MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing
Corresponding Author: Yubo Fan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 273
Abstract
Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption. MXene-Ti3C2Tx, an emerging two-dimensional material, stands out as an ideal candidate for fabricating neuromorphic devices. Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose. This review aims to uncover the advantages and properties of MXene-Ti3C2Tx in neuromorphic devices and to promote its further development. Firstly, we categorize several core physical mechanisms present in MXene-Ti3C2Tx neuromorphic devices and summarize in detail the reasons for their formation. Then, this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti3C2Tx, such as doping engineering, interface engineering, and structural engineering. Significantly, this work highlights innovative applications of MXene-Ti3C2Tx neuromorphic devices in cutting-edge computing paradigms, particularly near-sensor computing and in-sensor computing. Finally, this review carefully compiles a table that integrates almost all research results involving MXene-Ti3C2Tx neuromorphic devices and discusses the challenges, development prospects, and feasibility of MXene-Ti3C2Tx-based neuromorphic devices in practical applications, aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti3C2Tx in the field of neuromorphic devices.
Highlights:
1 This review reveals the advantages of MXene-Ti3C2Tx for neuromorphic devices, classifies the core physical mechanisms, and outlines strategies to drive targeted optimization and future innovation.
2 The review outlines three key engineering strategies: doping engineering, interfacial engineering, and structural engineering, while also providing comprehensive guidance for material and device improvement.
3 MXene-Ti3C2Tx-based devices demonstrate groundbreaking potential in next-generation computing, such as near-sensor computing and in-sensor computing, enabling faster and more energy-efficient data processing directly at the sensor level.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. He, S.L. Baxter, J. Xu, J. Xu, X. Zhou et al., The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25(1), 30–36 (2019). https://doi.org/10.1038/s41591-018-0307-0
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant et al., An organic nanop transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20(2), 330–337 (2010). https://doi.org/10.1002/adfm.200901335
- F. Cai, J.M. Correll, S.H. Lee, Y. Lim, V. Bothra et al., A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019). https://doi.org/10.1038/s41928-019-0270-x
- F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18(1), 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
- X. Yan, Y. Pei, H. Chen, J. Zhao, Z. Zhou et al., Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 31(7), 1805284 (2019). https://doi.org/10.1002/adma.201805284
- J.-M. Yang, E.-S. Choi, S.-Y. Kim, J.-H. Kim, J.-H. Park et al., Perovskite-related (CH3NH3)3Sb2Br 9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale 11(13), 6453–6461 (2019). https://doi.org/10.1039/C8NR09918A
- S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang et al., A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 15(25), 1900107 (2019). https://doi.org/10.1002/smll.201900107
- K. Wang, L. Li, R. Zhao, J. Zhao, Z. Zhou et al., A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 6(3), 1901342 (2020). https://doi.org/10.1002/aelm.201901342
- Y. Zhou, D. Liu, J. Wang, Z. Cheng, L. Liu et al., Black phosphorus based multicolor light-modulated transparent memristor with enhanced resistive switching performance. ACS Appl. Mater. Interfaces 12(22), 25108–25114 (2020). https://doi.org/10.1021/acsami.0c04493
- Y. Shen, W. Zheng, K. Zhu, Y. Xiao, C. Wen et al., Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv. Mater. 33(41), 2103656 (2021). https://doi.org/10.1002/adma.202103656
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- H. Wei, H. Yu, J. Gong, M. Ma, H. Han et al., Redox MXene artificial synapse with bidirectional plasticity and hypersensitive responsibility. Adv. Funct. Mater. 31(1), 2007232 (2021). https://doi.org/10.1002/adfm.202007232
- K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
- M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc. Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
- D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
- Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
- E. Li, C. Gao, R. Yu, X. Wang, L. He et al., MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nat. Commun. 13(1), 2898 (2022). https://doi.org/10.1038/s41467-022-30527-w
- X. Zhang, S. Wu, R. Yu, E. Li, D. Liu et al., Programmable neuronal-synaptic transistors based on 2D MXene for a high-efficiency neuromorphic hardware network. Matter 5(9), 3023–3040 (2022). https://doi.org/10.1016/j.matt.2022.06.009
- J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), e2303737 (2023). https://doi.org/10.1002/adma.202303737
- D. Tan, N. Sun, J. Huang, Z. Zhang, L. Zeng et al., Monolayer vacancy-induced MXene memory for write-verify-free programming. Small 20(36), 2402273 (2024). https://doi.org/10.1002/smll.202402273
- K. Wang, Y. Jia, X. Yan, A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy 100, 107486 (2022). https://doi.org/10.1016/j.nanoen.2022.107486
- S. Ren, K. Wang, X. Jia, J. Wang, J. Xu et al., Fibrous MXene synapse-based biomimetic tactile nervous system for multimodal perception and memory. Small 20(28), 2400165 (2024). https://doi.org/10.1002/smll.202400165
- U.J. Kim, D.H. Ho, Y.Y. Choi, Y. Choi, D.G. Roe et al., Deterministic multimodal perturbation enables neuromorphic-compatible signal multiplexing. ACS Mater. Lett. 4(1), 102–110 (2022). https://doi.org/10.1021/acsmaterialslett.1c00586
- K. Wang, S. Ren, Y. Jia, X. Yan, Dual biological-clock controllable low-power fibrous synapse array based on heterojunction switched conductive filaments. Nano Energy 127, 109765 (2024). https://doi.org/10.1016/j.nanoen.2024.109765
- K. Wang, Y. Jia, X. Yan, Neuro-receptor mediated synapse device based on crumpled MXene Ti3C2Tx nanosheets. Adv. Funct. Mater. 31(48), 2104304 (2021). https://doi.org/10.1002/adfm.202104304
- J. Huang, J. Feng, Z. Chen, Z. Dai, S. Yang et al., A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 126, 109684 (2024). https://doi.org/10.1016/j.nanoen.2024.109684
- K. Wang, J. Chen, X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021). https://doi.org/10.1016/j.nanoen.2020.105453
- H. Riazi, M. Anayee, K. Hantanasirisakul, A.A. Shamsabadi, B. Anasori et al., Surface modification of a MXene by an aminosilane coupling agent. Adv. Mater. Interfaces 7(6), 1902008 (2020). https://doi.org/10.1002/admi.201902008
