Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
Corresponding Author: Xuefeng Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 215
Abstract
Fast-charging lithium-ion batteries are highly required, especially in reducing the mileage anxiety of the widespread electric vehicles. One of the biggest bottlenecks lies in the sluggish kinetics of the Li+ intercalation into the graphite anode; slow intercalation will lead to lithium metal plating, severe side reactions, and safety concerns. The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li+ intercalation. Herein, we compare the Li+ diffusion through the graphite particle, interface, and electrode, uncover the structure of the lithiated graphite at high current densities, and correlate them with the reaction kinetics and electrochemical performances. It is found that the rate-determining steps are highly dependent on the particle size, interphase property, and electrode configuration. Insufficient Li+ diffusion leads to high polarization, incomplete intercalation, and the coexistence of several staging structures. Interfacial Li+ diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10 μm. The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase. Our findings enrich the understanding of the graphite structural evolution during rapid Li+ intercalation, decipher the bottleneck for the sluggish reaction kinetics, and provide strategic guidelines to boost the fast-charging performance of graphite anode.
Highlights:
1 The microstructure of graphite upon rapid Li+ intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.
2 The Li+ interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li+ diffusion through the electrode cannot to be neglected for thick graphite electrode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- W. Xie, X. Liu, R. He, Y. Li, X. Gao et al., Challenges and opportunities toward fast-charging of lithium-ion batteries. J. Energy Storage 32, 101837 (2020). https://doi.org/10.1016/j.est.2020.101837
- M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
- X. Jiang, Y. Chen, X. Meng, W. Cao, C. Liu et al., The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191, 448–470 (2022). https://doi.org/10.1016/j.carbon.2022.02.011
- M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano-Micro Lett. 15, 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
- D.S. Kim, Y.E. Kim, H. Kim, Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J. Power Sources 422, 18–24 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.027
- J.C. Garcia, I. Bloom, C. Johnson, D. Dees, H. Iddir, Graphite lithiation under fast charging conditions: atomistic modeling insights. J. Phys. Chem. C 124(15), 8162–8169 (2020). https://doi.org/10.1021/acs.jpcc.0c01083
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- W. Cai, Y.-X. Yao, G.-L. Zhu, C. Yan, L.-L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49(12), 3806–3833 (2020). https://doi.org/10.1039/C9CS00728H
- A.S. Ho, D.Y. Parkinson, D.P. Finegan, S.E. Trask, A.N. Jansen et al., 3D detection of lithiation and lithium plating in graphite anodes during fast charging. ACS Nano 15(6), 10480–10487 (2021). https://doi.org/10.1021/acsnano.1c02942
- J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5
- S.S. Zhang, The puzzles in fast charging of Li-ion batteries. Energy Environ. Mater. 5(4), 1005–1007 (2022). https://doi.org/10.1002/eem2.12330
- T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165(2), A361–A367 (2018). https://doi.org/10.1149/2.1221802jes
- K. Xu, A. von Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
- C. Sun, X. Ji, S. Weng, R. Li, X. Huang et al., 50C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 34(43), 2206020 (2022). https://doi.org/10.1002/adma.202206020
- H. Zhang, Z. Song, J. Fang, K. Li, M. Zhang et al., Electrolyte optimization for graphite anodes toward fast charging. J. Phys. Chem. C 127(6), 2755–2765 (2023). https://doi.org/10.1021/acs.jpcc.2c08357
- Y.X. Yao, X. Chen, C. Yan, X.Q. Zhang, W.L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
- L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
- Q. Wang, H. Li, X. Huang, L. Chen, Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique. J. Electrochem. Soc. 148(7), A737–A741 (2001). https://doi.org/10.1149/1.1377897
- K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng et al., Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1(8), 1176–1180 (2010). https://doi.org/10.1021/jz100188d
- M. Nishizawa, Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode. Electrochem. Solid-State Lett. 1(1), 10–12 (1999). https://doi.org/10.1149/1.1390618
- S. Weng, S. Wu, Z. Liu, G. Yang, X. Liu et al., Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy 5(1), e224 (2023). https://doi.org/10.1002/cey2.224
