Coupling of Adhesion and Anti-Freezing Properties in Hydrogel Electrolytes for Low-Temperature Aqueous-Based Hybrid Capacitors
Corresponding Author: Jianchun Jiang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 22
Abstract
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety, mechanical and thermal stability and easy-to-direct stacking. Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness, high conductivity and intrinsic flexibility. However, the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors. Here, we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance. The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode. Meanwhile, the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures. More significantly, the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance, delivering high-energy density of 39 Wh kg−1 at −60 °C with capacity retention of 98.7% over 10,000 cycles. With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte, the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at −60 °C. This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.
Highlights:
1 A class of hydrogel electrolytes that couple high adhesion and anti-freezing properties is developed.
2 Zn/Li hybrid capacitors based on the hydrogel electrolyte can tolerate low temperatures and accommodate dynamic deformations across a temperature range of 25 to − 60 °C.
3 This work highlights an advancement for promoting next-generation energy storage system with low-temperature capability and mechanical durability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- J. Chen, B. Yang, H. Hou, H. Li, L. Liu et al., Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9(19), 1803894 (2019). https://doi.org/10.1002/aenm.201803894
- X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. (2023). https://doi.org/10.1007/s40820-023-01093-7
- M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
- H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15(1), 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
- J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15(1), 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
- X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15(1), 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
- H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
- J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv. Energy Mater. 11(21), 2100201 (2021). https://doi.org/10.1002/aenm.202100201
- H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun et al., Heteroatom-induced accelerated kinetics on nickel selenide for highly efficient hydrazine-assisted water splitting and Zn-hydrazine battery. Nano-Micro Lett. 15(1), 155 (2023). https://doi.org/10.1007/s40820-023-01128-z
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. (2022). https://doi.org/10.1007/s40820-022-00836-2
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15(1), 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 1–16 (2017). https://doi.org/10.1038/natrevmats.2016.103
- G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 1–5 (2022). https://doi.org/10.1038/s41467-022-28381-x
- Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Electrolyte and interface engineering for solid-state sodium batteries. Joule. 2(9), 1747–1770 (2018). https://doi.org/10.1016/j.joule.2018.07.028
- D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47(6), 2065–2129 (2018). https://doi.org/10.1039/c7cs00505a
- M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1(9), 1–4 (2016). https://doi.org/10.1038/NENERGY.2016.141
- S. Zhao, Y. Zuo, T. Liu, S. Zhai, Y. Dai et al., Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 11(34), 2101749 (2021). https://doi.org/10.1002/aenm.202101749
- R. Ma, Z. Xu, X. Wang, Polymer hydrogel electrolytes for flexible and multifunctional zinc-ion batteries and capacitors. Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12464
- J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13(14), 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
- Z. Xu, R. Ma, X. Wang, Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Mater. 46, 233–242 (2022). https://doi.org/10.1016/j.ensm.2022.01.011
- H. Cui, H. Mi, C. Ji, F. Guo, Y. Chen et al., A durable mxene-based zinc ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte. J. Mater. Chem. A 9(42), 23941–23954 (2021). https://doi.org/10.1039/d1ta06974h
- L. Han, H. Huang, X. Fu, J. Li, Z. Yang et al., A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem. Eng. J. 392, 123733 (2020). https://doi.org/10.1016/j.cej.2019.123733
- J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable mxene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5(7), 1900285 (2019). https://doi.org/10.1002/aelm.201900285
- X. Liu, J. Liu, S. Lin, X. Zhao, Hydrogel machines. Mater. Today 36, 102–124 (2020). https://doi.org/10.1016/j.mattod.2019.12.026
- D. Gan, W. Xing, L. Jiang, J. Fang, C. Zhao et al., Plant-inspired adhesive and tough hydrogel based on Ag-lignin nanops-triggered dynamic redox catechol chemistry. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-09351-2
