Ultra-sensitive Nanoprobe Modified with Tumor Cell Membrane for UCL/MRI/PET Multimodality Precise Imaging of Triple-Negative Breast Cancer
Corresponding Author: Xiaoli Lan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 62
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer in which the estrogen receptor and progesterone receptor are not expressed, and human epidermal growth factor receptor 2 is not amplified or overexpressed either, which make the clinical diagnosis and treatment very challenging. Molecular imaging can provide an effective way to diagnose TNBC. Upconversion nanoparticles (UCNPs), are a promising new generation of molecular imaging probes. However, UCNPs still need to be improved for tumor-targeting ability and biocompatibility. This study describes a novel probe based on cancer cell membrane-coated upconversion nanoparticles (CCm-UCNPs), owing to the low immunogenicity and homologous-targeting ability of cancer cell membranes, and modified multifunctional UCNPs. This probe exhibits excellent performance in breast cancer molecular classification and TNBC diagnosis through UCL/MRI/PET tri-modality imaging in vivo. By using this probe, MDA-MB-231 was successfully differentiated between MCF-7 tumor models in vivo. Based on the tumor imaging and molecular classification results, the probe is also expected to be modified for drug delivery in the future, contributing to the treatment of TNBC. The combination of nanoparticles with biomimetic cell membranes has the potential for multiple clinical applications.
Highlights:
1 A biomimetic nanoprobe was built with cancer cell membrane-coated and Gd3+-doped upconversion nanoparticles.
2 The nanoprobe could be applied to in vivo UCL/MRI/PET multimodality precise imaging and successfully differentiated MDA-MB-231 tumor models through in vivo tri-modality imaging, which may be used for breast cancer molecular classification.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492
- J.Y.S. Tsang, G.M. Tse, Molecular classification of breast cancer. Adv. Anat. Pathol. 27(1), 27–35 (2020). https://doi.org/10.1097/PAP.0000000000000232
- J.H. Park, J.H. Ahn, S.B. Kim, How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open 3(Suppl 1), e000357 (2018). https://doi.org/10.1136/esmoopen-2018-000357
- A.V. Chudgar, D.A. Mankoff, Molecular imaging and precision medicine in breast cancer. PET Clin. 12(1), 39–51 (2017). https://doi.org/10.1016/j.cpet.2016.08.001
- A.H. Ashok, Y. Mizuno, O.D. Howes, Tobacco smoking and dopaminergic function in humans: a meta-analysis of molecular imaging studies. Psychopharmacology 236(4), 1119–1129 (2019). https://doi.org/10.1007/s00213-019-05196-1
- M.K. Mahata, H. Bae, K.T. Lee, Upconversion luminescence sensitized pH-nanoprobes. Molecules 22(12), 2064 (2017). https://doi.org/10.3390/molecules22122064
- H. Bi, F. He, Y. Dai, J. Xu, Y. Dong et al., Quad-model imaging-guided high-efficiency phototherapy based on upconversion nanoparticles and ZnFe2O4 integrated graphene oxide. Inorg. Chem. 57(16), 9988–9998 (2018). https://doi.org/10.1021/acs.inorgchem.8b01159
- C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang et al., Magnetic/upconversion fluorescent NaGdF4:Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 7(8), 7227–7240 (2013). https://doi.org/10.1021/nn4030898
- X. Ai, Z. Wang, H. Cheong, Y. Wang, R. Zhang et al., Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat. Commun. 10(1), 1087 (2019). https://doi.org/10.1038/s41467-019-09001-7
- S. Qiu, J. Zeng, Y. Hou, L. Chen, J. Ge et al., Detection of lymph node metastasis with near-infrared upconversion luminescent nanoprobes. Nanoscale 10(46), 21772–21781 (2018). https://doi.org/10.1039/c8nr05811c
- J. Gallo, I.S. Alam, J. Jin, Y.J. Gu, E.O. Aboagye, W.T. Wong, N.J. Long, PET imaging with multimodal upconversion nanoparticles. Dalton Trans. 43(14), 5535–5545 (2014). https://doi.org/10.1039/c3dt53095g
- Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10(11), 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695
- F.F. An, H. Kommidi, N. Chen, R. Ting, A conjugate of pentamethine cyanine and 18F as a positron emission tomography/near-infrared fluorescence probe for multimodality tumor imaging. Int. J. Mol. Sci. 18(6), 18061214 (2017). https://doi.org/10.3390/ijms18061214
- H. Dong, S.R. Du, X.Y. Zheng, G.M. Lyu, L.D. Sun, Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem. Rev. 115(19), 10725–10815 (2015). https://doi.org/10.1021/acs.chemrev.5b00091
- L. Rao, Q.F. Meng, L.L. Bu, B. Cai, Q. Huang et al., Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 9(3), 2159–2168 (2017). https://doi.org/10.1021/acsami.6b14450
- L. Rao, L.L. Bu, B. Cai, J.H. Xu, A. Li et al., Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 28(18), 3460–3466 (2016). https://doi.org/10.1002/adma.201506086
- A. Soufer, L.A. Baldassarre, The role of cardiac magnetic resonance imaging to detect cardiac toxicity from cancer therapeutics. Curr. Treat Options Cardiovasc Med. 21(6), 28 (2019). https://doi.org/10.1007/s11936-019-0732-5
- M. González-Béjar, L. Francés-Soriano, J. Pérez-Prieto, Upconversion nanoparticles for bioimaging and regenerative medicine. Front. Bioeng. Biotechnol. 4, 47 (2016). https://doi.org/10.3389/fbioe.2016.00047
- F.M. Goñi, The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim. Biophys. Acta 1838(6), 1467–1476 (2014). https://doi.org/10.1016/j.bbamem.2014.01.006
- M. Gao, C. Liang, X. Song, Q. Chen, Q. Jin, C. Wang, Z. Liu, Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 29(35), 1701429 (2017). https://doi.org/10.1002/adma.201701429
- L. Rao, W. Wang, Q.F. Meng, M. Tian, B. Cai et al., A biomimetic nanodecoy traps zika virus to prevent viral infection and fetal microcephaly development. Nano Lett. 19(4), 2215–2222 (2019). https://doi.org/10.1021/acs.nanolett.8b03913
- C.M. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
- L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo, X.Z. Zhao, W.F. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4), 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
- C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana et al., Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015). https://doi.org/10.1038/nature15373
- L. Rao, L.L. Bu, L. Ma, W. Wang, H. Liu et al., Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed. 57(4), 986–991 (2018). https://doi.org/10.1002/anie.201709457
- M. Ying, J. Zhuang, X. Wei, X. Zhang, Y. Zhang et al., Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv. Funct. Mater. 28(22), 1801032 (2018). https://doi.org/10.1002/adfm.201801032
- D. Dehaini, X. Wei, R.H. Fang, S. Masson, P. Angsantikul et al., Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 29(16), 1606209 (2017). https://doi.org/10.1002/adma.201606209
- R.H. Fang, C.M. Hu, B.T. Luk, W. Gao, J.A. Copp, Y. Tai, D.E. O’Connor, L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2014). https://doi.org/10.1021/nl500618u
- S.Y. Li, H. Cheng, B.R. Xie, W.X. Qiu, J.Y. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
- T.M. Saba, Physiology and physiopathology of the reticuloendothelial system. Arch. Intern. Med. 126(6), 1031–1052 (1970)
- Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
- N. Zeng, Q. Hu, Z. Liu, X. Gao, R. Hu et al., Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int. J. Pharm. 424(1–2), 58–66 (2012). https://doi.org/10.1016/j.ijpharm.2011.12.058
- W.J. McBride, R.M. Sharkey, H. Karacay, C.A. D’Souza, E.A. Rossi et al., A novel method of 18F radiolabeling for PET. J. Nucl. Med. 50(6), 991–998 (2009). https://doi.org/10.2967/jnumed.108.060418