- H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12(3), 1325–1338 (2020). https://doi.org/10.1039/C9NR07616F
- R. Wang, M. Li, K. Sun, Y. Zhang, J. Li et al., Element-doped mxenes: mechanism, synthesis, and applications. Small 18(25), e2201740 (2022). https://doi.org/10.1002/smll.202201740
- Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
- B. Lyu, Y. Choi, H. Jing, C. Qian, H. Kang et al., 2D MXene-TiO2 core-shell nanosheets as a data-storage medium in memory devices. Adv. Mater. 32(17), e1907633 (2020). https://doi.org/10.1002/adma.201907633
- N.B. Mullani, D.D. Kumbhar, D.-H. Lee, M.J. Kwon, S.-Y. Cho et al., Surface modification of a titanium carbide MXene memristor to enhance memory window and low-power operation. Adv. Funct. Mater. 33(26), 2300343 (2023). https://doi.org/10.1002/adfm.202300343
- X. Feng, J. Huang, J. Ning, D. Wang, J. Zhang et al., A novel nonvolatile memory device based on oxidized Ti3C2Tx MXene for neurocomputing application. Carbon 205, 365–372 (2023). https://doi.org/10.1016/j.carbon.2023.01.040
- Y. Cao, T. Zhao, C. Liu, C. Zhao, H. Gao et al., Neuromorphic visual artificial synapse in-memory computing systems based on GeOx-coated MXene nanosheets. Nano Energy 112, 108441 (2023). https://doi.org/10.1016/j.nanoen.2023.108441
- J.H. Ju, S. Seo, S. Baek, D. Lee, S. Lee et al., Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small 17(34), 2102595 (2021). https://doi.org/10.1002/smll.202102595
- Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
- J.-Y. Mao, L. Zhou, X. Zhu, Y. Zhou, S.-T. Han, Photonic memristor for future computing: a perspective. Adv. Opt. Mater. 7(22), 1900766 (2019). https://doi.org/10.1002/adom.201900766
- S. Zhu, B. Sun, G. Zhou, T. Guo, C. Ke et al., In-depth physical mechanism analysis and wearable applications of HfO x-based flexible memristors. ACS Appl. Mater. Interf. 15(4), 5420–5431 (2023). https://doi.org/10.1021/acsami.2c16569
- S. Kim, S. Choi, W. Lu, Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8(3), 2369–2376 (2014). https://doi.org/10.1021/nn405827t
- X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu et al., Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 28(1), 1705320 (2018). https://doi.org/10.1002/adfm.201705320
- Y. She, F. Wang, X. Zhao, Z. Zhang, C. Li et al., Oxygen vacancy-dependent synaptic dynamic behavior of TiOx-based transparent memristor. IEEE Trans. Electron Devices 68(4), 1950–1955 (2021). https://doi.org/10.1109/TED.2021.3056333
- Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang et al., Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28(6), 1704862 (2018). https://doi.org/10.1002/adfm.201704862
- X. Yan, L. Zhang, H. Chen, X. Li, J. Wang et al., Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 28(40), 1803728 (2018). https://doi.org/10.1002/adfm.201803728
- M. Downes, C.E. Shuck, B. McBride, J. Busa, Y. Gogotsi, Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene. Nat. Protoc. 19(6), 1807–1834 (2024). https://doi.org/10.1038/s41596-024-00969-1
- T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mater. Sci. Semicond. Process. 38, 228–233 (2015). https://doi.org/10.1016/j.mssp.2015.04.033
- V.A. Voronkovskii, V.S. Aliev, A.K. Gerasimova, D.R. Islamov, Conduction mechanisms of TaN/HfO x /Ni memristors. Mater. Res. Express 6(7), 076411 (2019). https://doi.org/10.1088/2053-1591/ab11aa
- B. Zeng, X. Zhang, C. Gao, Y. Zou, X. Yu et al., MXene-based memristor for artificial optoelectronic neuron. IEEE Trans. Electron Devices 70(3), 1359–1365 (2023). https://doi.org/10.1109/TED.2023.3234881
- A. Thomas, P. Saha, S.E. Muhammed, K.K. Navaneeth, B.C. Das, Versatile titanium carbide MXene thin-film memristors with adaptive learning behavior. ACS Appl. Mater. Interf. (2024). https://doi.org/10.1021/acsami.3c19177
- C. Du, Z. Qu, Y. Ren, Y. Zhai, J. Chen et al., Grain boundary confinement of silver imidazole for resistive switching. Adv. Funct. Mater. 32(8), 2108598 (2022). https://doi.org/10.1002/adfm.202108598
- J. Fang, Z. Tang, X.-C. Lai, F. Qiu, Y.-P. Jiang et al., New-style logic operation and neuromorphic computing enabled by optoelectronic artificial synapses in an MXene/Y: HfO2 ferroelectric memristor. ACS Appl. Mater. Interfaces 16(24), 31348–31362 (2024). https://doi.org/10.1021/acsami.4c05316
- T.R. Desai, S.S. Kundale, T.D. Dongale, C. Gurnani, Evaluation of cellulose-MXene composite hydrogel based bio-resistive random access memory material as mimics for biological synapses. ACS Appl. Bio Mater. 6(5), 1763–1773 (2023). https://doi.org/10.1021/acsabm.2c01073
- Z. Zhou, X. Yan, J. Zhao, C. Lu, D. Ren et al., Synapse behavior characterization and physical mechanism of a TiN/SiOx/p-Si tunneling memristor device. J. Mater. Chem. C 7(6), 1561–1567 (2019). https://doi.org/10.1039/C8TC04903C
- R. Guo, W. Lin, X. Yan, T. Venkatesan, J. Chen, Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev. 7(1), 011304 (2020). https://doi.org/10.1063/1.5120565
- E. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015). https://doi.org/10.3390/electronics4030586
- X. Yan, Z. Zhou, B. Ding, J. Zhao, Y. Zhang, Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C 5(9), 2259–2267 (2017). https://doi.org/10.1039/C6TC04261A
- M.P. Houng, Y.H. Wang, W.J. Chang, Current transport mechanism in trapped oxides: a generalized trap-assisted tunneling model. J. Appl. Phys. 86(3), 1488–1491 (1999). https://doi.org/10.1063/1.370918
- X. Wang, G. Sun, N. Li, P. Chen, Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45(8), 2239–2262 (2016). https://doi.org/10.1039/C5CS00811E
- K. Sattar, R. Tahir, H. Huang, D. Akinwande, S. Rizwan, Ferroelectric MXene-assisted BiFeO3 based free-standing memristors for multifunctional non-volatile memory storage. Carbon 221, 118931 (2024). https://doi.org/10.1016/j.carbon.2024.118931
- X. Qin, H. Liu, J. Hu, J. Huang, F. Yang et al., Light-tunable resistive switching properties of a BiFeO3/Ti3C2 heterostructure memristor. J. Electron. Mater. 52(6), 3868–3876 (2023). https://doi.org/10.1007/s11664-023-10374-1
- W.-Z. Song, H.-J. Qiu, J. Zhang, M. Yu, S. Ramakrishna et al., Sliding mode direct current triboelectric nanogenerators. Nano Energy 90, 106531 (2021). https://doi.org/10.1016/j.nanoen.2021.106531
- M.A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 103(6), 1648–1656 (1956). https://doi.org/10.1103/physrev.103.1648
- R. Zhang, Y. Lai, W. Chen, C. Teng, Y. Sun et al., Carrier trapping in wrinkled 2D monolayer MoS2 for ultrathin memory. ACS Nano 16(4), 6309–6316 (2022). https://doi.org/10.1021/acsnano.2c00350
