and resolution for smart wearables. Adv. Funct. Mater. 33(16), 2214907 (2023). https://doi.org/10.1002/adfm.202214907
R. Ge, Q. Yu, F. Zhou, S. Liu, Y. Qin, Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing. Nat. Commun. 14(1), 6315 (2023). https://doi.org/10.1038/s41467-023-41983-3
Q. Yu, R. Ge, J. Wen, T. Du, J. Zhai et al., Highly sensitive strain sensors based on piezotronic tunneling junction. Nat. Commun. 13(1), 778 (2022). https://doi.org/10.1038/s41467-022-28443-0
Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29(41), 1900959 (2019). https://doi.org/10.1002/adfm.201900959
C. An, H. Qi, L. Wang, X. Fu, A. Wang et al., Piezotronic and piezo-phototronic effects of atomically-thin ZnO nanosheets. Nano Energy 82, 105653 (2021). https://doi.org/10.1016/j.nanoen.2020.105653
P. Keil, M. Trapp, N. Novak, T. Frömling, H.-J. Kleebe et al., Piezotronic tuning of potential barriers in ZnO bicrystals. Adv. Mater. 30, 1705573 (2018). https://doi.org/10.1002/adma.201705573
S. Liu, L. Wang, Z. Wang, Y. Cai, X. Feng et al., Double-channel piezotronic transistors for highly sensitive pressure sensing. ACS Nano 12(2), 1732–1738 (2018). https://doi.org/10.1021/acsnano.7b08447
W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6135), 952–957 (2013). https://doi.org/10.1126/science.1234855
Z. Zhao, X. Pu, C. Han, C. Du, L. Li et al., Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 9(8), 8578–8583 (2015). https://doi.org/10.1021/acsnano.5b03737
L. Wang, Z.L. Wang, Advances in piezotronic transistors and piezotronics. Nano Today 37, 101108 (2021). https://doi.org/10.1016/j.nantod.2021.101108
J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao et al., Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008). https://doi.org/10.1021/nl802367t
M. Song, Y. Liu, A. Yu, Y. Zhang, J. Zhai et al., Flexible Li-doped ZnO piezotronic transistor array for in-plane strain mapping. Nano Energy 55, 341–347 (2019). https://doi.org/10.1016/j.nanoen.2018.11.013
L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin et al., Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10, 2636–2643 (2016). https://doi.org/10.1021/acsnano.5b07678
W. Wu, Y. Wei, Z.L. Wang, Strain-gated piezotronic logic nanodevices. Adv. Mater. 22(42), 4711–4715 (2010). https://doi.org/10.1002/adma.201001925
R.-W. Shao, K. Zheng, B. Wei, Y.-F. Zhang, Y.-J. Li et al., Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain. Nanoscale 6(9), 4936–4941 (2014). https://doi.org/10.1039/C4NR00059E
L. Wang, S. Liu, G. Gao, Y. Pang, X. Yin et al., Ultrathin piezotronic transistors with 2 nm channel lengths. ACS Nano 12(5), 4903–4908 (2018). https://doi.org/10.1021/acsnano.8b01957
R. Zhu, R. Yang, Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 25(34), 345702 (2014). https://doi.org/10.1088/0957-4484/25/34/345702
C. Pan, J. Zhai, Z.L. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 119(15), 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599
Z. Ge, Y. Qiao, W. Zhu, Y. Xu, Q. Fang et al., Highly stretchable polyester-based piezoelectric elastomer for simultaneously realization of accelerated regeneration and motion monitoring for Achilles tendon rupture. Nano Energy 115, 108751 (2023). https://doi.org/10.1016/j.nanoen.2023.108751
N. Maffulli, Rupture of the Achilles tendon. J. Bone Jt. Surg. Am. 82(12), 1805 (2000). https://doi.org/10.2106/00004623-200012000-00017
Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
M. Lee, Y. Lee, J.H. Choi, H. Kim, D. Jeong et al., Postoperative long-term monitoring of mechanical characteristics in reconstructed soft tissues using biocompatible, immune-tolerant, and wireless electronic sutures. ACS Nano 18(19), 12210–12224 (2024). https://doi.org/10.1021/acsnano.4c00396
L. Wang, S. Liu, X. Feng, Q. Xu, S. Bai et al., Ultrasensitive vertical piezotronic transistor based on ZnO twin nanoplatelet. ACS Nano 11(5), 4859–4865 (2017). https://doi.org/10.1021/acsnano.7b01374