- M. Shin, S.-G. Park, B.-C. Oh, K. Kim, S. Jo et al., Complete prevention of blood loss with self-sealing haemostatic needles. Nat. Mater. 16(1), 147–152 (2017). https://doi.org/10.1038/NMAT4758
- H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15(2), 190–196 (2016). https://doi.org/10.1038/NMAT4463
- H. Yuk, C.E. Varela, C.S. Nabzdyk, X. Mao, R.F. Padera et al., Dry double-sided tape for adhesion of wet tissues and devices. Nature 575(7781), 169–174 (2019). https://doi.org/10.1038/s41586-019-1710-5
- J. Yang, R. Bai, Z. Suo, Topological adhesion of wet materials. Adv. Mater. 30(25), 1800671 (2018). https://doi.org/10.1002/adma.201800671
- D. Wirthl, R. Pichler, M. Drack, G. Kettlguber, R. Moser et al., Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3(6), e1700053 (2017). https://doi.org/10.1126/sciadv.1700053
- P. Rao, T.L. Sun, L. Chen, R. Takahashi, G. Shinohara et al., Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30(32), 1801884 (2018). https://doi.org/10.1002/adma.201801884
- T. Kurokawa, H. Furukawa, W. Wang, Y. Tanaka, J.P. Gong, Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomater. 6(4), 1353–1359 (2010). https://doi.org/10.1016/j.actbio.2009.10.046
- J. Li, A. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017). https://doi.org/10.1126/science.aah6362
- M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416(6879), 409–413 (2002). https://doi.org/10.1038/416409a
- E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
- K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010). https://doi.org/10.1126/science.1183512
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 1–10 (2020). https://doi.org/10.1038/s41467-020-18284-0
- X.F. Zhang, X. Ma, T. Hou, K. Guo, J. Yin et al., Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. 58(22), 7366–7370 (2019). https://doi.org/10.1002/anie.201902578
- M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
- Y. Jian, S. Handschuh-Wang, J. Zhang, W. Lu, X. Zhou et al., Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater. Horizons. 8(2), 351–369 (2021). https://doi.org/10.1039/d0mh01029d
- Y. Cui, Silicon anodes. Nat. Energy 6(10), 995–996 (2021). https://doi.org/10.1038/s41560-021-00918-2
- D.G. Mackanic, X. Yan, Q. Zhang, N. Matsuhisa, Z. Yu et al., Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10(1), 1–11 (2019). https://doi.org/10.1038/s41467-019-13362-4
- J. Nan, G. Zhang, T. Zhu, Z. Wang, L. Wang et al., A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv. Sci. 7(14), 2000587 (2020). https://doi.org/10.1002/advs.202000587
- H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7(1), 1–11 (2016). https://doi.org/10.1038/ncomms12028
- B.V. Muir, D. Myung, W. Knoll, C.W. Frank, Grafting of cross-linked hydrogel networks to titanium surfaces. ACS Appl. Mater. Interfaces 6(2), 958–966 (2014). https://doi.org/10.1021/am404361v
- A. Gent, Adhesion and strength of viscoelastic solids Is there a relationship between adhesion and bulk properties? Langmuir 12(19), 4492–4496 (1996). https://doi.org/10.1021/la950887q
- C. Derail, A. Allal, G. Marin, P. Tordjeman, Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61(1–4), 123–157 (1997). https://doi.org/10.1080/00218469708010519
- Y. Gao, K. Wu, Z. Suo, Photodetachable adhesion. Adv. Mater. 31(6), 1806948 (2019). https://doi.org/10.1002/adma.201806948
- F. Pan, S. Ye, R. Wang, W. She, J. Liu et al., Hydrogel networks as underwater contact adhesives for different surfaces. Mater. Horizons. 7(8), 2063–2070 (2020). https://doi.org/10.1039/d0mh00176g
- S. Utsumi, J.E. Kinsella, Structure-function relationships in food proteins: Subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins. J. Agric. Food Chem. 33(2), 297–303 (1985). https://doi.org/10.1021/jf00062a035
- X. Li, Y. Li, Y. Hua, A. Qiu, C. Yang et al., Effect of concentration, ionic strength and freeze-drying on the heat-induced aggregation of soy proteins. Food Chem. 104(4), 1410–1417 (2007). https://doi.org/10.1016/j.foodchem.2007.02.003
- H. Zhao, S. Liu, Y. Wei, Y. Yue, M. Gao et al., Multiscale engineered artificial tooth enamel. Science 375(6580), 551–556 (2022). https://doi.org/10.1126/science.abj3343
- X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 10(5), 672–687 (2014). https://doi.org/10.1039/c3sm52272e
- B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12(1), 1–12 (2021). https://doi.org/10.1038/s41467-021-27529-5
- H. Tegelström, P.I. Wyöni, Silanization of supporting glass plates avoiding fixation of polyacrylamide gels to glass cover plates. Electrophoresis 7(2), 99–99 (1986). https://doi.org/10.1002/elps.1150070209
- B.L. Watson, N. Rolston, A.D. Printz, R.H. Dauskardt, Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10(12), 2500–2508 (2017). https://doi.org/10.1039/c7ee02185b
- J. Deng, H. Yuk, J. Wu, C.E. Varela, X. Chen et al., Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20(2), 229–236 (2021). https://doi.org/10.1038/s41563-020-00814-2