- C. Gao, D. Liu, C. Xu, W. Xie, X. Zhang et al., Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction. Nat. Commun. 15, 740 (2024). https://doi.org/10.1038/s41467-024-44942-8
- R. Li, Y. Sun, Q. Zhao, X. Hao, H. Liang et al., NIR-triggered logic gate in MXene-modified perovskite resistive random access memory. J. Mater. Chem. C 12(13), 4762–4770 (2024). https://doi.org/10.1039/d3tc03847e
- H. Wang, Y. Wu, J. Zhang, G. Li, H. Huang et al., Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater. Lett. 160, 537–540 (2015). https://doi.org/10.1016/j.matlet.2015.08.046
- R. Tang, S. Xiong, D. Gong, Y. Deng, Y. Wang et al., Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Appl. Mater. Interfaces 12(51), 56663–56680 (2020). https://doi.org/10.1021/acsami.0c12905
- I.H. Im, S.J. Kim, H.W. Jang, Memristive devices for new computing paradigms. Adv. Intell. Syst. 2(11), 2000105 (2020). https://doi.org/10.1002/aisy.202000105
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. MXenes. Jenny Stanford Publishing (2023). https://doi.org/10.1201/9781003306511-4
- L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9(34), 1901839 (2019). https://doi.org/10.1002/aenm.201901839
- F. Yang, Y. Huang, X. Han, S. Zhang, M. Yu et al., Covalent bonding of MXene/reduced graphene oxide composites for efficient electromagnetic wave absorption. ACS Appl. Nano Mater. 6(5), 3367–3377 (2023). https://doi.org/10.1021/acsanm.2c05150
- S. Wang, C. Song, Y. Cai, Y. Li, P. Jiang et al., Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia conversion. Adv. Energy Mater. 13(31), 2301136 (2023). https://doi.org/10.1002/aenm.202301136
- S. Ling, S. Lin, Y. Wu, Y. Li, Toward highly-robust MXene hybrid memristor by synergetic ionotronic modification and two-dimensional heterojunction. Chem. Eng. J. 486, 150100 (2024). https://doi.org/10.1016/j.cej.2024.150100
- K. Wang, Q. Hu, B. Gao, Q. Lin, F.-W. Zhuge et al., Threshold switching memristor-based stochastic neurons for probabilistic computing. Mater. Horiz. 8(2), 619–629 (2021). https://doi.org/10.1039/d0mh01759k
- M. Abdullah, I. Elango, H. Patil, P.P. Patil, D. Aloysius et al., Metal-organic framework and MXene (ZIF-8: Ti3C2Tx) based organic and inorganic nanocomposite for bio-synaptic applications. Surf. Interfaces 51, 104708 (2024). https://doi.org/10.1016/j.surfin.2024.104708
- G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang et al., Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8(34), 22280–22286 (2016). https://doi.org/10.1021/acsami.6b08089
- M. Faustini, L. Nicole, E. Ruiz-Hitzky, C. Sanchez, History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv. Funct. Mater. 28(27), 1704158 (2018). https://doi.org/10.1002/adfm.201704158
- Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D Appl. Phys. 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f
- D.J. Kim, H. Lu, S. Ryu, C.-W. Bark, C.-B. Eom et al., Ferroelectric tunnel memristor. Nano Lett. 12(11), 5697–5702 (2012). https://doi.org/10.1021/nl302912t
- M.T. Sharbati, Y. Du, J. Torres, N.D. Ardolino, M. Yun et al., Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. (2018). https://doi.org/10.1002/adma.201802353
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35(37), 2203830 (2023). https://doi.org/10.1002/adma.202203830
- C. Wang, N. Li, H. Zeng, L. Chen, D. Wu et al., MXene hybrid nanocomposites enable high performance memory devices and artificial synapse applications. J. Mater. Chem. C 12(10), 3662–3671 (2024). https://doi.org/10.1039/D3TC04561G
- Q. Zhang, Z. Zhang, C. Li, R. Xu, D. Yang et al., Van der Waals materials-based floating gate memory for neuromorphic computing. Chip 2(4), 100059 (2023). https://doi.org/10.1016/j.chip.2023.100059
- C. Li, X. Chen, Z. Zhang, X. Wu, T. Yu et al., Charge-selective 2D heterointerface-driven multifunctional floating gate memory for in situ sensing-memory-computing. Nano Lett. 24(47), 15025–15034 (2024). https://doi.org/10.1021/acs.nanolett.4c03828
- J. Zhu, Z. Wang, D. Liu, Q. Liu, W. Wang et al., Flexible low-voltage MXene floating-gate synaptic transistor for neuromorphic computing and cognitive learning. Adv. Funct. Mater. 34(40), 2403842 (2024). https://doi.org/10.1002/adfm.202403842
- K.A. Nirmal, W. Ren, A.C. Khot, D.Y. Kang, T.D. Dongale et al., Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv. Sci. 10(19), 2300433 (2023). https://doi.org/10.1002/advs.202300433
- A.K. Thompson, F.R. Pomerantz, J.R. Wolpaw, Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J. Neurosci. 33(6), 2365–2375 (2013). https://doi.org/10.1523/JNEUROSCI.3968-12.2013
- S. Ren, K. Wang, Y. Jia, X. Yan, Ion migration-modulated flexible MXene synapse for biomimetic multimode afferent nervous system: material and motion cognition. Adv. Intell. Syst. 5(11), 2300402 (2023). https://doi.org/10.1002/aisy.202300402
- Y. Liu, D. Liu, C. Gao, X. Zhang, R. Yu et al., Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat. Commun. 13(1), 7917 (2022). https://doi.org/10.1038/s41467-022-35628-0
- M. Li, F.-S. Yang, H.-C. Hsu, W.-H. Chen, C.N. Kuo et al., Defect engineering in ambipolar layered materials for mode-regulable nociceptor. Adv. Funct. Mater. 31(5), 2007587 (2021). https://doi.org/10.1002/adfm.202007587
- W. Huh, S. Jang, J.Y. Lee, D. Lee, D. Lee et al., Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30(35), e1801447 (2018). https://doi.org/10.1002/adma.201801447
- V. Di Stefano, A. Lupica, M.G. Rispoli, A. Di Muzio, F. Brighina et al., Rituximab in AChR subtype of myasthenia gravis: systematic review. J. Neurol. Neurosurg. Psychiatry 91(4), 392–395 (2020). https://doi.org/10.1136/jnnp-2019-322606
- J. da Silva Prade, E.C. Bálsamo, F.R. Machado, M.R. Poetini, V.C. Bortolotto et al., Anti-inflammatory effect of Arnica montana in a UVB radiation-induced skin-burn model in mice. Cutan. Ocul. Toxicol. 39(2), 126–133 (2020). https://doi.org/10.1080/15569527.2020.1743998
- L. Nguyen, Z. Wang, A.Y. Chowdhury, E. Chu, J. Eerdeng et al., Functional compensation between hematopoietic stem cell clonesin vivo. EMBO Rep. 19(8), e45702 (2018). https://doi.org/10.15252/embr.201745702
- D. Tan, Z. Zhang, H. Shi, N. Sun, Q. Li et al., Bioinspired artificial visual-respiratory synapse as multimodal scene recognition system with oxidized-vacancies MXene. Adv. Mater. 36(36), 2407751 (2024). https://doi.org/10.1002/adma.202407751
- C.W. Lee, S.J. Kim, H.-K. Shin, Y.-J. Cho, C. Yoo et al., Optically-modulated and mechanically-flexible MXene artificial synapses with visible-to-near IR broadband-responsiveness. Nano Today 61, 102633 (2025). https://doi.org/10.1016/j.nantod.2025.102633
