A Hybrid Biofuel and Triboelectric Nanogenerator for Bioenergy Harvesting
Corresponding Author: Zhou Li
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 50
Abstract
Various types of energy exist everywhere around us, and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products. In this work, we proposed a hybrid energy-harvesting system (HEHS) for potential in vivo applications. The HEHS consisted of a triboelectric nanogenerator and a glucose fuel cell for simultaneously harvesting biomechanical energy and biochemical energy in simulated body fluid. These two energy-harvesting units can work individually as a single power source or work simultaneously as an integrated system. This design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output. Compared with any individual device, the integrated HEHS outputs a superimposed current and has a faster charging rate. Using the harvested energy, HEHS can power a calculator or a green light-emitting diode pattern. Considering the widely existed biomechanical energy and glucose molecules in the body, the developed HEHS can be a promising candidate for building in vivo self-powered healthcare monitoring system.
Highlights:
1 A triboelectric nanogenerator (TENG) and a glucose fuel cell (GFC) were separately designed to harvest biomechanical energy from body motion and biochemical energy from glucose molecules.
2 A hybrid energy-harvesting system (HEHS) which consisted of TENG and GFC was developed successfully, and it can simultaneously harvest biomechanical energy and biochemical energy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
- L.J. Xie, X.P. Chen, Z. Wen, Y.Q. Yang, J.H. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
- H.Y. Shao, P. Cheng, R.X. Chen, L.J. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- Q.F. Shi, T.Y.Y. He, C.K. Lee, More than energy harvesting-combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019). https://doi.org/10.1016/j.nanoen.2019.01.002
- D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29(37), 1702308 (2017). https://doi.org/10.1002/adma.201702308
- H. Li, C.C. Zhao, X.X. Wang, J.P. Meng, Y. Zou et al., Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics. Adv. Sci. 6(6), 1801625 (2019). https://doi.org/10.1002/advs.201801625
- L.M. Zhao, H. Li, J.P. Meng, Z. Li, The Recent Advances in Self-Powered Medical Information Sensors, 2019, pp. 1–23. https://doi.org/10.1002/inf2.12064
- Y. Xi, H.Y. Guo, Y.L. Zi, X.G. Li, J. Wang et al., Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 7(12), 1602397 (2017). https://doi.org/10.1002/aenm.201602397
- G. Khandelwal, A. Chandrasekhar, N.P.M.J. Raj, S.-J. Kim, Metal-organic framework: a novel material for triboelectric nanogenerator-based self-powered sensors and systems. Adv. Energy Mater. 9(14), 1803581 (2019). https://doi.org/10.1002/aenm.201803581
- L. Zheng, Z.-H. Lin, G. Cheng, W.Z. Wu, X.N. Wen, S.M. Lee, Z.L. Wang, Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9, 291–300 (2014). https://doi.org/10.1016/j.nanoen.2014.07.024
- F. Yi, X.F. Wang, S.M. Niu, S.M. Li, Y.J. Yin et al., A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2(6), e1501624 (2016). https://doi.org/10.1126/sciadv.1501624
- X.J. Pu, H.Y. Guo, J. Chen, X. Wang, Y. Xi, C.G. Hu, Z.L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
- C.L. Sun, J. Shi, D.J. Bayerl, X.D. Wang, PVDF microbelts for harvesting energy from respiration. Energ. Environ. Sci. 4(11), 4508–4512 (2011). https://doi.org/10.1039/c1ee02241e
- L. Cheng, M.M. Yuan, L. Gu, Z. Wang, Y. Qin, T. Jing, Z.L. Wang, Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598–606 (2015). https://doi.org/10.1016/j.nanoen.2015.05.003
- X.X. Chen, Y. Song, Z.M. Su, H.T. Chen, X.L. Cheng, J.X. Zhang, M.D. Han, H.X. Zhang, Flexible fiber-based hybrid nanogenerator for body energy harvesting and physiological monitoring. Nano Energy 38, 43–50 (2017). https://doi.org/10.1016/j.nanoen.2017.05.047
- W. Jiang, H. Li, Z. Liu, Z. Li, J.J. Tian et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 30(32), 1801895 (2018). https://doi.org/10.1002/adma.201801895
- B.J. Hansen, Y.R. Liu, S. Yang, Z.L. Wang, Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7), 3647–3652 (2010). https://doi.org/10.1021/nn100845b