- H.J. Jeong, R.J. Yoo, J.K. Kim, M.H. Kim, S.H. Park et al., Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling. Biomaterials 199, 32–39 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.043
- L. Rao, G.T. Yu, Q.F. Meng, L.L. Bu, R. Tian et al., Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv. Funct. Mater. 28(51), 1905671 (2019). https://doi.org/10.1002/adfm.201905671
- L. Xu, F. Gao, F. Fan, L. Yang, Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials 159, 59–67 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.028
- J.O. Martinez, R. Molinaro, K.A. Hartman, C. Boada, R. Sukhovershin et al., Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 8(4), 1131–1145 (2018). https://doi.org/10.7150/thno.22078
- H. Cao, Z. Dan, X. He, Z. Zhang, H. Yu, Q. Yin, Y. Li, Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10(8), 7738–7748 (2016). https://doi.org/10.1021/acsnano.6b03148
- C. Gao, Z. Lin, B. Jurado-Sánchez, X. Lin, Z. Wu, Q. He, Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30), 4056–4062 (2016). https://doi.org/10.1002/smll.201600624
References
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492
J.Y.S. Tsang, G.M. Tse, Molecular classification of breast cancer. Adv. Anat. Pathol. 27(1), 27–35 (2020). https://doi.org/10.1097/PAP.0000000000000232
J.H. Park, J.H. Ahn, S.B. Kim, How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open 3(Suppl 1), e000357 (2018). https://doi.org/10.1136/esmoopen-2018-000357
A.V. Chudgar, D.A. Mankoff, Molecular imaging and precision medicine in breast cancer. PET Clin. 12(1), 39–51 (2017). https://doi.org/10.1016/j.cpet.2016.08.001
A.H. Ashok, Y. Mizuno, O.D. Howes, Tobacco smoking and dopaminergic function in humans: a meta-analysis of molecular imaging studies. Psychopharmacology 236(4), 1119–1129 (2019). https://doi.org/10.1007/s00213-019-05196-1
M.K. Mahata, H. Bae, K.T. Lee, Upconversion luminescence sensitized pH-nanoprobes. Molecules 22(12), 2064 (2017). https://doi.org/10.3390/molecules22122064
H. Bi, F. He, Y. Dai, J. Xu, Y. Dong et al., Quad-model imaging-guided high-efficiency phototherapy based on upconversion nanoparticles and ZnFe2O4 integrated graphene oxide. Inorg. Chem. 57(16), 9988–9998 (2018). https://doi.org/10.1021/acs.inorgchem.8b01159
C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang et al., Magnetic/upconversion fluorescent NaGdF4:Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 7(8), 7227–7240 (2013). https://doi.org/10.1021/nn4030898
X. Ai, Z. Wang, H. Cheong, Y. Wang, R. Zhang et al., Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat. Commun. 10(1), 1087 (2019). https://doi.org/10.1038/s41467-019-09001-7
S. Qiu, J. Zeng, Y. Hou, L. Chen, J. Ge et al., Detection of lymph node metastasis with near-infrared upconversion luminescent nanoprobes. Nanoscale 10(46), 21772–21781 (2018). https://doi.org/10.1039/c8nr05811c
J. Gallo, I.S. Alam, J. Jin, Y.J. Gu, E.O. Aboagye, W.T. Wong, N.J. Long, PET imaging with multimodal upconversion nanoparticles. Dalton Trans. 43(14), 5535–5545 (2014). https://doi.org/10.1039/c3dt53095g
Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10(11), 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695
F.F. An, H. Kommidi, N. Chen, R. Ting, A conjugate of pentamethine cyanine and 18F as a positron emission tomography/near-infrared fluorescence probe for multimodality tumor imaging. Int. J. Mol. Sci. 18(6), 18061214 (2017). https://doi.org/10.3390/ijms18061214
H. Dong, S.R. Du, X.Y. Zheng, G.M. Lyu, L.D. Sun, Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem. Rev. 115(19), 10725–10815 (2015). https://doi.org/10.1021/acs.chemrev.5b00091
L. Rao, Q.F. Meng, L.L. Bu, B. Cai, Q. Huang et al., Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 9(3), 2159–2168 (2017). https://doi.org/10.1021/acsami.6b14450