- K. An, H. Zhao, Y. Miao, Q. Xu, Y.-F. Li et al., A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat. Neurosci. 23(7), 869–880 (2020). https://doi.org/10.1038/s41593-020-0640-8
- W.C. Naber, R. Fronczek, J. Haan, P. Doesborg, C.S. Colwell et al., The biological clock in cluster headache: a review and hypothesis. Cephalalgia 39(14), 1855–1866 (2019). https://doi.org/10.1177/0333102419851815
- K. Wang, S. Ren, Y. Jia, X. Yan, An ultrasensitive biomimetic optic afferent nervous system with circadian learnability. Adv. Sci. 11(21), 2309489 (2024). https://doi.org/10.1002/advs.202309489
- J. Wu, L. Zhang, W. Chang, H. Zhang, W. Zhang et al., A biomimetic ionic hydrogel synapse for self-powered tactile-visual fusion perception. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202500048
- R. Yu, X. Zhang, C. Gao, E. Li, Y. Yan et al., Low-voltage solution-processed artificial optoelectronic hybrid-integrated neuron based on 2D MXene for multi-task spiking neural network. Nano Energy 99, 107418 (2022). https://doi.org/10.1016/j.nanoen.2022.107418
- X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
- P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
- A. Sokolov, M. Ali, H. Li, Y.-R. Jeon, M.J. Ko et al., Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics. Adv. Electron. Mater. 7(2), 2000866 (2021). https://doi.org/10.1002/aelm.202000866
- A.C. Khot, T.D. Dongale, K.A. Nirmal, J.K. Deepthi, S.S. Sutar et al., 2D Ti3C2Tx MXene-derived self-assembled 3D TiO2 nanoflowers for nonvolatile memory and synaptic learning applications. J. Mater. Sci. Technol. 150, 1–10 (2023). https://doi.org/10.1016/j.jmst.2023.01.003
- S. Saha, V. Adepu, K. Gohel, P. Sahatiya, S.S. Dan, Demonstration of a 2-D SnS/MXene nanohybrid asymmetric memristor. IEEE Trans. Electron Devices 69(10), 5921–5927 (2022). https://doi.org/10.1109/TED.2022.3199710
- T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 31(45), 2106000 (2021). https://doi.org/10.1002/adfm.202106000
- A. Aglikov, O. Volkova, A. Bondar, I. Moskalenko, A. Novikov et al., Memristive effect in Ti3C2Tx (MXene) polyelectrolyte multilayers. ChemPhysChem 24(17), e202300187 (2023). https://doi.org/10.1002/cphc.202300187
- Y. Chen, Y. Wang, Y. Luo, X. Liu, Y. Wang et al., Realization of artificial neuron using MXene bi-directional threshold switching memristors. IEEE Electron Device Lett. 40(10), 1686–1689 (2019). https://doi.org/10.1109/LED.2019.2936261
- J. Gosai, M. Patel, L. Liu, A. Lokhandwala, P. Thakkar et al., Control-etched Ti3C2Tx MXene nanosheets for a low-voltage-operating flexible memristor for efficient neuromorphic computation. ACS Appl. Mater. Interfaces 16(14), 17821–17831 (2024). https://doi.org/10.1021/acsami.4c01364
- X. Lian, Y. Shi, X. Shen, X. Wan, Z. Cai et al., Design of high performance MXene/oxide structure memristors for image recognition applications. Chin. J. Electron. 33(2), 336–345 (2024). https://doi.org/10.23919/cje.2022.00.125
- S. Ling, C. Zhang, C. Zhang, M. Teng, C. Ma et al., Facile synthesis of MXene−Polyvinyl alcohol hybrid material for robust flexible memristor. J. Solid State Chem. 318, 123731 (2023). https://doi.org/10.1016/j.jssc.2022.123731
- Y. Wang, Y. Zhang, Y. Wang, H. Zhang, X. Wang et al., Realization of empathy capability for the evolution of artificial intelligence using an MXene(Ti3C2)-based memristor. Electronics 13(9), 1632 (2024). https://doi.org/10.3390/electronics13091632
- S. Fatima, R. Tahir, D. Akinwande, S. Rizwan, Enhanced memristive effect of laser-reduced graphene and ferroelectric MXene-based flexible trilayer memristors. Carbon 218, 118656 (2024). https://doi.org/10.1016/j.carbon.2023.118656
- A. Sharma, H.-S. Lee, C.-M. Yeom, H.K. Surendran, C. Narayana et al., Tailoring conductive MXene@MOF interfaces: new generation of synapse devices for neuromorphic computing. Chem. Mater. 36(17), 8466–8476 (2024). https://doi.org/10.1021/acs.chemmater.4c01596
- R. Tahir, S. Fatima, S.A. Zahra, D. Akinwande, H. Li et al., Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devices. NPJ 2D Mater. Appl. 7, 7 (2023). https://doi.org/10.1038/s41699-023-00368-2
- Y. Zou, E. Li, R. Yu, C. Gao, X. Yu et al., Electret-based vertical organic synaptic transistor with MXene for neural network-based computation. IEEE Trans. Electron Devices 69(12), 6681–6685 (2022). https://doi.org/10.1109/TED.2022.3211478
- C. Gu, H.-W. Mao, W.-Q. Tao, Z. Zhou, X.-J. Wang et al., Facile synthesis of Ti3C2Tx-poly(vinylpyrrolidone) nanocomposites for nonvolatile memory devices with low switching voltage. ACS Appl. Mater. Interfaces 11(41), 38061–38067 (2019). https://doi.org/10.1021/acsami.9b13711
- A. Melianas, M.-A. Kang, A. VahidMohammadi, T.J. Quill, W. Tian et al., High-speed ionic synaptic memory based on 2D titanium carbide MXene. Adv. Funct. Mater. 32(12), 2109970 (2022). https://doi.org/10.1002/adfm.202109970
- S. Kim, S.B. Jo, J. Kim, D. Rhee, Y.Y. Choi et al., Gate-deterministic remote doping enables highly retentive graphene-MXene hybrid memory devices on plastic. Adv. Funct. Mater. 32(20), 2111956 (2022). https://doi.org/10.1002/adfm.202111956
- M. Zhang, Q. Qin, X. Chen, R. Tang, A. Han et al., Towards an universal artificial synapse using MXene-PZT based ferroelectric memristor. Ceram. Int. 48(11), 16263–16272 (2022). https://doi.org/10.1016/j.ceramint.2022.02.175
- L. Yue, H. Sun, Y. Zhu, Y. Li, F. Yang et al., Electrical-light coordinately modulated synaptic memristor based on Ti3C2 MXene for near-infrared artificial vision applications. J. Phys. Chem. Lett. 15(34), 8667–8675 (2024). https://doi.org/10.1021/acs.jpclett.4c02281
- H. Qiu, S. Lan, Q. Lin, H. Zhu, W. Liao et al., Simulation of neural functions based on organic semiconductor/MXene synaptic transistors. Org. Electron. 131, 107090 (2024). https://doi.org/10.1016/j.orgel.2024.107090
- Y. Cao, C. Zhao, T. Zhao, Y. Sun, Z. Liu et al., Brain-like optoelectronic artificial synapses with ultralow energy consumption based on MXene floating-gates for emotion recognition. J. Mater. Chem. C 11(10), 3468–3479 (2023). https://doi.org/10.1039/D2TC04745D
- X. Zhang, H. Chen, S. Cheng, F. Guo, W. Jie et al., Tunable resistive switching in 2D MXene Ti3C2 nanosheets for non-volatile memory and neuromorphic computing. ACS Appl. Mater. Interfaces 14(39), 44614–44621 (2022). https://doi.org/10.1021/acsami.2c14006
- C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16(1), 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
- X.-J. Lian, J.-K. Fu, Z.-X. Gao, S.-P. Gu, L. Wang, High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors. Chin. Phys. B 32(1), 017304 (2023). https://doi.org/10.1088/1674-1056/ac673f