- U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29(1), 1603544 (2017). https://doi.org/10.1002/adma.201603544
- R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, S.-W. Kim, Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452), 491–494 (2019). https://doi.org/10.1126/science.aan3997
- L.M. Zhao, H. Li, J.P. Meng, A.C. Wang, P.C. Tan et al., Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907999
- Y. Zou, P.C. Tan, B.J. Shi, H. Ouyang, D.J. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10(1), 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
- T.Y. Zhong, M.Y. Zhang, Y.M. Fu, Y.C. Han, H.Y. Guan et al., An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution. Nano Energy 63, 103884 (2019). https://doi.org/10.1016/j.nanoen.2019.103884
- Y.T. Dai, Y.M. Fu, H. Zeng, L.L. Xing, Y. Zhang, Y. Zhan, X.Y. Xue, A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixel-addressable matrix for visual-image recognition and behavior intervention. Adv. Funct. Mater. 28(20), 1800275 (2018). https://doi.org/10.1002/adfm.201800275
- J.H. Wang, H. Wang, T. He, B.R. He, N.V. Thakor, C.K. Lee, Investigation of low-current direct stimulation for rehabilitation treatment related to muscle function loss using self-powered TENG system. Adv. Sci. 6(14), 1900149 (2019). https://doi.org/10.1002/advs.201900149
- G. Yao, L. Kang, J. Li, Y. Long, H. Wei et al., Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9(1), 5349 (2018). https://doi.org/10.1038/s41467-018-07764-z
- H.Y. Guan, D. Lv, T.Y. Zhong, Y.T. Dai, L.L. Xing, X.Y. Xue, Y. Zhang, Y. Zhan, Self-powered, wireless-control, neural-stimulating electronic skin for in vivo characterization of synaptic plasticity. Nano Energy 67, 104182 (2020). https://doi.org/10.1016/j.nanoen.2019.104182
- H. Ouyang, Z. Liu, N. Li, B.J. Shi, Y. Zou et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
- Q. Zheng, B.J. Shi, F.R. Fan, X.X. Wang, L. Yan et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26(33), 5851–5856 (2014). https://doi.org/10.1002/adma.201402064
- Z. Liu, Y. Ma, H. Ouyang, B.J. Shi, N. Li et al., Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 29(3), 1807560 (2019). https://doi.org/10.1002/adfm.201807560
- W. Kerner, Implantable glucose sensors: present status and future developments. Exp. Clin. Endocrinol. Diabetes 109, S341–S346 (2001). https://doi.org/10.1055/s-2001-18593
- D.I. Sessler, Temperature monitoring and perioperative thermoregulation. Anesthesiology 109(2), 318–338 (2008). https://doi.org/10.1097/ALN.0b013e31817f6d76
- K. Takahata, Y.B. Gianchandani, K.D. Wise, Micromachined antenna stents and cuffs for monitoring intraluminal pressure and flow. J. Microelectromech. Syst. 15(5), 1289–1298 (2006). https://doi.org/10.1109/JMEMS.2006.880229
- D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int. J. Hydrogen Energy 37(5), 4678–4684 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.158
- L.M. Zhao, Q. Zheng, H. Ouyang, H. Li, L. Yan, B.J. Shi, Z. Li, A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28, 172–178 (2016). https://doi.org/10.1016/j.nanoen.2016.08.024
- H. Li, H.Z. Geng, Y. Meng, Y. Wang, X.B. Xu et al., Fabrication and test of adhesion enhanced flexible carbon nanotube transparent conducting films. Appl. Surf. Sci. 313, 220–226 (2014). https://doi.org/10.1016/j.apsusc.2014.05.188
- H. Li, H. Ouyang, M. Yu, N. Wu, X.X. Wang et al., Thermo-driven evaporation self-assembly and dynamic analysis of homocentric carbon nanotube rings. Small 13(8), 1603642 (2017). https://doi.org/10.1002/smll.201603642
- H. Li, L.M. Zhao, W.B. Zhu, X.C. Qu, C. Wang, R.P. Liu, Y.B. Fan, Z. Li, Fabrication of concentric carbon nanotube rings and their application on regulating cell growth. ACS Omega 4(14), 16209–16216 (2019). https://doi.org/10.1021/acsomega.9b02449
- M. Besson, P. Gallezot, Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 57(1–2), 127–141 (2000). https://doi.org/10.1016/S0920-5861(99)00315-6
- U.B. Demirci, Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sour. 173(1), 11–18 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.069
- Z.X. Liu, H.F. Li, M.S. Zhu, Y. Huang, Z.J. Tang et al., Towards wearable electronic devices: a quasi-solid-state aqueous lithiumion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018). https://doi.org/10.1016/j.nanoen.2017.12.006