L. Rao, L.L. Bu, B. Cai, J.H. Xu, A. Li et al., Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 28(18), 3460–3466 (2016). https://doi.org/10.1002/adma.201506086
A. Soufer, L.A. Baldassarre, The role of cardiac magnetic resonance imaging to detect cardiac toxicity from cancer therapeutics. Curr. Treat Options Cardiovasc Med. 21(6), 28 (2019). https://doi.org/10.1007/s11936-019-0732-5
M. González-Béjar, L. Francés-Soriano, J. Pérez-Prieto, Upconversion nanoparticles for bioimaging and regenerative medicine. Front. Bioeng. Biotechnol. 4, 47 (2016). https://doi.org/10.3389/fbioe.2016.00047
F.M. Goñi, The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim. Biophys. Acta 1838(6), 1467–1476 (2014). https://doi.org/10.1016/j.bbamem.2014.01.006
M. Gao, C. Liang, X. Song, Q. Chen, Q. Jin, C. Wang, Z. Liu, Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 29(35), 1701429 (2017). https://doi.org/10.1002/adma.201701429
L. Rao, W. Wang, Q.F. Meng, M. Tian, B. Cai et al., A biomimetic nanodecoy traps zika virus to prevent viral infection and fetal microcephaly development. Nano Lett. 19(4), 2215–2222 (2019). https://doi.org/10.1021/acs.nanolett.8b03913
C.M. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo, X.Z. Zhao, W.F. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4), 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana et al., Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015). https://doi.org/10.1038/nature15373
L. Rao, L.L. Bu, L. Ma, W. Wang, H. Liu et al., Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed. 57(4), 986–991 (2018). https://doi.org/10.1002/anie.201709457
M. Ying, J. Zhuang, X. Wei, X. Zhang, Y. Zhang et al., Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv. Funct. Mater. 28(22), 1801032 (2018). https://doi.org/10.1002/adfm.201801032
D. Dehaini, X. Wei, R.H. Fang, S. Masson, P. Angsantikul et al., Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 29(16), 1606209 (2017). https://doi.org/10.1002/adma.201606209
R.H. Fang, C.M. Hu, B.T. Luk, W. Gao, J.A. Copp, Y. Tai, D.E. O’Connor, L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2014). https://doi.org/10.1021/nl500618u
S.Y. Li, H. Cheng, B.R. Xie, W.X. Qiu, J.Y. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
T.M. Saba, Physiology and physiopathology of the reticuloendothelial system. Arch. Intern. Med. 126(6), 1031–1052 (1970)
Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
N. Zeng, Q. Hu, Z. Liu, X. Gao, R. Hu et al., Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int. J. Pharm. 424(1–2), 58–66 (2012). https://doi.org/10.1016/j.ijpharm.2011.12.058
W.J. McBride, R.M. Sharkey, H. Karacay, C.A. D’Souza, E.A. Rossi et al., A novel method of 18F radiolabeling for PET. J. Nucl. Med. 50(6), 991–998 (2009). https://doi.org/10.2967/jnumed.108.060418
H.J. Jeong, R.J. Yoo, J.K. Kim, M.H. Kim, S.H. Park et al., Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling. Biomaterials 199, 32–39 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.043
L. Rao, G.T. Yu, Q.F. Meng, L.L. Bu, R. Tian et al., Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv. Funct. Mater. 28(51), 1905671 (2019). https://doi.org/10.1002/adfm.201905671
L. Xu, F. Gao, F. Fan, L. Yang, Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials 159, 59–67 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.028
J.O. Martinez, R. Molinaro, K.A. Hartman, C. Boada, R. Sukhovershin et al., Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 8(4), 1131–1145 (2018). https://doi.org/10.7150/thno.22078
H. Cao, Z. Dan, X. He, Z. Zhang, H. Yu, Q. Yin, Y. Li, Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10(8), 7738–7748 (2016). https://doi.org/10.1021/acsnano.6b03148
C. Gao, Z. Lin, B. Jurado-Sánchez, X. Lin, Z. Wu, Q. He, Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30), 4056–4062 (2016). https://doi.org/10.1002/smll.201600624