- N. Qin, Z. Ren, Y. Fan, C. Qin, C. Liu et al., MXene-based optoelectronic synaptic transistors utilize attentional mechanisms to achieve hierarchical responses. J. Mater. Chem. C 12(20), 7197–7205 (2024). https://doi.org/10.1039/D4TC00473F
- X. Wan, W. Xu, M. Zhang, N. He, X. Lian et al., Unsupervised learning implemented by Ti3C2-MXene-based memristive neuromorphic system. ACS Appl. Electron. Mater. 2(11), 3497–3501 (2020). https://doi.org/10.1021/acsaelm.0c00705
- M. Zhang, Y. Wang, F. Gao, Y. Wang, X. Shen et al., Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device. Ceram. Int. 45(15), 19467–19472 (2019). https://doi.org/10.1016/j.ceramint.2019.06.202
- M. Zhang, X. Chen, Z. Chen, R. Dan, Y. Wei et al., Exploration of threshold and resistive-switching behaviors in MXene/BaFe12O19 ferroelectric memristors. Appl. Surf. Sci. 613, 155956 (2023). https://doi.org/10.1016/j.apsusc.2022.155956
- N. He, J. Liu, J. Xu, X. Lian, X. Wan et al., Inserted effects of MXene on switching mechanisms and characteristics of SiO2-based memristor: experimental and first-principles investigations. IEEE Trans. Electron Devices 69(7), 3688–3693 (2022). https://doi.org/10.1109/TED.2022.3175448
- Q. Zhang, E. Li, Y. Wang, C. Gao, C. Wang et al., Ultralow-power vertical transistors for multilevel decoding modes. Adv. Mater. 35(3), 2208600 (2023). https://doi.org/10.1002/adma.202208600
References
J. He, S.L. Baxter, J. Xu, J. Xu, X. Zhou et al., The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25(1), 30–36 (2019). https://doi.org/10.1038/s41591-018-0307-0
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant et al., An organic nanop transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20(2), 330–337 (2010). https://doi.org/10.1002/adfm.200901335
F. Cai, J.M. Correll, S.H. Lee, Y. Lim, V. Bothra et al., A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019). https://doi.org/10.1038/s41928-019-0270-x
F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18(1), 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
X. Yan, Y. Pei, H. Chen, J. Zhao, Z. Zhou et al., Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 31(7), 1805284 (2019). https://doi.org/10.1002/adma.201805284
J.-M. Yang, E.-S. Choi, S.-Y. Kim, J.-H. Kim, J.-H. Park et al., Perovskite-related (CH3NH3)3Sb2Br 9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale 11(13), 6453–6461 (2019). https://doi.org/10.1039/C8NR09918A
S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang et al., A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 15(25), 1900107 (2019). https://doi.org/10.1002/smll.201900107
K. Wang, L. Li, R. Zhao, J. Zhao, Z. Zhou et al., A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 6(3), 1901342 (2020). https://doi.org/10.1002/aelm.201901342
Y. Zhou, D. Liu, J. Wang, Z. Cheng, L. Liu et al., Black phosphorus based multicolor light-modulated transparent memristor with enhanced resistive switching performance. ACS Appl. Mater. Interfaces 12(22), 25108–25114 (2020). https://doi.org/10.1021/acsami.0c04493
Y. Shen, W. Zheng, K. Zhu, Y. Xiao, C. Wen et al., Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv. Mater. 33(41), 2103656 (2021). https://doi.org/10.1002/adma.202103656
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
H. Wei, H. Yu, J. Gong, M. Ma, H. Han et al., Redox MXene artificial synapse with bidirectional plasticity and hypersensitive responsibility. Adv. Funct. Mater. 31(1), 2007232 (2021). https://doi.org/10.1002/adfm.202007232
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc. Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
E. Li, C. Gao, R. Yu, X. Wang, L. He et al., MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nat. Commun. 13(1), 2898 (2022). https://doi.org/10.1038/s41467-022-30527-w
X. Zhang, S. Wu, R. Yu, E. Li, D. Liu et al., Programmable neuronal-synaptic transistors based on 2D MXene for a high-efficiency neuromorphic hardware network. Matter 5(9), 3023–3040 (2022). https://doi.org/10.1016/j.matt.2022.06.009
J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), e2303737 (2023). https://doi.org/10.1002/adma.202303737
D. Tan, N. Sun, J. Huang, Z. Zhang, L. Zeng et al., Monolayer vacancy-induced MXene memory for write-verify-free programming. Small 20(36), 2402273 (2024). https://doi.org/10.1002/smll.202402273
K. Wang, Y. Jia, X. Yan, A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy 100, 107486 (2022). https://doi.org/10.1016/j.nanoen.2022.107486
S. Ren, K. Wang, X. Jia, J. Wang, J. Xu et al., Fibrous MXene synapse-based biomimetic tactile nervous system for multimodal perception and memory. Small 20(28), 2400165 (2024). https://doi.org/10.1002/smll.202400165
U.J. Kim, D.H. Ho, Y.Y. Choi, Y. Choi, D.G. Roe et al., Deterministic multimodal perturbation enables neuromorphic-compatible signal multiplexing. ACS Mater. Lett. 4(1), 102–110 (2022). https://doi.org/10.1021/acsmaterialslett.1c00586
K. Wang, S. Ren, Y. Jia, X. Yan, Dual biological-clock controllable low-power fibrous synapse array based on heterojunction switched conductive filaments. Nano Energy 127, 109765 (2024). https://doi.org/10.1016/j.nanoen.2024.109765
K. Wang, Y. Jia, X. Yan, Neuro-receptor mediated synapse device based on crumpled MXene Ti3C2Tx nanosheets. Adv. Funct. Mater. 31(48), 2104304 (2021). https://doi.org/10.1002/adfm.202104304
J. Huang, J. Feng, Z. Chen, Z. Dai, S. Yang et al., A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 126, 109684 (2024). https://doi.org/10.1016/j.nanoen.2024.109684
K. Wang, J. Chen, X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021). https://doi.org/10.1016/j.nanoen.2020.105453
H. Riazi, M. Anayee, K. Hantanasirisakul, A.A. Shamsabadi, B. Anasori et al., Surface modification of a MXene by an aminosilane coupling agent. Adv. Mater. Interfaces 7(6), 1902008 (2020). https://doi.org/10.1002/admi.201902008
H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12(3), 1325–1338 (2020). https://doi.org/10.1039/C9NR07616F
R. Wang, M. Li, K. Sun, Y. Zhang, J. Li et al., Element-doped mxenes: mechanism, synthesis, and applications. Small 18(25), e2201740 (2022). https://doi.org/10.1002/smll.202201740
Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
B. Lyu, Y. Choi, H. Jing, C. Qian, H. Kang et al., 2D MXene-TiO2 core-shell nanosheets as a data-storage medium in memory devices. Adv. Mater. 32(17), e1907633 (2020). https://doi.org/10.1002/adma.201907633
N.B. Mullani, D.D. Kumbhar, D.-H. Lee, M.J. Kwon, S.-Y. Cho et al., Surface modification of a titanium carbide MXene memristor to enhance memory window and low-power operation. Adv. Funct. Mater. 33(26), 2300343 (2023). https://doi.org/10.1002/adfm.202300343