- A. Heller, Miniature biofuel cells. Phys. Chem. Chem. Phys. 6(2), 209–216 (2004). https://doi.org/10.1039/b313149a
- S. Kerzenmacher, J. Ducree, R. Zengerle, F. von Stettena, An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J. Power Sources 182(1), 66–75 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.049
- D. Qazzazie, O. Yurchenko, S. Urban, J. Kieninger, G. Urban, Platinum nanowires anchored on graphene supported platinum nanoparticles as a highly active electrocatalyst towards glucose oxidation for fuel cell applications. Nanoscale 9(19), 6436–6447 (2017). https://doi.org/10.1039/C7NR01391D
- F. Xiao, F.Q. Zhao, D.P. Mei, Z.R. Mo, B.Z. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens. Bioelectron. 24(12), 3481–3486 (2009). https://doi.org/10.1016/j.bios.2009.04.045
References
Y. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
L.J. Xie, X.P. Chen, Z. Wen, Y.Q. Yang, J.H. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
H.Y. Shao, P. Cheng, R.X. Chen, L.J. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
Q.F. Shi, T.Y.Y. He, C.K. Lee, More than energy harvesting-combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019). https://doi.org/10.1016/j.nanoen.2019.01.002
D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29(37), 1702308 (2017). https://doi.org/10.1002/adma.201702308
H. Li, C.C. Zhao, X.X. Wang, J.P. Meng, Y. Zou et al., Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics. Adv. Sci. 6(6), 1801625 (2019). https://doi.org/10.1002/advs.201801625
L.M. Zhao, H. Li, J.P. Meng, Z. Li, The Recent Advances in Self-Powered Medical Information Sensors, 2019, pp. 1–23. https://doi.org/10.1002/inf2.12064
Y. Xi, H.Y. Guo, Y.L. Zi, X.G. Li, J. Wang et al., Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 7(12), 1602397 (2017). https://doi.org/10.1002/aenm.201602397
G. Khandelwal, A. Chandrasekhar, N.P.M.J. Raj, S.-J. Kim, Metal-organic framework: a novel material for triboelectric nanogenerator-based self-powered sensors and systems. Adv. Energy Mater. 9(14), 1803581 (2019). https://doi.org/10.1002/aenm.201803581
L. Zheng, Z.-H. Lin, G. Cheng, W.Z. Wu, X.N. Wen, S.M. Lee, Z.L. Wang, Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9, 291–300 (2014). https://doi.org/10.1016/j.nanoen.2014.07.024
F. Yi, X.F. Wang, S.M. Niu, S.M. Li, Y.J. Yin et al., A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2(6), e1501624 (2016). https://doi.org/10.1126/sciadv.1501624
X.J. Pu, H.Y. Guo, J. Chen, X. Wang, Y. Xi, C.G. Hu, Z.L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
C.L. Sun, J. Shi, D.J. Bayerl, X.D. Wang, PVDF microbelts for harvesting energy from respiration. Energ. Environ. Sci. 4(11), 4508–4512 (2011). https://doi.org/10.1039/c1ee02241e
L. Cheng, M.M. Yuan, L. Gu, Z. Wang, Y. Qin, T. Jing, Z.L. Wang, Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598–606 (2015). https://doi.org/10.1016/j.nanoen.2015.05.003
X.X. Chen, Y. Song, Z.M. Su, H.T. Chen, X.L. Cheng, J.X. Zhang, M.D. Han, H.X. Zhang, Flexible fiber-based hybrid nanogenerator for body energy harvesting and physiological monitoring. Nano Energy 38, 43–50 (2017). https://doi.org/10.1016/j.nanoen.2017.05.047
W. Jiang, H. Li, Z. Liu, Z. Li, J.J. Tian et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 30(32), 1801895 (2018). https://doi.org/10.1002/adma.201801895
B.J. Hansen, Y.R. Liu, S. Yang, Z.L. Wang, Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7), 3647–3652 (2010). https://doi.org/10.1021/nn100845b
U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29(1), 1603544 (2017). https://doi.org/10.1002/adma.201603544
R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, S.-W. Kim, Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452), 491–494 (2019). https://doi.org/10.1126/science.aan3997
L.M. Zhao, H. Li, J.P. Meng, A.C. Wang, P.C. Tan et al., Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907999
Y. Zou, P.C. Tan, B.J. Shi, H. Ouyang, D.J. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10(1), 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
T.Y. Zhong, M.Y. Zhang, Y.M. Fu, Y.C. Han, H.Y. Guan et al., An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution. Nano Energy 63, 103884 (2019). https://doi.org/10.1016/j.nanoen.2019.103884