- M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from hrem micrographs. Ultramicroscopy 74(3), 131–146 (1998). https://doi.org/10.1016/S0304-3991(98)00035-7
- W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Structures 1(1), 2000010 (2020). https://doi.org/10.1002/sstr.202000010
- J.-H. Shim, S. Lee, Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries. J. Power Sources 324, 475–483 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.094
- J. Kim, S.M.N. Jeghan, G. Lee, Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Microporous Mesoporous Mater. 305, 110325 (2020). https://doi.org/10.1016/j.micromeso.2020.110325
- Q. Cheng, R. Yuge, K. Nakahara, N. Tamura, S. Miyamoto, Koh etched graphite for fast chargeable lithium-ion batteries. J. Power Sources 284, 258–263 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.036
- T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3(11), 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
- J. Huang, F. Li, M. Wu, H. Wang, S. Qi et al., Electrolyte chemistry for lithium metal batteries. Sci. China Chem. 65(5), 840–857 (2022). https://doi.org/10.1007/s11426-021-1235-2
- S. Zhang, G. Yang, Z. Liu, X. Li, X. Wang et al., Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte. Nano Lett. 21(7), 3310–3317 (2021). https://doi.org/10.1021/acs.nanolett.1c00848
- X. Zhang, S. Weng, G. Yang, Y. Li, H. Li et al., Interplay between solid-electrolyte interphase and (in)active lixsi in silicon anode. Cell Rep. Phys. Sci. 2(12), 100668 (2021). https://doi.org/10.1016/j.xcrp.2021.100668
- A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar et al., Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123(16), 10237–10245 (2019). https://doi.org/10.1021/acs.jpcc.9b00436
- S. Yuan, S. Weng, F. Wang, X. Dong, Y. Wang et al., Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 83, 105847 (2021). https://doi.org/10.1016/j.nanoen.2021.105847
- G. Yang, S. Zhang, S. Weng, X. Li, X. Wang et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 21(12), 5316–5323 (2021). https://doi.org/10.1021/acs.nanolett.1c01436
- S.S. Zhang, Is Li/graphite half-cell suitable for evaluating lithiation rate capability of graphite electrode? J. Electrochem. Soc. 167(10), 100510 (2020). https://doi.org/10.1149/1945-7111/ab945e
- K. Nishikawa, K. Shinoda, Characterization of electrodeposited Li metal by cryo-scanning transmission electron microscopy/electron energy loss spectroscopy. J. Phys. Chem. Lett. 12(16), 3922–3927 (2021). https://doi.org/10.1021/acs.jpclett.1c00717
- Gatan, Inc. EELS.info[DB/OL]. [2023-04-17]. https://eels.info/atlas.
- J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Magnetically aligned graphite electrodes for high-rate performance li-ion batteries. Nat. Energy 1(8), 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
- O. Bayındır, I.H. Sohel, M. Erol, O. Duygulu, M.N. Ateş, Controlling the crystallographic orientation of graphite electrodes for fast-charging li-ion batteries. ACS Appl. Mater. Interfaces 14(1), 891–899 (2021). https://doi.org/10.1021/acsami.1c19735
- R. Dubey, M.D. Zwahlen, Y. Shynkarenko, S. Yakunin, A. Fuerst et al., Laser patterning of high-mass-loading graphite anodes for high-performance Li-ion batteries. Batteries Supercaps 4(3), 464–468 (2021). https://doi.org/10.1002/batt.202000253
References
Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
W. Xie, X. Liu, R. He, Y. Li, X. Gao et al., Challenges and opportunities toward fast-charging of lithium-ion batteries. J. Energy Storage 32, 101837 (2020). https://doi.org/10.1016/j.est.2020.101837
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
X. Jiang, Y. Chen, X. Meng, W. Cao, C. Liu et al., The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191, 448–470 (2022). https://doi.org/10.1016/j.carbon.2022.02.011
M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano-Micro Lett. 15, 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
D.S. Kim, Y.E. Kim, H. Kim, Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J. Power Sources 422, 18–24 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.027
J.C. Garcia, I. Bloom, C. Johnson, D. Dees, H. Iddir, Graphite lithiation under fast charging conditions: atomistic modeling insights. J. Phys. Chem. C 124(15), 8162–8169 (2020). https://doi.org/10.1021/acs.jpcc.0c01083
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
W. Cai, Y.-X. Yao, G.-L. Zhu, C. Yan, L.-L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49(12), 3806–3833 (2020). https://doi.org/10.1039/C9CS00728H
A.S. Ho, D.Y. Parkinson, D.P. Finegan, S.E. Trask, A.N. Jansen et al., 3D detection of lithiation and lithium plating in graphite anodes during fast charging. ACS Nano 15(6), 10480–10487 (2021). https://doi.org/10.1021/acsnano.1c02942