X. Feng, J. Huang, J. Ning, D. Wang, J. Zhang et al., A novel nonvolatile memory device based on oxidized Ti3C2Tx MXene for neurocomputing application. Carbon 205, 365–372 (2023). https://doi.org/10.1016/j.carbon.2023.01.040
Y. Cao, T. Zhao, C. Liu, C. Zhao, H. Gao et al., Neuromorphic visual artificial synapse in-memory computing systems based on GeOx-coated MXene nanosheets. Nano Energy 112, 108441 (2023). https://doi.org/10.1016/j.nanoen.2023.108441
J.H. Ju, S. Seo, S. Baek, D. Lee, S. Lee et al., Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small 17(34), 2102595 (2021). https://doi.org/10.1002/smll.202102595
Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
J.-Y. Mao, L. Zhou, X. Zhu, Y. Zhou, S.-T. Han, Photonic memristor for future computing: a perspective. Adv. Opt. Mater. 7(22), 1900766 (2019). https://doi.org/10.1002/adom.201900766
S. Zhu, B. Sun, G. Zhou, T. Guo, C. Ke et al., In-depth physical mechanism analysis and wearable applications of HfO x-based flexible memristors. ACS Appl. Mater. Interf. 15(4), 5420–5431 (2023). https://doi.org/10.1021/acsami.2c16569
S. Kim, S. Choi, W. Lu, Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8(3), 2369–2376 (2014). https://doi.org/10.1021/nn405827t
X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu et al., Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 28(1), 1705320 (2018). https://doi.org/10.1002/adfm.201705320
Y. She, F. Wang, X. Zhao, Z. Zhang, C. Li et al., Oxygen vacancy-dependent synaptic dynamic behavior of TiOx-based transparent memristor. IEEE Trans. Electron Devices 68(4), 1950–1955 (2021). https://doi.org/10.1109/TED.2021.3056333
Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang et al., Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28(6), 1704862 (2018). https://doi.org/10.1002/adfm.201704862
X. Yan, L. Zhang, H. Chen, X. Li, J. Wang et al., Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 28(40), 1803728 (2018). https://doi.org/10.1002/adfm.201803728
M. Downes, C.E. Shuck, B. McBride, J. Busa, Y. Gogotsi, Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene. Nat. Protoc. 19(6), 1807–1834 (2024). https://doi.org/10.1038/s41596-024-00969-1
T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mater. Sci. Semicond. Process. 38, 228–233 (2015). https://doi.org/10.1016/j.mssp.2015.04.033
V.A. Voronkovskii, V.S. Aliev, A.K. Gerasimova, D.R. Islamov, Conduction mechanisms of TaN/HfO x /Ni memristors. Mater. Res. Express 6(7), 076411 (2019). https://doi.org/10.1088/2053-1591/ab11aa
B. Zeng, X. Zhang, C. Gao, Y. Zou, X. Yu et al., MXene-based memristor for artificial optoelectronic neuron. IEEE Trans. Electron Devices 70(3), 1359–1365 (2023). https://doi.org/10.1109/TED.2023.3234881
A. Thomas, P. Saha, S.E. Muhammed, K.K. Navaneeth, B.C. Das, Versatile titanium carbide MXene thin-film memristors with adaptive learning behavior. ACS Appl. Mater. Interf. (2024). https://doi.org/10.1021/acsami.3c19177
C. Du, Z. Qu, Y. Ren, Y. Zhai, J. Chen et al., Grain boundary confinement of silver imidazole for resistive switching. Adv. Funct. Mater. 32(8), 2108598 (2022). https://doi.org/10.1002/adfm.202108598
J. Fang, Z. Tang, X.-C. Lai, F. Qiu, Y.-P. Jiang et al., New-style logic operation and neuromorphic computing enabled by optoelectronic artificial synapses in an MXene/Y: HfO2 ferroelectric memristor. ACS Appl. Mater. Interfaces 16(24), 31348–31362 (2024). https://doi.org/10.1021/acsami.4c05316
T.R. Desai, S.S. Kundale, T.D. Dongale, C. Gurnani, Evaluation of cellulose-MXene composite hydrogel based bio-resistive random access memory material as mimics for biological synapses. ACS Appl. Bio Mater. 6(5), 1763–1773 (2023). https://doi.org/10.1021/acsabm.2c01073
Z. Zhou, X. Yan, J. Zhao, C. Lu, D. Ren et al., Synapse behavior characterization and physical mechanism of a TiN/SiOx/p-Si tunneling memristor device. J. Mater. Chem. C 7(6), 1561–1567 (2019). https://doi.org/10.1039/C8TC04903C
R. Guo, W. Lin, X. Yan, T. Venkatesan, J. Chen, Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev. 7(1), 011304 (2020). https://doi.org/10.1063/1.5120565
E. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015). https://doi.org/10.3390/electronics4030586
X. Yan, Z. Zhou, B. Ding, J. Zhao, Y. Zhang, Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C 5(9), 2259–2267 (2017). https://doi.org/10.1039/C6TC04261A
M.P. Houng, Y.H. Wang, W.J. Chang, Current transport mechanism in trapped oxides: a generalized trap-assisted tunneling model. J. Appl. Phys. 86(3), 1488–1491 (1999). https://doi.org/10.1063/1.370918
X. Wang, G. Sun, N. Li, P. Chen, Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45(8), 2239–2262 (2016). https://doi.org/10.1039/C5CS00811E
K. Sattar, R. Tahir, H. Huang, D. Akinwande, S. Rizwan, Ferroelectric MXene-assisted BiFeO3 based free-standing memristors for multifunctional non-volatile memory storage. Carbon 221, 118931 (2024). https://doi.org/10.1016/j.carbon.2024.118931
X. Qin, H. Liu, J. Hu, J. Huang, F. Yang et al., Light-tunable resistive switching properties of a BiFeO3/Ti3C2 heterostructure memristor. J. Electron. Mater. 52(6), 3868–3876 (2023). https://doi.org/10.1007/s11664-023-10374-1
W.-Z. Song, H.-J. Qiu, J. Zhang, M. Yu, S. Ramakrishna et al., Sliding mode direct current triboelectric nanogenerators. Nano Energy 90, 106531 (2021). https://doi.org/10.1016/j.nanoen.2021.106531
M.A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 103(6), 1648–1656 (1956). https://doi.org/10.1103/physrev.103.1648
R. Zhang, Y. Lai, W. Chen, C. Teng, Y. Sun et al., Carrier trapping in wrinkled 2D monolayer MoS2 for ultrathin memory. ACS Nano 16(4), 6309–6316 (2022). https://doi.org/10.1021/acsnano.2c00350
C. Gao, D. Liu, C. Xu, W. Xie, X. Zhang et al., Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction. Nat. Commun. 15, 740 (2024). https://doi.org/10.1038/s41467-024-44942-8
R. Li, Y. Sun, Q. Zhao, X. Hao, H. Liang et al., NIR-triggered logic gate in MXene-modified perovskite resistive random access memory. J. Mater. Chem. C 12(13), 4762–4770 (2024). https://doi.org/10.1039/d3tc03847e
H. Wang, Y. Wu, J. Zhang, G. Li, H. Huang et al., Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater. Lett. 160, 537–540 (2015). https://doi.org/10.1016/j.matlet.2015.08.046
R. Tang, S. Xiong, D. Gong, Y. Deng, Y. Wang et al., Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Appl. Mater. Interfaces 12(51), 56663–56680 (2020). https://doi.org/10.1021/acsami.0c12905
I.H. Im, S.J. Kim, H.W. Jang, Memristive devices for new computing paradigms. Adv. Intell. Syst. 2(11), 2000105 (2020). https://doi.org/10.1002/aisy.202000105
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. MXenes. Jenny Stanford Publishing (2023). https://doi.org/10.1201/9781003306511-4