Y.T. Dai, Y.M. Fu, H. Zeng, L.L. Xing, Y. Zhang, Y. Zhan, X.Y. Xue, A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixel-addressable matrix for visual-image recognition and behavior intervention. Adv. Funct. Mater. 28(20), 1800275 (2018). https://doi.org/10.1002/adfm.201800275
J.H. Wang, H. Wang, T. He, B.R. He, N.V. Thakor, C.K. Lee, Investigation of low-current direct stimulation for rehabilitation treatment related to muscle function loss using self-powered TENG system. Adv. Sci. 6(14), 1900149 (2019). https://doi.org/10.1002/advs.201900149
G. Yao, L. Kang, J. Li, Y. Long, H. Wei et al., Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9(1), 5349 (2018). https://doi.org/10.1038/s41467-018-07764-z
H.Y. Guan, D. Lv, T.Y. Zhong, Y.T. Dai, L.L. Xing, X.Y. Xue, Y. Zhang, Y. Zhan, Self-powered, wireless-control, neural-stimulating electronic skin for in vivo characterization of synaptic plasticity. Nano Energy 67, 104182 (2020). https://doi.org/10.1016/j.nanoen.2019.104182
H. Ouyang, Z. Liu, N. Li, B.J. Shi, Y. Zou et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
Q. Zheng, B.J. Shi, F.R. Fan, X.X. Wang, L. Yan et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26(33), 5851–5856 (2014). https://doi.org/10.1002/adma.201402064
Z. Liu, Y. Ma, H. Ouyang, B.J. Shi, N. Li et al., Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 29(3), 1807560 (2019). https://doi.org/10.1002/adfm.201807560
W. Kerner, Implantable glucose sensors: present status and future developments. Exp. Clin. Endocrinol. Diabetes 109, S341–S346 (2001). https://doi.org/10.1055/s-2001-18593
D.I. Sessler, Temperature monitoring and perioperative thermoregulation. Anesthesiology 109(2), 318–338 (2008). https://doi.org/10.1097/ALN.0b013e31817f6d76
K. Takahata, Y.B. Gianchandani, K.D. Wise, Micromachined antenna stents and cuffs for monitoring intraluminal pressure and flow. J. Microelectromech. Syst. 15(5), 1289–1298 (2006). https://doi.org/10.1109/JMEMS.2006.880229
D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int. J. Hydrogen Energy 37(5), 4678–4684 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.158
L.M. Zhao, Q. Zheng, H. Ouyang, H. Li, L. Yan, B.J. Shi, Z. Li, A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28, 172–178 (2016). https://doi.org/10.1016/j.nanoen.2016.08.024
H. Li, H.Z. Geng, Y. Meng, Y. Wang, X.B. Xu et al., Fabrication and test of adhesion enhanced flexible carbon nanotube transparent conducting films. Appl. Surf. Sci. 313, 220–226 (2014). https://doi.org/10.1016/j.apsusc.2014.05.188
H. Li, H. Ouyang, M. Yu, N. Wu, X.X. Wang et al., Thermo-driven evaporation self-assembly and dynamic analysis of homocentric carbon nanotube rings. Small 13(8), 1603642 (2017). https://doi.org/10.1002/smll.201603642
H. Li, L.M. Zhao, W.B. Zhu, X.C. Qu, C. Wang, R.P. Liu, Y.B. Fan, Z. Li, Fabrication of concentric carbon nanotube rings and their application on regulating cell growth. ACS Omega 4(14), 16209–16216 (2019). https://doi.org/10.1021/acsomega.9b02449
M. Besson, P. Gallezot, Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 57(1–2), 127–141 (2000). https://doi.org/10.1016/S0920-5861(99)00315-6
U.B. Demirci, Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sour. 173(1), 11–18 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.069
Z.X. Liu, H.F. Li, M.S. Zhu, Y. Huang, Z.J. Tang et al., Towards wearable electronic devices: a quasi-solid-state aqueous lithiumion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018). https://doi.org/10.1016/j.nanoen.2017.12.006
A. Heller, Miniature biofuel cells. Phys. Chem. Chem. Phys. 6(2), 209–216 (2004). https://doi.org/10.1039/b313149a
S. Kerzenmacher, J. Ducree, R. Zengerle, F. von Stettena, An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J. Power Sources 182(1), 66–75 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.049
D. Qazzazie, O. Yurchenko, S. Urban, J. Kieninger, G. Urban, Platinum nanowires anchored on graphene supported platinum nanoparticles as a highly active electrocatalyst towards glucose oxidation for fuel cell applications. Nanoscale 9(19), 6436–6447 (2017). https://doi.org/10.1039/C7NR01391D
F. Xiao, F.Q. Zhao, D.P. Mei, Z.R. Mo, B.Z. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens. Bioelectron. 24(12), 3481–3486 (2009). https://doi.org/10.1016/j.bios.2009.04.045