- Y. Cheng, X. Zhang, Y. Qin, P. Dong, W. Yao et al., Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative poisson’s ratio. Nat. Commun. 12(1), 1–12 (2021). https://doi.org/10.1038/s41467-021-24388-y
- Z. Zhu, Z. Liu, Y. Yin, Y. Yuan, Y. Meng et al., Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling. Nat. Commun. 13(1), 1–10 (2022). https://doi.org/10.1038/s41467-022-30450-0
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1–11 (2018). https://doi.org/10.1038/s41467-018-04060-8
- Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6(8), 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
- J. Fan, J. Chen, Y. Chen, H. Huang, Z. Wei et al., Hierarchical structure LiFePO4@C synthesized by oleylamine-mediated method for low temperature applications. J. Mater. Chem. A 2(14), 4870–4873 (2014). https://doi.org/10.1039/c3ta15210c
- A.J. Bard, L.R. Faulkner, Fundamentals and Applications, New York: Wiley, 2001. (Springer; 2002)
References
P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
J. Chen, B. Yang, H. Hou, H. Li, L. Liu et al., Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9(19), 1803894 (2019). https://doi.org/10.1002/aenm.201803894
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. (2023). https://doi.org/10.1007/s40820-023-01093-7
M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15(1), 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15(1), 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15(1), 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv. Energy Mater. 11(21), 2100201 (2021). https://doi.org/10.1002/aenm.202100201
H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun et al., Heteroatom-induced accelerated kinetics on nickel selenide for highly efficient hydrazine-assisted water splitting and Zn-hydrazine battery. Nano-Micro Lett. 15(1), 155 (2023). https://doi.org/10.1007/s40820-023-01128-z
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. (2022). https://doi.org/10.1007/s40820-022-00836-2
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15(1), 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 1–16 (2017). https://doi.org/10.1038/natrevmats.2016.103
G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 1–5 (2022). https://doi.org/10.1038/s41467-022-28381-x
Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Electrolyte and interface engineering for solid-state sodium batteries. Joule. 2(9), 1747–1770 (2018). https://doi.org/10.1016/j.joule.2018.07.028
D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47(6), 2065–2129 (2018). https://doi.org/10.1039/c7cs00505a
M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1(9), 1–4 (2016). https://doi.org/10.1038/NENERGY.2016.141
S. Zhao, Y. Zuo, T. Liu, S. Zhai, Y. Dai et al., Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 11(34), 2101749 (2021). https://doi.org/10.1002/aenm.202101749
R. Ma, Z. Xu, X. Wang, Polymer hydrogel electrolytes for flexible and multifunctional zinc-ion batteries and capacitors. Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12464
J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13(14), 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
Z. Xu, R. Ma, X. Wang, Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Mater. 46, 233–242 (2022). https://doi.org/10.1016/j.ensm.2022.01.011
H. Cui, H. Mi, C. Ji, F. Guo, Y. Chen et al., A durable mxene-based zinc ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte. J. Mater. Chem. A 9(42), 23941–23954 (2021). https://doi.org/10.1039/d1ta06974h
L. Han, H. Huang, X. Fu, J. Li, Z. Yang et al., A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem. Eng. J. 392, 123733 (2020). https://doi.org/10.1016/j.cej.2019.123733
J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable mxene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5(7), 1900285 (2019). https://doi.org/10.1002/aelm.201900285
X. Liu, J. Liu, S. Lin, X. Zhao, Hydrogel machines. Mater. Today 36, 102–124 (2020). https://doi.org/10.1016/j.mattod.2019.12.026
D. Gan, W. Xing, L. Jiang, J. Fang, C. Zhao et al., Plant-inspired adhesive and tough hydrogel based on Ag-lignin nanops-triggered dynamic redox catechol chemistry. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-09351-2
M. Shin, S.-G. Park, B.-C. Oh, K. Kim, S. Jo et al., Complete prevention of blood loss with self-sealing haemostatic needles. Nat. Mater. 16(1), 147–152 (2017). https://doi.org/10.1038/NMAT4758
H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15(2), 190–196 (2016). https://doi.org/10.1038/NMAT4463
H. Yuk, C.E. Varela, C.S. Nabzdyk, X. Mao, R.F. Padera et al., Dry double-sided tape for adhesion of wet tissues and devices. Nature 575(7781), 169–174 (2019). https://doi.org/10.1038/s41586-019-1710-5
J. Yang, R. Bai, Z. Suo, Topological adhesion of wet materials. Adv. Mater. 30(25), 1800671 (2018). https://doi.org/10.1002/adma.201800671
D. Wirthl, R. Pichler, M. Drack, G. Kettlguber, R. Moser et al., Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3(6), e1700053 (2017). https://doi.org/10.1126/sciadv.1700053