R. Pandey, G. Khandelwal, I.A. Palani, V. Singh, S.-J. Kim, A La-doped ZnO ultra-flexible flutter-piezoelectric nanogenerator for energy harvesting and sensing applications: a novel renewable source of energy. Nanoscale 11(29), 14032–14041 (2019). https://doi.org/10.1039/C9NR02560J
N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra et al., Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator. Ceram. Int. 44(7), 8582–8590 (2018). https://doi.org/10.1016/j.ceramint.2018.02.066
S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, N. Muensit, Optical and photocatalytic properties of La-doped ZnO nanops prepared via precipitation and mechanical milling method. Ceram. Int. 39(3), 2811–2819 (2013). https://doi.org/10.1016/j.ceramint.2012.09.050
S. Fiedler, L.O.L.C. Lem, C. Ton-That, M.R. Phillips, The role of surface depletion layer effects on the enhancement of the UV emission in ZnO induced by a nanostructured Al surface coating. Appl. Surf. Sci. 504, 144409 (2020). https://doi.org/10.1016/j.apsusc.2019.144409
D. Zhu, Q. Zhou, Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light. Appl. Catal. B Environ. 268, 118426 (2020). https://doi.org/10.1016/j.apcatb.2019.118426
J.B. Coulter, D.P. Birnie III., Assessing tauc plot slope quantification: ZnO thin films as a model system. Phys. Status Solidi B 255(3), 1700393 (2018). https://doi.org/10.1002/pssb.201700393
X. Yang, G. Hu, G. Gao, X. Chen, J. Sun et al., Coupled ion-gel channel-width gating and piezotronic interface gating in ZnO nanowire devices. Adv. Funct. Mater. 29(41), 1807837 (2019). https://doi.org/10.1002/adfm.201807837
Z. Pan, W. Peng, F. Li, Y. He, Carrier concentration-dependent piezotronic and piezo-phototronic effects in ZnO thin-film transistor. Nano Energy 49, 529–537 (2018). https://doi.org/10.1016/j.nanoen.2018.05.005
F. Xue, L. Zhang, X. Feng, G. Hu, F.R. Fan et al., Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Res. 8, 2390–2399 (2015). https://doi.org/10.1007/s12274-015-0749-3
X. Sun, Y. Gu, X. Wang, Z. Zhang, Y. Zhang, Strain-modulated transport properties of Cu/ZnO-nanobelt/Cu nanojunctions. Phys. Status Solidi B 252(8), 1767–1772 (2015). https://doi.org/10.1002/pssb.201451550
K. Nakamura, First-principles simulation on wire diameter dependence of piezoresistivity in zinc oxide nanowires. J. Appl. Phys. 54, 06FJ11 (2015). https://doi.org/10.7567/JJAP.54.06FJ11
P. Wang, Y. Gu, P. Lin, Y. Zhao, Y. Cui et al., Asymmetric behavior in flexible piezoelectric strain sensors made of single ZnO nanowires. J. Nanosci. Nanotechnol. 14(8), 6084–6088 (2014). https://doi.org/10.1166/jnn.2014.8850
G. Zhang, X. Luo, Y. Zheng, B. Wang, Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations. Phys. Chem. Chem. Phys. 14(19), 7051–7058 (2012). https://doi.org/10.1039/C2CP23652D
K. Sun, H. Zhang, L. Hu, D. Yu, S. Qiao et al., Growth of ultralong ZnO microwire and its application in isolatable and flexible piezoelectric strain sensor. Phys. Status Solidi A 207(2), 488–492 (2010). https://doi.org/10.1002/pssa.200925468
J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao et al., Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008). https://doi.org/10.1021/nl802367t
Z. Wang, Y. Sun, S. Wang, D. Xiong, G. Tian et al., Insight into piezoelectricity modulation mechanism of ZnO doped with Y ions. J. Mater. Chem. A 12(21), 12435–12442 (2024). https://doi.org/10.1039/D4TA01317D
Y. Sun, S. Shen, W. Deng, G. Tian, D. Xiong et al., Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity. Nano Energy 105, 108024 (2023). https://doi.org/10.1016/j.nanoen.2022.108024
M. Lee, Y. Lee, J.H. Choi, H. Kim, D. Jeong et al., Postoperative long-term monitoring of mechanical characteristics in reconstructed soft tissues using biocompatible, immune-tolerant, and wireless electronic sutures. ACS Nano 18, 12210–12224 (2024). https://doi.org/10.1021/acsnano.4c00396