L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9(34), 1901839 (2019). https://doi.org/10.1002/aenm.201901839
F. Yang, Y. Huang, X. Han, S. Zhang, M. Yu et al., Covalent bonding of MXene/reduced graphene oxide composites for efficient electromagnetic wave absorption. ACS Appl. Nano Mater. 6(5), 3367–3377 (2023). https://doi.org/10.1021/acsanm.2c05150
S. Wang, C. Song, Y. Cai, Y. Li, P. Jiang et al., Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia conversion. Adv. Energy Mater. 13(31), 2301136 (2023). https://doi.org/10.1002/aenm.202301136
S. Ling, S. Lin, Y. Wu, Y. Li, Toward highly-robust MXene hybrid memristor by synergetic ionotronic modification and two-dimensional heterojunction. Chem. Eng. J. 486, 150100 (2024). https://doi.org/10.1016/j.cej.2024.150100
K. Wang, Q. Hu, B. Gao, Q. Lin, F.-W. Zhuge et al., Threshold switching memristor-based stochastic neurons for probabilistic computing. Mater. Horiz. 8(2), 619–629 (2021). https://doi.org/10.1039/d0mh01759k
M. Abdullah, I. Elango, H. Patil, P.P. Patil, D. Aloysius et al., Metal-organic framework and MXene (ZIF-8: Ti3C2Tx) based organic and inorganic nanocomposite for bio-synaptic applications. Surf. Interfaces 51, 104708 (2024). https://doi.org/10.1016/j.surfin.2024.104708
G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang et al., Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8(34), 22280–22286 (2016). https://doi.org/10.1021/acsami.6b08089
M. Faustini, L. Nicole, E. Ruiz-Hitzky, C. Sanchez, History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv. Funct. Mater. 28(27), 1704158 (2018). https://doi.org/10.1002/adfm.201704158
Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D Appl. Phys. 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f
D.J. Kim, H. Lu, S. Ryu, C.-W. Bark, C.-B. Eom et al., Ferroelectric tunnel memristor. Nano Lett. 12(11), 5697–5702 (2012). https://doi.org/10.1021/nl302912t
M.T. Sharbati, Y. Du, J. Torres, N.D. Ardolino, M. Yun et al., Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. (2018). https://doi.org/10.1002/adma.201802353
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35(37), 2203830 (2023). https://doi.org/10.1002/adma.202203830
C. Wang, N. Li, H. Zeng, L. Chen, D. Wu et al., MXene hybrid nanocomposites enable high performance memory devices and artificial synapse applications. J. Mater. Chem. C 12(10), 3662–3671 (2024). https://doi.org/10.1039/D3TC04561G
Q. Zhang, Z. Zhang, C. Li, R. Xu, D. Yang et al., Van der Waals materials-based floating gate memory for neuromorphic computing. Chip 2(4), 100059 (2023). https://doi.org/10.1016/j.chip.2023.100059
C. Li, X. Chen, Z. Zhang, X. Wu, T. Yu et al., Charge-selective 2D heterointerface-driven multifunctional floating gate memory for in situ sensing-memory-computing. Nano Lett. 24(47), 15025–15034 (2024). https://doi.org/10.1021/acs.nanolett.4c03828
J. Zhu, Z. Wang, D. Liu, Q. Liu, W. Wang et al., Flexible low-voltage MXene floating-gate synaptic transistor for neuromorphic computing and cognitive learning. Adv. Funct. Mater. 34(40), 2403842 (2024). https://doi.org/10.1002/adfm.202403842
K.A. Nirmal, W. Ren, A.C. Khot, D.Y. Kang, T.D. Dongale et al., Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv. Sci. 10(19), 2300433 (2023). https://doi.org/10.1002/advs.202300433
A.K. Thompson, F.R. Pomerantz, J.R. Wolpaw, Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J. Neurosci. 33(6), 2365–2375 (2013). https://doi.org/10.1523/JNEUROSCI.3968-12.2013
S. Ren, K. Wang, Y. Jia, X. Yan, Ion migration-modulated flexible MXene synapse for biomimetic multimode afferent nervous system: material and motion cognition. Adv. Intell. Syst. 5(11), 2300402 (2023). https://doi.org/10.1002/aisy.202300402
Y. Liu, D. Liu, C. Gao, X. Zhang, R. Yu et al., Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat. Commun. 13(1), 7917 (2022). https://doi.org/10.1038/s41467-022-35628-0
M. Li, F.-S. Yang, H.-C. Hsu, W.-H. Chen, C.N. Kuo et al., Defect engineering in ambipolar layered materials for mode-regulable nociceptor. Adv. Funct. Mater. 31(5), 2007587 (2021). https://doi.org/10.1002/adfm.202007587
W. Huh, S. Jang, J.Y. Lee, D. Lee, D. Lee et al., Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30(35), e1801447 (2018). https://doi.org/10.1002/adma.201801447
V. Di Stefano, A. Lupica, M.G. Rispoli, A. Di Muzio, F. Brighina et al., Rituximab in AChR subtype of myasthenia gravis: systematic review. J. Neurol. Neurosurg. Psychiatry 91(4), 392–395 (2020). https://doi.org/10.1136/jnnp-2019-322606
J. da Silva Prade, E.C. Bálsamo, F.R. Machado, M.R. Poetini, V.C. Bortolotto et al., Anti-inflammatory effect of Arnica montana in a UVB radiation-induced skin-burn model in mice. Cutan. Ocul. Toxicol. 39(2), 126–133 (2020). https://doi.org/10.1080/15569527.2020.1743998
L. Nguyen, Z. Wang, A.Y. Chowdhury, E. Chu, J. Eerdeng et al., Functional compensation between hematopoietic stem cell clonesin vivo. EMBO Rep. 19(8), e45702 (2018). https://doi.org/10.15252/embr.201745702
D. Tan, Z. Zhang, H. Shi, N. Sun, Q. Li et al., Bioinspired artificial visual-respiratory synapse as multimodal scene recognition system with oxidized-vacancies MXene. Adv. Mater. 36(36), 2407751 (2024). https://doi.org/10.1002/adma.202407751
C.W. Lee, S.J. Kim, H.-K. Shin, Y.-J. Cho, C. Yoo et al., Optically-modulated and mechanically-flexible MXene artificial synapses with visible-to-near IR broadband-responsiveness. Nano Today 61, 102633 (2025). https://doi.org/10.1016/j.nantod.2025.102633
K. An, H. Zhao, Y. Miao, Q. Xu, Y.-F. Li et al., A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat. Neurosci. 23(7), 869–880 (2020). https://doi.org/10.1038/s41593-020-0640-8
W.C. Naber, R. Fronczek, J. Haan, P. Doesborg, C.S. Colwell et al., The biological clock in cluster headache: a review and hypothesis. Cephalalgia 39(14), 1855–1866 (2019). https://doi.org/10.1177/0333102419851815
K. Wang, S. Ren, Y. Jia, X. Yan, An ultrasensitive biomimetic optic afferent nervous system with circadian learnability. Adv. Sci. 11(21), 2309489 (2024). https://doi.org/10.1002/advs.202309489
J. Wu, L. Zhang, W. Chang, H. Zhang, W. Zhang et al., A biomimetic ionic hydrogel synapse for self-powered tactile-visual fusion perception. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202500048
R. Yu, X. Zhang, C. Gao, E. Li, Y. Yan et al., Low-voltage solution-processed artificial optoelectronic hybrid-integrated neuron based on 2D MXene for multi-task spiking neural network. Nano Energy 99, 107418 (2022). https://doi.org/10.1016/j.nanoen.2022.107418
X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
A. Sokolov, M. Ali, H. Li, Y.-R. Jeon, M.J. Ko et al., Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics. Adv. Electron. Mater. 7(2), 2000866 (2021). https://doi.org/10.1002/aelm.202000866