P. Rao, T.L. Sun, L. Chen, R. Takahashi, G. Shinohara et al., Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30(32), 1801884 (2018). https://doi.org/10.1002/adma.201801884
T. Kurokawa, H. Furukawa, W. Wang, Y. Tanaka, J.P. Gong, Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomater. 6(4), 1353–1359 (2010). https://doi.org/10.1016/j.actbio.2009.10.046
J. Li, A. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017). https://doi.org/10.1126/science.aah6362
M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416(6879), 409–413 (2002). https://doi.org/10.1038/416409a
E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010). https://doi.org/10.1126/science.1183512
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 1–10 (2020). https://doi.org/10.1038/s41467-020-18284-0
X.F. Zhang, X. Ma, T. Hou, K. Guo, J. Yin et al., Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. 58(22), 7366–7370 (2019). https://doi.org/10.1002/anie.201902578
M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
Y. Jian, S. Handschuh-Wang, J. Zhang, W. Lu, X. Zhou et al., Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater. Horizons. 8(2), 351–369 (2021). https://doi.org/10.1039/d0mh01029d
Y. Cui, Silicon anodes. Nat. Energy 6(10), 995–996 (2021). https://doi.org/10.1038/s41560-021-00918-2
D.G. Mackanic, X. Yan, Q. Zhang, N. Matsuhisa, Z. Yu et al., Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10(1), 1–11 (2019). https://doi.org/10.1038/s41467-019-13362-4
J. Nan, G. Zhang, T. Zhu, Z. Wang, L. Wang et al., A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv. Sci. 7(14), 2000587 (2020). https://doi.org/10.1002/advs.202000587
H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7(1), 1–11 (2016). https://doi.org/10.1038/ncomms12028
B.V. Muir, D. Myung, W. Knoll, C.W. Frank, Grafting of cross-linked hydrogel networks to titanium surfaces. ACS Appl. Mater. Interfaces 6(2), 958–966 (2014). https://doi.org/10.1021/am404361v
A. Gent, Adhesion and strength of viscoelastic solids Is there a relationship between adhesion and bulk properties? Langmuir 12(19), 4492–4496 (1996). https://doi.org/10.1021/la950887q
C. Derail, A. Allal, G. Marin, P. Tordjeman, Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61(1–4), 123–157 (1997). https://doi.org/10.1080/00218469708010519
Y. Gao, K. Wu, Z. Suo, Photodetachable adhesion. Adv. Mater. 31(6), 1806948 (2019). https://doi.org/10.1002/adma.201806948
F. Pan, S. Ye, R. Wang, W. She, J. Liu et al., Hydrogel networks as underwater contact adhesives for different surfaces. Mater. Horizons. 7(8), 2063–2070 (2020). https://doi.org/10.1039/d0mh00176g
S. Utsumi, J.E. Kinsella, Structure-function relationships in food proteins: Subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins. J. Agric. Food Chem. 33(2), 297–303 (1985). https://doi.org/10.1021/jf00062a035
X. Li, Y. Li, Y. Hua, A. Qiu, C. Yang et al., Effect of concentration, ionic strength and freeze-drying on the heat-induced aggregation of soy proteins. Food Chem. 104(4), 1410–1417 (2007). https://doi.org/10.1016/j.foodchem.2007.02.003
H. Zhao, S. Liu, Y. Wei, Y. Yue, M. Gao et al., Multiscale engineered artificial tooth enamel. Science 375(6580), 551–556 (2022). https://doi.org/10.1126/science.abj3343
X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 10(5), 672–687 (2014). https://doi.org/10.1039/c3sm52272e
B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12(1), 1–12 (2021). https://doi.org/10.1038/s41467-021-27529-5
H. Tegelström, P.I. Wyöni, Silanization of supporting glass plates avoiding fixation of polyacrylamide gels to glass cover plates. Electrophoresis 7(2), 99–99 (1986). https://doi.org/10.1002/elps.1150070209
B.L. Watson, N. Rolston, A.D. Printz, R.H. Dauskardt, Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10(12), 2500–2508 (2017). https://doi.org/10.1039/c7ee02185b
J. Deng, H. Yuk, J. Wu, C.E. Varela, X. Chen et al., Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20(2), 229–236 (2021). https://doi.org/10.1038/s41563-020-00814-2
Y. Cheng, X. Zhang, Y. Qin, P. Dong, W. Yao et al., Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative poisson’s ratio. Nat. Commun. 12(1), 1–12 (2021). https://doi.org/10.1038/s41467-021-24388-y
Z. Zhu, Z. Liu, Y. Yin, Y. Yuan, Y. Meng et al., Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling. Nat. Commun. 13(1), 1–10 (2022). https://doi.org/10.1038/s41467-022-30450-0
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1–11 (2018). https://doi.org/10.1038/s41467-018-04060-8
Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6(8), 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
J. Fan, J. Chen, Y. Chen, H. Huang, Z. Wei et al., Hierarchical structure LiFePO4@C synthesized by oleylamine-mediated method for low temperature applications. J. Mater. Chem. A 2(14), 4870–4873 (2014). https://doi.org/10.1039/c3ta15210c
A.J. Bard, L.R. Faulkner, Fundamentals and Applications, New York: Wiley, 2001. (Springer; 2002)