J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5
S.S. Zhang, The puzzles in fast charging of Li-ion batteries. Energy Environ. Mater. 5(4), 1005–1007 (2022). https://doi.org/10.1002/eem2.12330
T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165(2), A361–A367 (2018). https://doi.org/10.1149/2.1221802jes
K. Xu, A. von Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
C. Sun, X. Ji, S. Weng, R. Li, X. Huang et al., 50C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 34(43), 2206020 (2022). https://doi.org/10.1002/adma.202206020
H. Zhang, Z. Song, J. Fang, K. Li, M. Zhang et al., Electrolyte optimization for graphite anodes toward fast charging. J. Phys. Chem. C 127(6), 2755–2765 (2023). https://doi.org/10.1021/acs.jpcc.2c08357
Y.X. Yao, X. Chen, C. Yan, X.Q. Zhang, W.L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
Q. Wang, H. Li, X. Huang, L. Chen, Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique. J. Electrochem. Soc. 148(7), A737–A741 (2001). https://doi.org/10.1149/1.1377897
K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng et al., Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1(8), 1176–1180 (2010). https://doi.org/10.1021/jz100188d
M. Nishizawa, Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode. Electrochem. Solid-State Lett. 1(1), 10–12 (1999). https://doi.org/10.1149/1.1390618
S. Weng, S. Wu, Z. Liu, G. Yang, X. Liu et al., Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy 5(1), e224 (2023). https://doi.org/10.1002/cey2.224
M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from hrem micrographs. Ultramicroscopy 74(3), 131–146 (1998). https://doi.org/10.1016/S0304-3991(98)00035-7
W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Structures 1(1), 2000010 (2020). https://doi.org/10.1002/sstr.202000010
J.-H. Shim, S. Lee, Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries. J. Power Sources 324, 475–483 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.094
J. Kim, S.M.N. Jeghan, G. Lee, Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Microporous Mesoporous Mater. 305, 110325 (2020). https://doi.org/10.1016/j.micromeso.2020.110325
Q. Cheng, R. Yuge, K. Nakahara, N. Tamura, S. Miyamoto, Koh etched graphite for fast chargeable lithium-ion batteries. J. Power Sources 284, 258–263 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.036
T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3(11), 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
J. Huang, F. Li, M. Wu, H. Wang, S. Qi et al., Electrolyte chemistry for lithium metal batteries. Sci. China Chem. 65(5), 840–857 (2022). https://doi.org/10.1007/s11426-021-1235-2
S. Zhang, G. Yang, Z. Liu, X. Li, X. Wang et al., Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte. Nano Lett. 21(7), 3310–3317 (2021). https://doi.org/10.1021/acs.nanolett.1c00848
X. Zhang, S. Weng, G. Yang, Y. Li, H. Li et al., Interplay between solid-electrolyte interphase and (in)active lixsi in silicon anode. Cell Rep. Phys. Sci. 2(12), 100668 (2021). https://doi.org/10.1016/j.xcrp.2021.100668
A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar et al., Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123(16), 10237–10245 (2019). https://doi.org/10.1021/acs.jpcc.9b00436
S. Yuan, S. Weng, F. Wang, X. Dong, Y. Wang et al., Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 83, 105847 (2021). https://doi.org/10.1016/j.nanoen.2021.105847
G. Yang, S. Zhang, S. Weng, X. Li, X. Wang et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 21(12), 5316–5323 (2021). https://doi.org/10.1021/acs.nanolett.1c01436
S.S. Zhang, Is Li/graphite half-cell suitable for evaluating lithiation rate capability of graphite electrode? J. Electrochem. Soc. 167(10), 100510 (2020). https://doi.org/10.1149/1945-7111/ab945e
K. Nishikawa, K. Shinoda, Characterization of electrodeposited Li metal by cryo-scanning transmission electron microscopy/electron energy loss spectroscopy. J. Phys. Chem. Lett. 12(16), 3922–3927 (2021). https://doi.org/10.1021/acs.jpclett.1c00717
Gatan, Inc. EELS.info[DB/OL]. [2023-04-17]. https://eels.info/atlas.
J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Magnetically aligned graphite electrodes for high-rate performance li-ion batteries. Nat. Energy 1(8), 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
O. Bayındır, I.H. Sohel, M. Erol, O. Duygulu, M.N. Ateş, Controlling the crystallographic orientation of graphite electrodes for fast-charging li-ion batteries. ACS Appl. Mater. Interfaces 14(1), 891–899 (2021). https://doi.org/10.1021/acsami.1c19735
R. Dubey, M.D. Zwahlen, Y. Shynkarenko, S. Yakunin, A. Fuerst et al., Laser patterning of high-mass-loading graphite anodes for high-performance Li-ion batteries. Batteries Supercaps 4(3), 464–468 (2021). https://doi.org/10.1002/batt.202000253