A.C. Khot, T.D. Dongale, K.A. Nirmal, J.K. Deepthi, S.S. Sutar et al., 2D Ti3C2Tx MXene-derived self-assembled 3D TiO2 nanoflowers for nonvolatile memory and synaptic learning applications. J. Mater. Sci. Technol. 150, 1–10 (2023). https://doi.org/10.1016/j.jmst.2023.01.003
S. Saha, V. Adepu, K. Gohel, P. Sahatiya, S.S. Dan, Demonstration of a 2-D SnS/MXene nanohybrid asymmetric memristor. IEEE Trans. Electron Devices 69(10), 5921–5927 (2022). https://doi.org/10.1109/TED.2022.3199710
T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 31(45), 2106000 (2021). https://doi.org/10.1002/adfm.202106000
A. Aglikov, O. Volkova, A. Bondar, I. Moskalenko, A. Novikov et al., Memristive effect in Ti3C2Tx (MXene) polyelectrolyte multilayers. ChemPhysChem 24(17), e202300187 (2023). https://doi.org/10.1002/cphc.202300187
Y. Chen, Y. Wang, Y. Luo, X. Liu, Y. Wang et al., Realization of artificial neuron using MXene bi-directional threshold switching memristors. IEEE Electron Device Lett. 40(10), 1686–1689 (2019). https://doi.org/10.1109/LED.2019.2936261
J. Gosai, M. Patel, L. Liu, A. Lokhandwala, P. Thakkar et al., Control-etched Ti3C2Tx MXene nanosheets for a low-voltage-operating flexible memristor for efficient neuromorphic computation. ACS Appl. Mater. Interfaces 16(14), 17821–17831 (2024). https://doi.org/10.1021/acsami.4c01364
X. Lian, Y. Shi, X. Shen, X. Wan, Z. Cai et al., Design of high performance MXene/oxide structure memristors for image recognition applications. Chin. J. Electron. 33(2), 336–345 (2024). https://doi.org/10.23919/cje.2022.00.125
S. Ling, C. Zhang, C. Zhang, M. Teng, C. Ma et al., Facile synthesis of MXene−Polyvinyl alcohol hybrid material for robust flexible memristor. J. Solid State Chem. 318, 123731 (2023). https://doi.org/10.1016/j.jssc.2022.123731
Y. Wang, Y. Zhang, Y. Wang, H. Zhang, X. Wang et al., Realization of empathy capability for the evolution of artificial intelligence using an MXene(Ti3C2)-based memristor. Electronics 13(9), 1632 (2024). https://doi.org/10.3390/electronics13091632
S. Fatima, R. Tahir, D. Akinwande, S. Rizwan, Enhanced memristive effect of laser-reduced graphene and ferroelectric MXene-based flexible trilayer memristors. Carbon 218, 118656 (2024). https://doi.org/10.1016/j.carbon.2023.118656
A. Sharma, H.-S. Lee, C.-M. Yeom, H.K. Surendran, C. Narayana et al., Tailoring conductive MXene@MOF interfaces: new generation of synapse devices for neuromorphic computing. Chem. Mater. 36(17), 8466–8476 (2024). https://doi.org/10.1021/acs.chemmater.4c01596
R. Tahir, S. Fatima, S.A. Zahra, D. Akinwande, H. Li et al., Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devices. NPJ 2D Mater. Appl. 7, 7 (2023). https://doi.org/10.1038/s41699-023-00368-2
Y. Zou, E. Li, R. Yu, C. Gao, X. Yu et al., Electret-based vertical organic synaptic transistor with MXene for neural network-based computation. IEEE Trans. Electron Devices 69(12), 6681–6685 (2022). https://doi.org/10.1109/TED.2022.3211478
C. Gu, H.-W. Mao, W.-Q. Tao, Z. Zhou, X.-J. Wang et al., Facile synthesis of Ti3C2Tx-poly(vinylpyrrolidone) nanocomposites for nonvolatile memory devices with low switching voltage. ACS Appl. Mater. Interfaces 11(41), 38061–38067 (2019). https://doi.org/10.1021/acsami.9b13711
A. Melianas, M.-A. Kang, A. VahidMohammadi, T.J. Quill, W. Tian et al., High-speed ionic synaptic memory based on 2D titanium carbide MXene. Adv. Funct. Mater. 32(12), 2109970 (2022). https://doi.org/10.1002/adfm.202109970
S. Kim, S.B. Jo, J. Kim, D. Rhee, Y.Y. Choi et al., Gate-deterministic remote doping enables highly retentive graphene-MXene hybrid memory devices on plastic. Adv. Funct. Mater. 32(20), 2111956 (2022). https://doi.org/10.1002/adfm.202111956
M. Zhang, Q. Qin, X. Chen, R. Tang, A. Han et al., Towards an universal artificial synapse using MXene-PZT based ferroelectric memristor. Ceram. Int. 48(11), 16263–16272 (2022). https://doi.org/10.1016/j.ceramint.2022.02.175
L. Yue, H. Sun, Y. Zhu, Y. Li, F. Yang et al., Electrical-light coordinately modulated synaptic memristor based on Ti3C2 MXene for near-infrared artificial vision applications. J. Phys. Chem. Lett. 15(34), 8667–8675 (2024). https://doi.org/10.1021/acs.jpclett.4c02281
H. Qiu, S. Lan, Q. Lin, H. Zhu, W. Liao et al., Simulation of neural functions based on organic semiconductor/MXene synaptic transistors. Org. Electron. 131, 107090 (2024). https://doi.org/10.1016/j.orgel.2024.107090
Y. Cao, C. Zhao, T. Zhao, Y. Sun, Z. Liu et al., Brain-like optoelectronic artificial synapses with ultralow energy consumption based on MXene floating-gates for emotion recognition. J. Mater. Chem. C 11(10), 3468–3479 (2023). https://doi.org/10.1039/D2TC04745D
X. Zhang, H. Chen, S. Cheng, F. Guo, W. Jie et al., Tunable resistive switching in 2D MXene Ti3C2 nanosheets for non-volatile memory and neuromorphic computing. ACS Appl. Mater. Interfaces 14(39), 44614–44621 (2022). https://doi.org/10.1021/acsami.2c14006
C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16(1), 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
X.-J. Lian, J.-K. Fu, Z.-X. Gao, S.-P. Gu, L. Wang, High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors. Chin. Phys. B 32(1), 017304 (2023). https://doi.org/10.1088/1674-1056/ac673f
N. Qin, Z. Ren, Y. Fan, C. Qin, C. Liu et al., MXene-based optoelectronic synaptic transistors utilize attentional mechanisms to achieve hierarchical responses. J. Mater. Chem. C 12(20), 7197–7205 (2024). https://doi.org/10.1039/D4TC00473F
X. Wan, W. Xu, M. Zhang, N. He, X. Lian et al., Unsupervised learning implemented by Ti3C2-MXene-based memristive neuromorphic system. ACS Appl. Electron. Mater. 2(11), 3497–3501 (2020). https://doi.org/10.1021/acsaelm.0c00705
M. Zhang, Y. Wang, F. Gao, Y. Wang, X. Shen et al., Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device. Ceram. Int. 45(15), 19467–19472 (2019). https://doi.org/10.1016/j.ceramint.2019.06.202
M. Zhang, X. Chen, Z. Chen, R. Dan, Y. Wei et al., Exploration of threshold and resistive-switching behaviors in MXene/BaFe12O19 ferroelectric memristors. Appl. Surf. Sci. 613, 155956 (2023). https://doi.org/10.1016/j.apsusc.2022.155956
N. He, J. Liu, J. Xu, X. Lian, X. Wan et al., Inserted effects of MXene on switching mechanisms and characteristics of SiO2-based memristor: experimental and first-principles investigations. IEEE Trans. Electron Devices 69(7), 3688–3693 (2022). https://doi.org/10.1109/TED.2022.3175448
Q. Zhang, E. Li, Y. Wang, C. Gao, C. Wang et al., Ultralow-power vertical transistors for multilevel decoding modes. Adv. Mater. 35(3), 2208600 (2023). https://doi.org/10.1002/adma.202208600